IN4080 – 2020 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Vectors, Distributions, Embeddings

Lecture 5, Sept 14

Today

- Lexical semantics
- Vector models of documents
- □ tf-idf weighting
- Word-context matrices
- Word embeddings with dense vectors

The meaning of words

- □ Words (lecture 2)
 - Type token
 - Word lexeme lemma
 - Meaning?

Look into the dictionary

sense

pepper, n.

Pronuncration: Brit. /'pεpə/,U.S. /'pεpər/ Forms: OE peopor (*rare*), OE pipcer (transmission error), OE pipor, OE pipur (*rare*

Frequency (in current use):

Etymology: A borrowing from Latin Etymon: Latin *piper*.

I. The spice or the plant.

a. A hot pungent spice derived from the prepared fruits (peppercorns) of the pepper plant, *Piper nigrum* (see sense 2a), used from early times to season food, either whole or ground to powder (often in association with salt). Also (locally, chiefly with distinguishing word): a similar spice derived from the fruits of certain other species of the genus *Piper*; the fruits themselves.

The ground spice from *Piper nigrum* comes in two forms, the more pungent *black pepper*, produced from black peppercorns, and the milder *white pepper*, produced from white peppercorns: see BLACK *adj.* and *n.* Special uses 5a, PEPPERCERN *n.* 1a, and wHITE *adj.* and *n.* Special uses 7b(a).

a. The plant *Piper nigrum* (family Piperaceae), a climbing shrub indigenous to South Asia and also cultivated elsewhere in the tropics, which has alternate stalked entire leaves, with pendulous spikes of small green flowers opposite the leaves, succeeded by small berries turning red when ripe. Also more widely: any plant of the genus *Piper* or the family Piperaceae.

b. Usu. with distinguishing word: any of numerous plants of other families having hot pungent fruits or leaves which resemble pepper (1a) in taste and in some cases are used as a substitute for it.

definition

C. U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

3. Any of various forms of capsicum, esp. *Capsicum annuum* var. *annuum*. Originally (chiefly with distinguishing word): any variety of the *C. annuum* Longum group, with elongated fruits having a hot, pungent taste the source of cavenne chilli powder paprika etc. or of the

- A word with several senses is called polysemous
- If two different words look and sound the same, they are called homonyms
- How to tell: one word or several?
 - Common origin
 - But not waterproof/easy to see

Term	Definition	Examples	
Synonymy	Have the same meaning in all(?)/some(?) contexts	sofa-couch, bus-coach big-large	

Term	Definition	Examples	
Synonymy	Have the same meaning in all(?)/some(?) contexts	sofa-couch, bus-coach big-large	
Antonymy	Opposites with respect to a feature of meaning	true-false, strong-weak, up- down	

Term	Definition	Examples	
Synonymy	Have the same meaning in all(?)/some(?) contexts	sofa-couch, bus-coach big-large	
Antonymy	Opposites with respect to a feature of meaning	true-false, strong-weak, up- down	
Hyponym-hyperonym	The <hyponym> is a type-of the <hyperonym></hyperonym></hyponym>	rose →flower, cow →animal, car →vehicle	

Term	Definition	Examples
Synonymy	Have the same meaning in all(?)/some(?) contexts	sofa-couch, bus-coach big-large
Antonymy	Opposites with respect to a feature of meaning	true-false, strong-weak, up- down
Hyponym-hyperonym	The <hyponym> is a type-of the <hyperonym></hyperonym></hyponym>	rose →flower, cow →animal, car →vehicle
Similarity		cow-horse boy-girl

Term	Definition	Examples
Synonymy	Have the same meaning in all(?)/some(?) contexts	sofa-couch, bus-coach big-large
Antonymy	Opposites with respect to a feature of meaning	true-false, strong-weak, up- down
Hyponym-hyperonym	The <hyponym> is a type-of the <hyperonym></hyperonym></hyponym>	rose →flower, cow →animal, car →vehicle
Similarity		cow-horse boy-girl
Related		money-bank fish-water

Resources for lexical semantics: WordNet

What does ongchoi mean?

- □ Suppose you see these sentences:
 - Ong choi is delicious sautéed with garlic.
 - Ong choi is superb over rice
 - Ong choi leaves with salty sauces
- □ And you've also seen these:

 - Chard stems and leaves are delicious
 - Collard greens and other salty leafy greens
- Conclusion: Ongchoi is a leafy green like spinach, chard, or collard greens

Similar

The distributional hypothesis

15

Words that occur in similar contexts have similar meanings

Today

- Lexical semantics
- □ Vector models of documents
- □ tf-idf weighting
- Word-context matrices
- Word embeddings with dense vectors

Shakespeare (from J & M)

- Vectors are similar for the two comedies
- Different than the historical dramas
- Comedies have more fools and wit and fewer battles.

- Notice similarity to text classification
- Mandatory 2A, multinomial
 - The document represented by a vector with the occurrences of 35,000 terms

Document classification

- The word vectors were used as basis for classification
- If two documents had the same vectors they were put in the same class
- Documents are similar = on the same side of the separating hyperplane

A problem to draw 35,000 dimensions

Information retrieval (IR)

- Documents placed in the same *n*-dimensional space as in classification
- Retrieve documents similar to a given document

Cosine similarity

- Several possible ways to define similarity, e.g.,
 - Euclidean
 - Manhattan
- Most common: cosine
 - Do the arrows point in the same direction?

$$\cos(\vec{v},\vec{w}) = \frac{\vec{v}\cdot\vec{w}}{|\vec{v}||\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|} = \frac{a_{i=1}^{N} V_{i}W_{i}}{\sqrt{a_{i=1}^{N} V_{i}^{2}} \sqrt{a_{i=1}^{N} W_{i}^{2}}}$$

Let us try: $cos(v_1, v_2)$

Full	vectors					battle	es & foo	ols		
	AYLI	TwNi	JuCa	HenV	-		AYLI	TwNi	JuCa	
AYLI	1.000	0.950	0.945	0.949		AYLI	1.000	1.000	0.169	
ΓwNi	0.950	1.000	0.809	0.822		TwNi	1.000	1.000	0.141	
JuCa	0.945	0.809	1.000	0.999		JuCa	0.169	0.141	1.000	
HenV	0.949	0.822	0.999	1.000		HenV	0.321	0.294	0.988	

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle		0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Today

- Lexical semantics
- Vector models of documents
- □ tf-idf weighting
- Word-context matrices
- Word embeddings with dense vectors

Ways of counting: Term frequency

23

Alternatives

- \square Raw counts/absolute frequencies, TeNi = (0, 80, 58, 15)
- \square Binary counts (Mandatory 2A), TeNi = (0, 1, 1, 1)
- Variants of normalization.
 - Rel. frequency, $(0, \frac{80}{80+58+15}, \frac{58}{80+58+15}, \frac{15}{80+58+15})$ TfidfTransformer(use_idf=False, norm = "11")
 Length normalize, $(0, \frac{80}{\sqrt{80^2+58^2+15^2}}, \frac{58}{\sqrt{80^2+58^2+15^2}}, \frac{15}{\sqrt{80^2+58^2+15^2}})$ TfidfTransformer(use_idf=False, norm = "12")
 Sublinear TF: $(1 + \log(tf)), 0$ when tf=0
 - TfidfTransformer(use_idf=False, sub_linear=True)

Normalize or not?

- □ The cos-similarity measure does a form of length normalization:
 - Raw counts, relative counts, length normalized counts yield the same
- □ For other measures, it matters whether we normalize
 - e.g. L2-distance is relative large between documents of different lengths
- The sublinear squeezing distinguish between terms that occur often and terms that occurs very often:
 - □ If *term1* occurs 100 times and *term2* occurs 10 times:
 - term1 will be considered 10 times more frequent than term2
 - but only 2 times as important with sublinear

Inverse document frequency

- 25
- Intuition: A word occurring in a large proportion of documents is not a good discriminator.

 $\Box idf_t = \log \frac{N}{df_t}$

 $\square df_t$ the number of documents containing t.

□ TfidfTransformer(use_idf=True, smooth_idf=False)

□ Smooth: avoid dividing by zero

$$\Box idf_t = \log \frac{N}{df_t + 1} + 1$$

TfidfTransformer(use_idf=True, smooth_idf=True)

tf-idf

- Tf-idf weighting
- □ tf_{t,d} × idf_t
 □ TfidfTransformer()

- □ (Other ways of weighting:
 - PMI
 - pointwise mutual information
 - ... and more)

The effect of tf-idf

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle		Ο	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3
	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Figure 6.8 A tf-idf weighted term-document matrix for four words in four Shakespeare plays, using the counts in Fig. 6.2. For example the 0.049 value for *wit* in *As You Like It* is the product of $\text{tf} = \log_{10}(20 + 1) = 1.322$ and idf = .037. Note that the idf weighting has eliminated the importance of the ubiquitous word *good* and vastly reduced the impact of the almost-ubiquitous word *fool*.

Today

- Lexical semantics
- Vector models of documents
- □ tf-idf weighting
- Word-context matrices
- Word embeddings with dense vectors

Word-context matrix

29

□ Two words are similar in meaning if their context vectors are similar

sugar, a sliced lemon, a tablespoonful of
their enjoyment. Cautiously she sampled her first
well suited to programming on the digital
for the purpose of gathering data andapricot
pineapple
computer.

jam, a pinch each of,

and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

	aardvark	computer	data	pinch	result	sugar	•••
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

Word-context matrix

Document-term matrix

- Objects: a set of documents, D
- □ Features: a set of terms,
 - $\blacksquare T = \{t_1, t_2, \dots, t_n\}$
- Each document d is identified with a vector
 - $\square (v_1, v_2, \dots, v_n)$
 - where v_i is calculated from the frequency of t_i in d.

Word-context matrix

- Objects: a vocabulary of words, V
- □ Features: a set of words,

c $C = \{c_1, c_2, \dots, c_n\}$

- □ A set of texts, T
- A definition of the context of an occurrence of w in T
- \Box Each word w in V is identified with a vector
 - $(v_1, v_2, ..., v_n)$
 - where v_i is calculated from the frequency of c_i in all the contexts of w in T

Word-context matrix

Comments

- C=V, or C is smaller set of the most frequent terms
 - To avoid to large repr.
- Context, alternatives:
 - A sentence
 - \square A window of k tokens on each side
 - A document
 - Defined by grammatical relations (after parsing)

Word-context matrix

- Objects: a vocabulary of words, V
- □ Features: a set of words,
 - **c** $C = \{c_1, c_2, \dots, c_n\}$
- A set of texts, T
- A definition of the context of an occurrence of w in T
- \Box Each word w in V is identified with a vector
 - $(v_1, v_2, ..., v_n)$
 - where v_i is calculated from the frequency of c_i in all the contexts of w in T

So-far

- A word W can be represented by a context vector v_w where position j in the vector reflects the frequency of occurrences of W_j with W.
- Can be used for
 - studying similarities between words.
 - document similarities

- □ But the vectors are sparse
 - Long: 20-50,000
 - Many entries are 0
- Even though car and automobile get similar vectors, because both co-occur with e.g., drive, in the vector for drive there is no connection between the car element and the automobile element.

Today

- Lexical semantics
- Vector models of documents
- □ tf-idf weighting
- Word-context matrices
- □ Word embeddings with dense vectors

Dense vectors

How?

- □ Shorter vectors.
 - (length 50-1000)
 - ``low-dimensional'' space
- Dense (most elements are not 0)
- Intuitions:
 - Similar words should have similar vectors.
 - Words that occur in similar contexts should be similar.

Properties

- Generalize better than sparse vectors.
- Input for deep learning
 - Fewer weights (or other weights)
- Capture semantic similarities better.
- Better for sequence modelling:
 - Language models, etc.

Word embeddings

- In current LT: Each word is represented as a vector of reals
- Words are more or less similar
- A word can be similar to one word in some dimensions and other words in other dimensions

	dog	-0.4	0.37	0.02	-0.34	animal
Word vectors	cat	-0.15	-0.02	-0.23	-0.23	domesticated
	lion	0.19	-0.4	0.35	-0.48	pet
	tiger	-0.08	0.31	0.56	0.07	fluffy
	elephant	-0.04	-0.09	0.11	-0.06	
	cheetah	0.27	-0.28	-0.2	-0.43	
	monkey	-0.02	-0.67	-0.21	-0.48	
	rabbit	-0.04	-0.3	-0.18	-0.47	
	mouse	0.09	-0.46	-0.35	-0.24	
	rat	0.21	-0.48	-0.56	-0.37	

Dimensions

Figure from <u>https://medium.com/@jayeshbahire</u>

Analogy: Embeddings capture relational meaning!

From J&M

slides

vector('king') - vector('man') + vector('woman') \approx vector('queen') vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome')

Track change of meaning of words

~30 million books, 1850-1990, Google Books data

From J&M slides

Evolution of sentiment words

Negative words change faster than positive words

Bias

□ Man is to computer programmer as woman is to homemaker.

Different adjectives associated with:

male and female terms

typical black names and typical white names

Embeddings may be used to study historical bias

Debiasing (research topic)

- □ Goal: neutralize the biases
- □ Some positive results
- But also reports that is not fully possible

- Is debiasing a goal?
- □ When should we (not) debias?

https://vagdevik.wordpress.com/2018/07/08/debiasing-word-embeddings/

Demo

http://vectors.nlpl.eu/explore/embeddings/en/

Evaluation

Extrinsic evaluation:

- Evaluate contribution as part of an application
- Intrinsic evaluation:
 - Evaluate against a resource
- Some datasets
 - WordSim-353:
 - Broader "semantic relatedness"
 - SimLex-999:
 - Narrower: similarity
 - Manually annotated for similarity

Word1	Word2	POS	Sim-score
old	new	A	1.58
smart	intelligent	A	9.2
plane	jet	N	8.1
woman	man	N	3.33
word	dictionary	N	3.68
create	build	V	8.48
get	put	V	1.98
keep	protect	V	5.4

Part of SimLex-999

Use of embeddings

- Embeddings are used as representations for words as input in all kinds of NLP tasks using deep learning:
 - Text classification
 - Language models
 - Named-entity recognition
 - Machine translation
 - etc.

Where do the dense embeddings come from?

□ Next week

Resources

Easy-to-use tool for training own models

Word2wec

<u>https://code.google.com/archive/p/word2vec/</u>

<u>https://fasttext.cc/</u>

<u>https://nlp.stanford.edu/projects/glove/</u>

<u>http://vectors.nlpl.eu/repository/</u>

Pretrained embeddings, also for Norwegian