IN4080 - 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Lecture 6, 21 Sept

Today

\square Neural networks
\square Language models
\square Word embeddings
\square Word2vec

Artificial neural networks

\square Inspired by the brain
\square neurons, synapses
\square Does not pretend to be a model of the brain
\square The simplest model is the

- Feed forward network, also called
- Multi-Iayer Perceptron

Input Layer

Linear regression as a network

\square Each feature, x_{i}, of the input vector is an input node
\square An additional bias node $x_{0}=1$ for the intercept
\square A weight at each edge,
\square Multiply the input values with the respective weights: $w_{i} x_{i}$
\square Sum them
$\square \hat{y}=\sum_{i=0}^{m} w_{i} x_{i}=\boldsymbol{w} \cdot \boldsymbol{x}$

$\times 3$

Gradient descent (for linear regression)

\square We start with an initial set of weights
\square Consider training examples
\square Adjust the weights to reduce the loss
\square How?
\square Gradient descent
\square Gradient means partial
 derivatives.

Linear regression: higher dimensions

\square Linear regression of more than two variables works similarly
\square We try to fit the best (hyper-)plane $\hat{y}=f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{n} w_{i} x_{i}=\vec{w} \cdot \vec{x}$
\square We can use the same mean square:

$$
\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Partial derivatives

\square A function of more than one variable, e.g. $f(x, y)$
\square The partial derivative, e.g. $\frac{\partial f}{\partial x}$ is the derivative one gets by keeping the other variables constant
\square E.g. if $f(x, y)=a x+b y+c$, $\frac{\partial f}{\partial x}=a$ and $\frac{\partial f}{\partial y}=b$

The tangent line in the direction of x

Gradient descent

\square We move in the opposite direction of where the gradient is pointing.
\square Intuitively:
\square Take small steps in all direction parallel to the (feature) axes
\square The length of the steps are proportional to the steepness in each direction

Properties of the derivatives

1. If $f(x)=a x+b$ then $f^{\prime}(x)=a$
\square we also write $\frac{d f}{d x}=a$

- and if $y=f(x)$, we can write $\frac{d y}{d x}=a$

2. If $f(x)=x^{n}$ for an integer $\neq 0$ then $f^{\prime}(x)=n x^{(n-1)}$
3. If $f(x)=g(y)$ and $y=h(x)$ then $f^{\prime}(x)=g^{\prime}(y) h^{\prime}(x)$
\square if $z=f(x)=g(y)$, this can be written $\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}$
\square In particular, if $f(x)=(a x+b)^{2}$ then $f^{\prime}(x)=2(a x+b) a$

Gradient descent (for linear regression)

\square Loss: Mean squared error :

$$
\begin{aligned}
& L(\widehat{\boldsymbol{y}}, \boldsymbol{y})=\frac{1}{n} \sum_{j=1}^{n}\left(\hat{y}_{j}-y_{j}\right)^{2} \\
& \hat{y}_{j}=\sum_{i=0}^{m} w_{i} x_{j, i}=\boldsymbol{w} \cdot \boldsymbol{x}_{j}
\end{aligned}
$$

\square We will update the $w_{i}-s$
\square Consider the partial derivatives w.r.t the $w_{i}-s$
$\square \frac{\partial}{\partial w_{i}} L(\widehat{\boldsymbol{y}}, \boldsymbol{y})=\frac{1}{n} \sum_{j=1}^{n} 2\left(\hat{y}_{j}-y_{j}\right) x_{j, i}$
\square Update $w_{i}: w_{i}=w_{i}-\eta \frac{\partial}{\partial w_{i}} L(\widehat{\boldsymbol{y}}, \boldsymbol{y})$

n is the number of observations,
$0 \leq j \leq n$ and
m is the number of features for each observation, $0 \leq i \leq m$

Inspecting the update

$$
\begin{gathered}
w_{i}=w_{i}-\eta \frac{1}{n} \sum_{j=1}^{n} 2\left(\hat{y}_{j}-y_{j}\right) x_{j, i} \\
\begin{array}{c}
\text { The error term } \\
\text { (delta term) of this } \\
\text { prediction, from the } \\
\text { loss function }
\end{array}
\end{gathered} \begin{gathered}
\text { contribution to } \\
\text { the error from } \\
\text { this weight }
\end{gathered}
$$

[^0]η is the learning rate

Logistic regression as a network

$\square \mathrm{z}=\sum_{i=0}^{m} w_{i} x_{i}=\boldsymbol{w} \cdot \boldsymbol{x}$
$\square \hat{y}=\sigma(z)=\frac{1}{1+e^{-z}}$
\square Loss: $L_{C E}=-\sum_{j=1}^{n} \log \left[\hat{y}_{j}^{j}\left(1-\hat{y}_{j}\right)^{\left(1-y_{j}\right)}\right]$
$\square \frac{\partial}{\partial \widehat{w}_{i}} L_{C E}=\frac{\partial}{\partial \hat{y}} L_{C E} \times \frac{\partial \hat{y}}{\partial z} \times \frac{\partial z}{\partial w_{i}}$
$\square \frac{\partial}{\partial \hat{y}} L_{C E}=\frac{(y-\hat{y})}{\hat{y}(1-\hat{y})}$
$\square \frac{\partial \hat{y}}{\partial z}=\hat{y}(1-\hat{y})$
$\square \frac{\partial z}{\partial w_{i}}=x_{i}$
$\square \frac{\partial}{\partial \widehat{w_{i}}} L_{C E}=\frac{(y-\hat{y})}{\hat{y}(1-\hat{y})} \hat{y}(1-\hat{y}) x_{i}=(y-\hat{y}) x_{i}$

Logistic regression as a network

Feed forward network

\square An input layer
\square An output layer: the predictions
\square One or more hidden layers
\square Connections from one layer to the next (from left to right)

Input Layer

The hidden nodes

\square Each hidden node is like a small logistic regression:
\square First sum of weighted inputs :
$\square \mathrm{z}=\sum_{i=0}^{m} w_{i} x_{i}=\boldsymbol{w} \cdot \boldsymbol{x}$
\square Then the result is run through an activation function, e.g. σ
$\square y=\sigma(z)=\frac{1}{1+e^{-\vec{w} \cdot \vec{x}}}$

It is the non-linearity of the activation function which makes it possible for MLP to predict non-linear decision boundaries

The output layer

Alternatives
\square Regression:
\square One node

- No activation function
\square Binary classifier:
\square One node
\square Logistic activation function
\square Multinomial classifier
\square Several nodes
- Softmax
$\square+$ more alternatives
\square Choice of loss function depends on task

Input Layer

Learning in multi-layer networks

\square Consider two consecutive layers:
\square Layer M, with $1 \leq i \leq m$ nodes, and a bias node MO
\square Layer N, with $1 \leq j \leq n$ nodes
\square Let $w_{i, j}$ be the weight at the edge going from M_{i} to N_{j}
\square Consider processing one observation:
\square Let x_{i} be the value going out of node M_{i}
\square If M is a hidden layer:

$$
x_{i}=\sigma\left(z_{i}\right), \text { where } z_{i}=\sum(\ldots)
$$

Learning in multi-layer networks

\square If N is the output layer, calculate the error terms δ_{j}^{N} as before from the loss and the activation function at each node N_{j}
\square If M is a hidden layer: Calculate the error term at the nodes combining
\square A weighted sum of the error terms at layer N
\square The derivative of the activation function
$\square \delta_{i}^{M}=\left(\sum_{j=1}^{n} w_{i, j} \delta_{j}^{N}\right) \frac{d x_{i}}{d z_{i}}$

Learning in multi-layer networks

\square By repeating the process, we get error terms at all nodes in all the hidden layers.
\square The update of the weights between the layers can be done as before:
$\square w_{i, j}=w_{i, j}-x_{i} \delta_{j}^{N}$
\square where X_{i} is the value going out of node M_{i}

Alternative activation functions

Today

\square Neural networks
\square Language models
\square Word embeddings
\square Word2vec

Probabilistic Language Models

\square Goal: Ascribe probabilities to word sequences.
\square Motivation:
\square Translation:
■ $P($ she is a tall woman) $>P($ she is a high woman)
■ $P($ she has a high position) $>P($ she has a tall position)
\square Spelling correction:

- $P($ She met the prefect.) $>P$ (She met the perfect.)
\square Speech recognition:
- $P(1$ saw a van) $>P($ eyes awe of an)

Probabilistic Language Models

\square Goal: Ascribe probabilities to word sequences.
$\square P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)$
\square Related: the probability of the next word
$\square P\left(w_{n} \mid w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}\right)$
\square A model which does either is called a Language Model, LM
\square Comment: The term is somewhat misleading

- (Probably origin from speech recognition)

Chain rule

\square The two definitions are related by the chain rule for probability:
$\square P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)=$
$\square P\left(w_{1}\right) \times P\left(w_{2} \mid w_{1}\right) \times P\left(w_{3} \mid w_{1}, w_{2}\right) \times \cdots \times P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)=$
$\square \prod_{i}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right)=\prod_{i}^{n} P\left(w_{i} \mid w_{1}^{i-1}\right)$
$\square P($ "its water is so transparent") = P (its) $\times P$ (water|its) $\times P$ (is/its water)
$\times P$ (solits water is) $\times P$ (transparent/its water is so)
\square But this does not work for long sequences

- (we may not even have seen before)

Markov assumption

\square A word depends only on the immediate preceding word
$\square P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \approx$
$\square P\left(w_{1}\right) \times P\left(w_{2} \mid w_{1}\right) \times P\left(w_{3} \mid w_{2}\right) \times \cdots \times P\left(w_{n} \mid w_{n-1}\right)=$
$\square \prod_{i}^{n} P\left(w_{i} \mid w_{i-1}\right)$
$\square \mathrm{P}$ ("its water is so transparent") \approx

$$
P(\text { its }) \times P(\text { water } \mid \text { its }) \times P(\text { is } \mid \text { water }) \times P(\text { so } \mid \text { is }) \times P(\text { transparent } \mid \text { so })
$$

\square This is called a bigram model

Estimating bigram probabilities

\square The probabilities can be estimated by counting
\square This yields maximum likelihood probabilities

- (=maximum probable on the training data)
$\square \hat{P}\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}$

Example from J\&M

$$
\hat{P}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

$$
\begin{aligned}
& \text { <s> I am Sam </s> } \\
& \text { <s> Sam I am </s> } \\
& \text { <s> I do not like green eggs and ham </s> }
\end{aligned}
$$

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(</ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

General ngram models

\square A word depends only on the k many immediately preceding words
$\square P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \approx$
$\square \prod_{i}^{n} P\left(w_{i} \mid w_{i-k}, w_{i+1-k}, \ldots, w_{i-1}\right)=\prod_{i}^{n} P\left(w_{i} \mid w_{i-k}^{i-1}\right)$
\square This is called a

- unigram model - no preceding words
\square trigram model - two preceding words
$\square k$-gram model $-k$-1 preceding words
- We can train them similarly to the bigram model.
- Have to be more careful with the smoothing for larger k-s.

Generating with n-grams

\square Goal: Generate a sequence of words
\square Unigram:
\square Choose the first word according to how probable it is
\square Choose the second word according to how probable it is, etc.
$\square=$ the generative model for multinomial NB text classification
\square Bigram
\square Select word k according to $\hat{P}\left(w_{i} \mid w_{i-1}\right)$
\square k-gram
\square Select word w_{i} according to how probable it is given the $k-1$ preceding words $P\left(w_{i} \mid w_{i-k}^{i-1}\right)$

Shakespeare

-To him swallowed confess hear both. Which. Of save on trail for are ay device and great banquet serv'd in;
gram -It cannot be but so.
-Hill he late speaks; or! a more to leg less first you enter
-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
-What means, sir. I confess she? then all sorts, he is trim, captain.
-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
-This shall forbid it should be branded, if renown made it empty.
-King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A rote life have

Unknown words

\square There might be words that is never observed during training.
\square Use a special symbol for unseen words during application, e.g. UNK
\square Set aside a probability for seeing a new word
\square This may be estimated from a held-out corpus
\square Adjust
\square the probabilities for the other words in a unigram model accordingly
\square the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone

\square Since we might not have seen all possibilities in training data, we might use Lidstone or, more generally, Laplace smoothing
$\square \hat{P}\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)+k}{\operatorname{count}\left(w_{i-1}\right)+k|V|}$
\square where $|V|$ is the size of the vocabulary V.

But:

\square Shakespeare produced
$\square \mathrm{N}=884,647$ word tokens
$\square V=29,066$ word types
\square Bigrams:
\square Possibilities:
$\square V^{2}=844,000,000$
\square Shakespeare,

- bigram tokens: 884,647
- bigram types: 300,000

\square Add-k smoothing is not appropriate

Smoothing n-grams

Backoff

\square If you have good evidence, use the trigram model,
\square If not, use the bigram model,
\square or even the unigram model

Interpolation

\square Combine the models

Use either of this. According to J\&M interpolation works better

Interpolation

\square Simple interpolation:

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3} P\left(w_{n}\right)
\end{aligned}
$$

\square The λ-s can be tuned on a held out corpus
\square A more elaborate model will condition the λ-s on the context
\square (Brings in elements of backoff)

Evaluation of n-gram models

\square Extrinsic evaluation:

- To compare two LMs, see how well they are doing in an application, e.g. translation, speech recognition
\square Intrinsic evaluation:
\square Use a held out-corpus and measure $P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)^{\frac{1}{n}}$
- The n -root compensate for different lengths
- $\prod_{i}^{n} P\left(w_{i} \mid w_{i-k}^{i-1}\right)^{\frac{1}{n}}$ for a k-gram model
\square It is normal to use the inverse of this, called the perplexity
$\square P P\left(w_{1}^{n}\right)=\frac{1}{P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)^{\frac{1}{n}}}=P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)^{-\frac{1}{n}}$

Properties of LMs

\square The best smoothing is achieved with Kneser-Ney smoothing
\square Short-comings of all n-gram models
\square The smoothing is not optimal
\square The context are restricted to a limited number of preceding words.

A practical advice: Use logarithms when working with ngrams

Today

\square Neural networks
\square Language models
\square Word embeddings
\square Word2vec

Word-context matrix

\square Two words are similar in meaning if their context vectors are similar
sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first pineapple well suited to programming on the digital computer.
for the purpose of gathering data and information
jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

	acradvark	computier	data	pinch	resulf	sugar	\ldots
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

So-far

\square A word w can be represented by a context vector v_{w} where position j in the vector reflects the frequency of occurrences of w_{j} with w.
\square Can be used for
\square studying similarities between words.
\square document similarities
\square But the vectors are sparse

- Long: 20-50,000
\square Many entries are 0
\square Even though car and automobile get similar vectors, because both co-occur with e.g., drive, in the vector for drive there is no connection between the car element and the automobile element.

Today

\square Lexical semantics
\square Vector models of documents
$\square \mathrm{tf}$-idf weighting
\square Word-context matrices
\square Word embeddings with dense vectors

Dense vectors

How?

\square Shorter vectors.
\square (length 50-1000)

- "low-dimensional" space
\square Dense (most elements are not 0)
\square Intuitions:
\square Similar words should have similar vectors.
\square Words that occur in similar contexts should be similar.

Properties

\square Generalize better than sparse vectors.
\square Input to deep learning

- Fewer weights (or other weights)
\square Capture semantic similarities better.
\square Better for sequence modelling:
\square Language models, etc.

Word embeddings

\square In current LT: Each word is
represented as a vector of reals
\square Words are more or less similar
\square A word can be similar to one word in some dimensions and other words in other dimensions

	Dimensions					
	dog	-0.4	0.37	0.02	-0.34	animal
	cat	-0.15	-0.02	-0.23	-0.23	domesticated
	lion	0.19	-0.4	0.35	-0.48	pet
边	tiger	-0.08	0.31	0.56	0.07	fluffy
-	elephant	-0.04	-0.09	0.11	-0.06	
믄	cheetah	0.27	-0.28	-0.2	-0.43	
3	monkey	-0.02	-0.67	-0.21	-0.48	
	rabbit	-0.04	-0.3	-0.18	-0.47	
	mouse	0.09	-0.46	-0.35	-0.24	
	rat	0.21	-0.48	-0.56	-0.37	

Analogy: Embeddings capture relational meaning!

```
vector('king') - vector('man') + vector('woman') \approx vector('queen')
vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome')
```


Demo

- http://vectors.nlpl.eu/explore/embeddings/en/

Track change of meaning of words

Evolution of sentiment words

\square Negative words change faster than positive words

Bias

\square Man is to computer programmer as woman is to homemaker.
\square Different adjectives associated with:
\square male and female terms
\square typical black names and typical white names
\square Embeddings may be used to study historical bias

Debiasing (research topic)

\square Goal: neutralize the biases
\square Some positive results
\square But also reports that is is not fully possible
\square Is debiasing a goal?
\square When should we (not) debias?

hitps://vagdevik.wordpress.com/2018/07/08/debiasing-word-embeddings/

Evaluation of embeddings

\square Extrinsic evaluation:

- Evaluate contribution as part of an application
\square Intrinsic evaluation:
\square Evaluate against a resource
\square Some datasets
\square WordSim-353:

Word1	Word2	POS	Sim-score
old	new	A	1.58
smart	intelligent	A	9.2
plane	jet	N	8.1
woman	man	N	3.33
word	dictionary	N	3.68
create	build	V	8.48
get	put	V	1.98
keep	protect	V	5.4

- Broader "semantic relatedness"
\square SimLex-999:
- Narrower: similarity
- Manually annotated for similarity

Part of SimLex-999

Use of embeddings

\square Embeddings are used as representations for words as input in all kinds of NLP tasks using deep learning:
\square Text classification
\square Language models
\square Named-entity recognition
\square Machine translation
\square etc.

Resources

\square gensim
\square Easy-to-use tool for training own models
\square Word2wec

- https://code.google.com/archive/p/word2vec/
- https://fasttext.cc/
\square https://nlp.stanford.edu/projects/glove/
\square http://vectors.nlpl.eu/repository/
\square Pretrained embeddings, also for Norwegian

Today

\square Neural networks
\square Language models
\square Word embeddings
\square Word2vec
\square Instead of counting, use a neural network to learn a LM
\square Simplest form: a bigram model:
\square For a given word w_{i-1}, try to predict the next word w_{i}
\square i.e. try to estimate $P\left(w_{i} \mid w_{i-1}\right)$

Model

Figure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov et al. 2013a).

Model

\square Input and output word are represented by sparse one-hot vectors
\square Dim d typically 50-300
\square Independent learning for each input word w_{t} :
\square Consider all possible next words for w^{\prime} for this word
\square Use softmax to get a probability distribution of all next words

Embeddings from this

\square Idea: Use the weight matrix $W_{|V| \times d}$ as embeddings, i.e.:
\square Represent word j by $\left(w_{j, 1}, w_{j, 2}, \ldots, w_{j, d}\right)=$ the weights that sends this word to the hidden layer
\square Why? since similar words will predict more or less the same words, they will get similar embeddings
 et al. 2013a).

Observations

\square Since two words that are similar are predicted by the same words, there will also be similarities between similar words in $C_{d \times|V|}$
\square This will help the training of $W_{|V| \times d}$
\square We could alternatively use $C_{d \times|V|}$ as the embeddings
 et al. 2013a).
\square We could generalize to predicting from a number of preceding words, e.g. 3, as indicated in the figure.
\square Observe this is orderindependent
\square Continuous bag of words model (CBOW):
\square Predict w_{t} from a window

$$
\left(w_{t-k}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+k}\right)
$$

Skip-gram

\square From w_{t} predict all the words in a window

$$
\left(w_{t-k}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+k}\right)
$$

\square Assume independence of the context words, i.e. from w_{t} predict each of the words w in $\left\{w_{t-k}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+k}\right\}$
\square Boils down to similar to unigram model.

Skip-gram model

Figure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov et al. 2013a).

Skip-gram with negative sampling

\square To train a skip gram model is expensive
\square Soft-max $P\left(C_{j} \mid \vec{x}\right)=\frac{e^{\overrightarrow{w_{j}} \cdot \vec{x}}}{\sum_{i=1}^{k} e^{\overrightarrow{w_{i}} \cdot \vec{x}}}$
\square where the classes corresponds to the next word
\square i.e. in making an update for a pair $\left(w_{t}, w_{s}\right)$ one has to calculate the weighted expression $e^{\overrightarrow{w_{i}} \cdot \vec{x}}$ for each word in the vocabulary
\square Looking for cheaper training methods

Skip-gram with negative sampling

Treat the target word and a neighboring context word as a positive example.
2. Randomly sample other words in the lexicon to get negative samples
3. Use logistic regression to train a classifier to distinguish those two cases
4. Use the weights as the embeddings

Skip-Gram Training Data

\square Training sentence:
-... lemon,
a tablespoon of apricot jam a pinch ...
c1 c2 t c3 c4
\square Training data: input/output pairs centering on apricot
\square Asssume $a+/-2$ word window

Skip-Gram Training Data

■ ... lemon, a tablespoon of apricot preserves or a ...
\square c1 c2 t c3 c4
\square For each positive example, we'll create k negative examples.
\square Using noise words: Any random word that isn't t

negative examples -			
t	c	t	c
apricot	aardvark	apricot	twelve
apricot	puddle	apricot	hello
apricot	where	apricot	dear
apricot	coaxial	apricot	forever

How to compute $p(+\mid t, c)$?

Word2vec

\square One of various ways to train the classifier to distinguish pos and neg words
\square Intuition:
\square Words are likely to appear near similar words
\square Model similarity with dot-product!
\square Similarity $(t, c) \sim t \cdot c$
\square Problem:
\square Dot product is not a probability!
\square (Neither is cosine)

Goal

\square Given a tuple (target, context)
\square (apricot, jam)
\square (apricot, aardvark)
\square Calculate the probabilities
$\square P(+\mid t, c)$
$\square P(-\mid t, c)=1-P(+\mid t, c)$
\square Maximize

$$
\sum_{(t, c) \in+} \log P(+\mid t, c)+\sum_{(t, c) \in-} \log P(-\mid t, c)
$$

\square where

$$
P(+\mid t, c)=\frac{1}{1+e^{-t \cdot c}}
$$

Another view

\square We feed a pair of words (w, c) to distinct hidden embedding layers
\square Compare to target (1 or 0)
\square Update weights
\square We learn the set of embeddings W and C

Result

\square We learn two separate embedding matrices W and C
\square We can use W as representations for the words
\square (or combine with C in some ways)
\square What have we learned:

- If two words w1 and w2 occur in similar contexts - = with the same (or similar) context words, e.g. c,
\square then both $w 1$ and $w 2$ should have a large cosine with c,
- hence have similar vectors.

Use of embeddings

\square Embeddings are used as representations for words as input in all kinds of NLP tasks using deep learning:
\square Text classification
\square Language models
\square Named-entity recognition
\square Machine translation
\square etc.
\square IN5550 Spring 2020

Resources

\square gensim
\square Easy-to-use tool for training own models
\square Word2wec

- https://code.google.com/archive/p/word2vec/
\square https://fasttext.cc/
\square https://nlp.stanford.edu/projects/glove/
\square http://vectors.nlpl.eu/explore/embeddings/en/
\square Pretrained embeddings, also for Norwegian

[^0]: $\times 3$

