
IN4080 – 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 6, 21 Sept

Neural networks, Language models, word2wec

2

Today
3

 Neural networks

 Language models

 Word embeddings

 Word2vec

Artificial neural networks

 Inspired by the brain

 neurons, synapses

 Does not pretend to be a

model of the brain

 The simplest model is the

 Feed forward network, also

called

 Multi-layer Perceptron

4

1 1

Linear regression as a network

 Each feature, 𝑥𝑖, of the input
vector is an input node

 An additional bias node 𝑥0 = 1
for the intercept

 A weight at each edge,

 Multiply the input values with
the respective weights: 𝑤𝑖𝑥𝑖

 Sum them

 ො𝑦 = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

5

x1

x2

x3

1

Σ

w0
w1

w2

w3

ො𝑦 𝑦

input nodes

output

node

target

value

bias

node

Gradient descent (for linear regression)

 We start with an initial set of

weights

 Consider training examples

 Adjust the weights to reduce the

loss

 How?

 Gradient descent

 Gradient means partial

derivatives.

6

Linear regression: higher dimensions

 Linear regression of more than two variables

works similarly

 We try to fit the best (hyper-)plane

ො𝑦 = 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 =෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 = 𝑤 ∙ Ԧ𝑥

 We can use the same mean square:

1

𝑚
෍

𝑖=1

𝑚

𝑦𝑖 − ො𝑦𝑖
2

7

Partial derivatives

 A function of more than one

variable, e.g. 𝑓(𝑥, 𝑦)

 The partial derivative, e.g.
𝜕𝑓

𝜕𝑥
is

the derivative one gets by

keeping the other variables

constant

 E.g. if 𝑓 𝑥, 𝑦 = 𝑎𝑥 + 𝑏𝑦 + 𝑐,
𝜕𝑓

𝜕𝑥
= 𝑎 and

𝜕𝑓

𝜕𝑦
= 𝑏

8

https://www.wikihow.com/Image:OyXsh.png

Gradient descent

 We move in the opposite

direction of where the gradient

is pointing.

 Intuitively:

 Take small steps in all direction

parallel to the (feature) axes

 The length of the steps are

proportional to the steepness in

each direction

9

Properties of the derivatives
10

1. If 𝑓 𝑥 = 𝑎𝑥 + 𝑏 then 𝑓′ 𝑥 = 𝑎

 we also write
𝑑𝑓

𝑑𝑥
= 𝑎

 and if 𝑦 = 𝑓 𝑥 , we can write
𝑑𝑦

𝑑𝑥
= 𝑎

2. If 𝑓 𝑥 = 𝑥𝑛 for an integer ≠ 0 then 𝑓′ 𝑥 = 𝑛𝑥(𝑛−1)

3. If 𝑓 𝑥 = 𝑔(𝑦) and 𝑦 = ℎ(𝑥) then 𝑓′ 𝑥 = 𝑔′ 𝑦 ℎ′(𝑥)

 if 𝑧 = 𝑓 𝑥 = 𝑔(𝑦), this can be written
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

 In particular, if 𝑓 𝑥 = 𝑎𝑥 + 𝑏 2 then 𝑓′ 𝑥 = 2 𝑎𝑥 + 𝑏 𝑎

Gradient descent (for linear regression)

 Loss: Mean squared error :

 𝐿 ෝ𝒚 , 𝒚 =
1

𝑛
σ𝑗=1
𝑛 ො𝑦𝑗 − 𝑦𝑗

2

 ො𝑦𝑗 = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑗,𝑖 = 𝒘 ∙ 𝒙𝑗

 We will update the 𝑤𝑖-s

 Consider the partial derivatives w.r.t
the 𝑤𝑖-s



𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚 =

1

𝑛
σ𝑗=1
𝑛 2 ො𝑦𝑗 − 𝑦𝑗 𝑥𝑗,𝑖

 Update 𝑤𝑖: 𝑤𝑖 = 𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚

11

𝑛 is the number of observations,

0 ≤ 𝑗 ≤ 𝑛 and

𝑚 is the number of features for each observation,

0 ≤ 𝑖 ≤ 𝑚

Inspecting the update
12

x1

x2

x3

1

Σ

w0
w1

w2

w3

ො𝑦 𝑦

input nodes

output

node

target

value

bias

node
𝑤𝑖 = 𝑤𝑖 − 𝜂

1

𝑛
෍

𝑗=1

𝑛

2 ො𝑦𝑗 − 𝑦𝑗 𝑥𝑗,𝑖

The

contribution to

the error from

this weight

The error term

(delta term) of this

prediction, from the

loss function

𝜂 is the learning rate

Logistic regression as a network

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 ො𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑧

 Loss: 𝐿𝐶𝐸 = −σ𝑗=1
𝑛 log ො𝑦𝑗

𝑗 1 − ො𝑦𝑗
1−𝑦𝑗



𝜕

𝜕ෞ𝑤𝑖
𝐿𝐶𝐸 =

𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 ×

𝜕 ො𝑦

𝜕𝑧
×

𝜕𝑧

𝜕𝑤𝑖



𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 =

𝑦− ො𝑦

ො𝑦 1− ො𝑦



𝜕 ො𝑦

𝜕𝑧
= ො𝑦 1 − ො𝑦



𝜕𝑧

𝜕𝑤𝑖
= 𝑥𝑖



𝜕

𝜕ෞ𝑤𝑖
𝐿𝐶𝐸 =

𝑦− ො𝑦

ො𝑦 1− ො𝑦
ො𝑦 1 − ො𝑦 𝑥𝑖= 𝑦 − ො𝑦 𝑥𝑖

13

x1

x2

x3

1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦
To simplify,

consider only one

observation, 𝑦𝑗

Logistic regression as a network
14

x1

x2

x3

1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦𝜕

𝜕ෞ𝑤𝑖
𝐿𝐶𝐸 =

𝑦− ො𝑦

ො𝑦 1− ො𝑦
ො𝑦 1 − ො𝑦 𝑥𝑖= 𝑦 − ො𝑦 𝑥𝑖

The delta term

at the end of

W

The contribution

to the error from

this weight

From the

activation

function
From the

loss

Feed forward network

 An input layer

 An output layer: the predictions

 One or more hidden layers

 Connections from one layer to

the next (from left to right)

15

1 1

The hidden nodes

 Each hidden node is like a small
logistic regression:

 First sum of weighted inputs :

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 Then the result is run through an
activation function, e.g. σ

 𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥

16

x1

x2

x3

1

Σ

w0
w1

w2

w3

z y

It is the non-linearity of the activation

function which makes it possible for MLP to

predict non-linear decision boundaries

The output layer

Alternatives

 Regression:

 One node

 No activation function

 Binary classifier:

 One node

 Logistic activation function

 Multinomial classifier

 Several nodes

 Softmax

 + more alternatives

 Choice of loss function depends on task

17

1 1

Learning in multi-layer networks
18

 Consider two consecutive layers:

 Layer M, with 1 ≤ 𝑖 ≤ 𝑚 nodes, and a bias
node M0

 Layer N, with 1 ≤ 𝑗 ≤ 𝑛 nodes

 Let 𝑤𝑖,𝑗 be the weight at the edge going

from 𝑀𝑖 to 𝑁𝑗

 Consider processing one observation:

 Let 𝑥𝑖 be the value going out of node 𝑀𝑖

 If M is a hidden layer:

 𝑥𝑖 = 𝜎(𝑧𝑖), where 𝑧𝑖 = σ(…)

M1

M2

M3

M0

N3

N1

N2

N4

Learning in multi-layer networks
19

 If N is the output layer, calculate the error

terms 𝛿𝑗
𝑁 as before from the loss and the

activation function at each node 𝑁𝑗
 If M is a hidden layer: Calculate the error

term at the nodes combining

 A weighted sum of the error terms at layer N

 The derivative of the activation function

 𝛿𝑖
𝑀 = σ𝑗=1

𝑛 𝑤𝑖,𝑗𝛿𝑗
𝑁 𝑑𝑥𝑖

𝑑𝑧𝑖

 where 𝑥𝑖 = 𝜎(𝑧𝑖), where 𝑧𝑖 = σ(…)

M1

M2

M3

M0

N3

N1

N2

N4

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

Learning in multi-layer networks
20

 By repeating the process, we get error

terms at all nodes in all the hidden layers.

 The update of the weights between the

layers can be done as before:

 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝑥𝑖𝛿𝑗
𝑁

 where 𝑥𝑖 is the value going out of node 𝑀𝑖

M1

M2

M3

M0

N3

N1

N2

N4

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

Alternative activation functions

 There are alternative activation functions

 tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

 ReLU is the preferred method in hidden layers
in deep networks

21

Today
22

 Neural networks

 Language models

 Word embeddings

 Word2vec

Language model

23

Probabilistic Language Models
24

 Goal: Ascribe probabilities to word sequences.

 Motivation:

 Translation:

 P(she is a tall woman) > P(she is a high woman)

 P(she has a high position) > P(she has a tall position)

 Spelling correction:

 P(She met the prefect.) > P(She met the perfect.)

 Speech recognition:

 P(I saw a van) > P(eyes awe of an)

Probabilistic Language Models
25

 Goal: Ascribe probabilities to word sequences.

 𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛)

 Related: the probability of the next word

 𝑃(𝑤𝑛 | 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛−1)

 A model which does either is called a Language Model, LM

 Comment: The term is somewhat misleading

 (Probably origin from speech recognition)

Chain rule
26

 The two definitions are related by the chain rule for probability:

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 =

 𝑃 𝑤1 × 𝑃 𝑤2 𝑤1 × 𝑃 𝑤3|𝑤1, 𝑤2 ×∙∙∙× 𝑃 𝑤𝑛|𝑤1, 𝑤2, … , 𝑤𝑛−1 =

 ς𝑖
𝑛𝑃 𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖|𝑤1
𝑖−1

 P(“its water is so transparent”) =
P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is so)

 But this does not work for long sequences
 (we may not even have seen before)

Markov assumption
27

 A word depends only on the immediate preceding word

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 𝑃 𝑤1 × 𝑃 𝑤2 𝑤1 × 𝑃 𝑤3|𝑤2 ×∙∙∙× 𝑃 𝑤𝑛| 𝑤𝑛−1 =

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−1

 P(“its water is so transparent”) ≈

P(its) × P(water|its) × P(is| water) × P(so|is) × P(transparent| so)

 This is called a bigram model

Estimating bigram probabilities
28

 The probabilities can be estimated by counting

 This yields maximum likelihood probabilities

 (=maximum probable on the training data)


෠𝑃 𝑤𝑖 𝑤𝑖−1 =

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−1,𝑤𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−1)

Example from J&M
29

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

෠𝑃 𝑤𝑖 𝑤𝑖−1 =
𝑐(𝑤𝑖−1, 𝑤𝑖)

𝑐(𝑤𝑖−1)

General ngram models
30

 A word depends only on the k many immediately preceding words

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘 , 𝑤𝑖+1−𝑘 , … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 This is called a
 unigram model – no preceding words

 trigram model – two preceding words

 k-gram model – k-1 preceding words

• We can train them similarly to

the bigram model.

• Have to be more careful with

the smoothing for larger k-s.

Generating with n-grams
31

 Goal: Generate a sequence of words

 Unigram:

 Choose the first word according to how probable it is

 Choose the second word according to how probable it is, etc.

 = the generative model for multinomial NB text classification

 Bigram

 Select word k according to ෠𝑃 𝑤𝑖 𝑤𝑖−1

 k-gram

 Select word 𝑤𝑖 according to how probable it is given the 𝑘 − 1 preceding words

𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

Shakespeare
32

Unknown words
33

 There might be words that is never observed during training.

 Use a special symbol for unseen words during application, e.g. UNK

 Set aside a probability for seeing a new word

 This may be estimated from a held-out corpus

 Adjust

 the probabilities for the other words in a unigram model accordingly

 the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone
34

 Since we might not have seen all possibilities in training data, we might

use Lidstone or, more generally, Laplace smoothing


෠𝑃 𝑤𝑖 𝑤𝑖−1 =

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1,𝑤𝑖 +𝑘

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1 +𝑘 |𝑉|

 where |𝑉| is the size of the vocabulary 𝑉.

But:

 Shakespeare produced

 N = 884,647 word tokens

 V = 29,066 word types

 Bigrams:

 Possibilities:

 𝑉2 = 844,000,000

 Shakespeare,

 bigram tokens: 884,647

 bigram types: 300,000

 Add-k smoothing is not

appropriate

35

Smoothing n-grams

 If you have good evidence, use

the trigram model,

 If not, use the bigram model,

 or even the unigram model

 Combine the models

36

Backoff Interpolation

Use either of this. According to J&M interpolation works better

Interpolation

 Simple interpolation:

 The 𝜆-s can be tuned on a held out corpus

 A more elaborate model will condition the 𝜆-s on the context

 (Brings in elements of backoff)

37

Evaluation of n-gram models
38

 Extrinsic evaluation:

 To compare two LMs, see how well they are doing in an application, e.g.
translation, speech recognition

 Intrinsic evaluation:

 Use a held out-corpus and measure 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛

1

𝑛

 The n-root compensate for different lengths

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘

𝑖−1
1

𝑛 for a k-gram model

 It is normal to use the inverse of this, called the perplexity

 𝑃𝑃 𝑤1
𝑛 =

1

𝑃 𝑤1,𝑤2,𝑤3,…,𝑤𝑛

1
𝑛

=𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛
−
1

𝑛

Properties of LMs

 The best smoothing is achieved with Kneser-Ney smoothing

 Short-comings of all n-gram models

 The smoothing is not optimal

 The context are restricted to a limited number of preceding words.

39

A practical advice: Use

logarithms when working with n-

grams

Today
40

 Neural networks

 Language models

 Word embeddings

 Word2vec

Word-context matrix

 Two words are similar in meaning if their context vectors are similar

aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0

41

So-far

 A word 𝑤 can be represented
by a context vector 𝑣𝑤 where
position 𝑗in the vector reflects
the frequency of occurrences of

𝑤𝑗 with 𝑤.

 Can be used for

 studying similarities between
words.

 document similarities

 But the vectors are sparse

 Long: 20-50,000

 Many entries are 0

 Even though car and automobile
get similar vectors, because
both co-occur with e.g., drive,
in the vector for drive there is
no connection between the car
element and the automobile
element.

42

Today
43

 Lexical semantics

 Vector models of documents

 tf-idf weighting

 Word-context matrices

 Word embeddings with dense vectors

Dense vectors

 Shorter vectors.

 (length 50-1000)

 ``low-dimensional’’ space

 Dense (most elements are not 0)

 Intuitions:

 Similar words should have similar
vectors.

 Words that occur in similar contexts
should be similar.

 Generalize better than sparse
vectors.

 Input to deep learning

 Fewer weights (or other weights)

 Capture semantic similarities
better.

 Better for sequence modelling:

 Language models, etc.

44

How? Properties

Word embeddings

 In current LT: Each word is

represented as a vector of

reals

 Words are more or less similar

 A word can be similar to one

word in some dimensions and

other words in other dimensions

45

Figure from

https://medium.com/@jayeshbahire

https://medium.com/@jayeshbahire

From J&M

slides

From J&M

slides

Analogy: Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

48

From J&M

slides

Demo

 http://vectors.nlpl.eu/explore/embeddings/en/

49

http://vectors.nlpl.eu/explore/embeddings/en/

Track change of meaning of words
50

~30 million books, 1850-1990, Google Books data From J&M

slides

Evolution of sentiment words

 Negative words change

faster than positive words

51

From J&M

slides

Bias
52

 Man is to computer programmer as woman is to homemaker.

 Different adjectives associated with:

 male and female terms

 typical black names and typical white names

 Embeddings may be used to study historical bias

Debiasing (research topic)

 Goal: neutralize the biases

 Some positive results

 But also reports that is is not

fully possible

 Is debiasing a goal?

 When should we (not) debias?

53

https://vagdevik.wordpress.com/2018/07/08/debiasing-word-embeddings/

Evaluation of embeddings

 Extrinsic evaluation:

 Evaluate contribution as part of an
application

 Intrinsic evaluation:

 Evaluate against a resource

 Some datasets

 WordSim-353:

 Broader "semantic relatedness"

 SimLex-999:

 Narrower: similarity

 Manually annotated for similarity

54

Part of SimLex-999

Use of embeddings
55

 Embeddings are used as representations for words as input in all kinds

of NLP tasks using deep learning:

 Text classification

 Language models

 Named-entity recognition

 Machine translation

 etc.

Resources

 gensim

 Easy-to-use tool for training own models

 Word2wec

 https://code.google.com/archive/p/word2vec/

 https://fasttext.cc/

 https://nlp.stanford.edu/projects/glove/

 http://vectors.nlpl.eu/repository/

 Pretrained embeddings, also for Norwegian

56

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://vectors.nlpl.eu/repository/

Today
57

 Neural networks

 Language models

 Word embeddings

 Word2vec

Idea
58

 Instead of counting, use a neural network to learn a LM

 Simplest form: a bigram model:

 For a given word 𝑤𝑖−1, try to predict the next word 𝑤𝑖

 i.e. try to estimate 𝑃 𝑤𝑖| 𝑤𝑖−1

Model
59

From J&M 3.ed. 2018 Ch. 16

Model
60

 Input and output word are repre-

sented by sparse one-hot vectors

 Dim d typically 50-300

 Independent learning for each

input word 𝑤𝑡:

 Consider all possible next words for

𝑤′ for this word

 Use softmax to get a probability

distribution of all next words

Embeddings from this

 Idea: Use the weight matrix

𝑊|𝑉|×𝑑 as embeddings, i.e.:

 Represent word 𝑗 by

(𝑤𝑗,1, 𝑤𝑗,2, … , 𝑤𝑗,𝑑) = the

weights that sends this word to
the hidden layer

 Why? since similar words will
predict more or less the same
words, they will get similar
embeddings

61

Observations

 Since two words that are similar

are predicted by the same

words, there will also be

similarities between similar

words in 𝐶𝑑×|𝑉|

 This will help the training of

𝑊|𝑉|×𝑑

 We could alternatively use

𝐶𝑑×|𝑉| as the embeddings

62

CBOW

 We could generalize to
predicting from a number of
preceding words, e.g. 3, as
indicated in the figure.

 Observe this is order-
independent

 Continuous bag of words model
(CBOW):

 Predict 𝑤𝑡 from a window

(𝑤𝑡−𝑘 , … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘)

63

https://commons.wikimedia.org/wiki/File:Cbow.png

Skip-gram

 From 𝑤𝑡 predict all the words in

a window

(𝑤𝑡−𝑘, … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘)

 Assume independence of the

context words, i.e. from 𝑤𝑡

predict each of the words w in

{𝑤𝑡−𝑘, … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘}

 Boils down to similar to unigram

model.

64

https://commons.wikimedia.org/wiki/File:Skip-gram.png

Skip-gram model
65

From J&M 3.ed. 2018 Ch. 16

Skip-gram with negative sampling
66

 To train a skip gram model is expensive

 Soft-max 𝑃 𝐶𝑗 Ԧ𝑥 =
𝑒
𝑤𝑗∙𝑥

σ𝑖=1
𝑘 𝑒𝑤𝑖∙𝑥

 where the classes corresponds to the next word

 i.e. in making an update for a pair (𝑤𝑡, 𝑤𝑠) one has to calculate the

weighted expression 𝑒𝑤𝑖∙ Ԧ𝑥 for each word in the vocabulary

 Looking for cheaper training methods

Skip-gram with negative sampling
67

1. Treat the target word and a neighboring context word as a positive

example.

2. Randomly sample other words in the lexicon to get negative samples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the weights as the embeddings

Skip-Gram Training Data

 Training sentence:

 ... lemon, a tablespoon of apricot jam a pinch ...

 c1 c2 t c3 c4

 Training data: input/output pairs centering on apricot

 Asssume a +/- 2 word window

9/22/2020

68

Skip-Gram Training Data

 ... lemon, a tablespoon of apricot preserves or a ...

 c1 c2 t c3 c4

 For each positive example, we'll create k negative examples.

 Using noise words: Any random word that isn't 𝑡

69

How to compute p(+|t,c)?

Word2vec
 One of various ways to train the classifier to distinguish pos and neg words

 Intuition:
 Words are likely to appear near similar words

 Model similarity with dot-product!

 Similarity 𝑡, 𝑐 ~ 𝑡 ∙ 𝑐

 Problem:

Dot product is not a probability!
 (Neither is cosine)

Goal

 Given a tuple (target, context)

 (apricot, jam)

 (apricot, aardvark)

 Calculate the probabilities

 𝑃 + 𝑡, 𝑐)

 𝑃 − 𝑡, 𝑐) = 1 − 𝑃 + 𝑡, 𝑐)

 Maximize

where

71

Another view
73

 We feed a pair of
words (𝑤, 𝑐) to
distinct hidden
embedding layers

 Compare to target
(1 or 0)

 Update weights

 We learn the set of
embeddings W and
C0 0 0…0 1 0…0 0 0 0 0 0 0 0 0 0 0…0 1 0… 0 0 0 0

apricot preserves

𝒘 𝒄

𝒘 ∙ 𝒄

𝝈(𝒘 ∙ 𝒄)

𝑾 𝑪

Result
74

 We learn two separate embedding matrices W and C

 We can use W as representations for the words

 (or combine with C in some ways)

 What have we learned:

 If two words w1 and w2 occur in similar contexts

 = with the same (or similar) context words, e.g. c,

 then both w1 and w2 should have a large cosine with c,

 hence have similar vectors.

Use of embeddings
75

 Embeddings are used as representations for words as input in all kinds

of NLP tasks using deep learning:

 Text classification

 Language models

 Named-entity recognition

 Machine translation

 etc.

 IN5550 Spring 2020

Resources

 gensim

 Easy-to-use tool for training own models

 Word2wec

 https://code.google.com/archive/p/word2vec/

 https://fasttext.cc/

 https://nlp.stanford.edu/projects/glove/

 http://vectors.nlpl.eu/explore/embeddings/en/

 Pretrained embeddings, also for Norwegian

76

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://vectors.nlpl.eu/explore/embeddings/en/

