
IN4080 – 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 6, 21 Sept

Neural networks, Language models, word2wec

2

Today
3

 Neural networks

 Language models

 Word embeddings

 Word2vec

Artificial neural networks

 Inspired by the brain

 neurons, synapses

 Does not pretend to be a

model of the brain

 The simplest model is the

 Feed forward network, also

called

 Multi-layer Perceptron

4

1 1

Linear regression as a network

 Each feature, 𝑥𝑖, of the input
vector is an input node

 An additional bias node 𝑥0 = 1
for the intercept

 A weight at each edge,

 Multiply the input values with
the respective weights: 𝑤𝑖𝑥𝑖

 Sum them

 ො𝑦 = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

5

x1

x2

x3

1

Σ

w0
w1

w2

w3

ො𝑦 𝑦

input nodes

output

node

target

value

bias

node

Gradient descent (for linear regression)

 We start with an initial set of

weights

 Consider training examples

 Adjust the weights to reduce the

loss

 How?

 Gradient descent

 Gradient means partial

derivatives.

6

Linear regression: higher dimensions

 Linear regression of more than two variables

works similarly

 We try to fit the best (hyper-)plane

ො𝑦 = 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 =

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 = 𝑤 ∙ Ԧ𝑥

 We can use the same mean square:

1

𝑚

𝑖=1

𝑚

𝑦𝑖 − ො𝑦𝑖
2

7

Partial derivatives

 A function of more than one

variable, e.g. 𝑓(𝑥, 𝑦)

 The partial derivative, e.g.
𝜕𝑓

𝜕𝑥
is

the derivative one gets by

keeping the other variables

constant

 E.g. if 𝑓 𝑥, 𝑦 = 𝑎𝑥 + 𝑏𝑦 + 𝑐,
𝜕𝑓

𝜕𝑥
= 𝑎 and

𝜕𝑓

𝜕𝑦
= 𝑏

8

https://www.wikihow.com/Image:OyXsh.png

Gradient descent

 We move in the opposite

direction of where the gradient

is pointing.

 Intuitively:

 Take small steps in all direction

parallel to the (feature) axes

 The length of the steps are

proportional to the steepness in

each direction

9

Properties of the derivatives
10

1. If 𝑓 𝑥 = 𝑎𝑥 + 𝑏 then 𝑓′ 𝑥 = 𝑎

 we also write
𝑑𝑓

𝑑𝑥
= 𝑎

 and if 𝑦 = 𝑓 𝑥 , we can write
𝑑𝑦

𝑑𝑥
= 𝑎

2. If 𝑓 𝑥 = 𝑥𝑛 for an integer ≠ 0 then 𝑓′ 𝑥 = 𝑛𝑥(𝑛−1)

3. If 𝑓 𝑥 = 𝑔(𝑦) and 𝑦 = ℎ(𝑥) then 𝑓′ 𝑥 = 𝑔′ 𝑦 ℎ′(𝑥)

 if 𝑧 = 𝑓 𝑥 = 𝑔(𝑦), this can be written
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

 In particular, if 𝑓 𝑥 = 𝑎𝑥 + 𝑏 2 then 𝑓′ 𝑥 = 2 𝑎𝑥 + 𝑏 𝑎

Gradient descent (for linear regression)

 Loss: Mean squared error :

 𝐿 ෝ𝒚 , 𝒚 =
1

𝑛
σ𝑗=1
𝑛 ො𝑦𝑗 − 𝑦𝑗

2

 ො𝑦𝑗 = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑗,𝑖 = 𝒘 ∙ 𝒙𝑗

 We will update the 𝑤𝑖-s

 Consider the partial derivatives w.r.t
the 𝑤𝑖-s

𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚 =

1

𝑛
σ𝑗=1
𝑛 2 ො𝑦𝑗 − 𝑦𝑗 𝑥𝑗,𝑖

 Update 𝑤𝑖: 𝑤𝑖 = 𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚

11

𝑛 is the number of observations,

0 ≤ 𝑗 ≤ 𝑛 and

𝑚 is the number of features for each observation,

0 ≤ 𝑖 ≤ 𝑚

Inspecting the update
12

x1

x2

x3

1

Σ

w0
w1

w2

w3

ො𝑦 𝑦

input nodes

output

node

target

value

bias

node
𝑤𝑖 = 𝑤𝑖 − 𝜂

1

𝑛

𝑗=1

𝑛

2 ො𝑦𝑗 − 𝑦𝑗 𝑥𝑗,𝑖

The

contribution to

the error from

this weight

The error term

(delta term) of this

prediction, from the

loss function

𝜂 is the learning rate

Logistic regression as a network

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 ො𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑧

 Loss: 𝐿𝐶𝐸 = −σ𝑗=1
𝑛 log ො𝑦𝑗

𝑗 1 − ො𝑦𝑗
1−𝑦𝑗

𝜕

𝜕ෞ𝑤𝑖
𝐿𝐶𝐸 =

𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 ×

𝜕 ො𝑦

𝜕𝑧
×

𝜕𝑧

𝜕𝑤𝑖

𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 =

𝑦− ො𝑦

ො𝑦 1− ො𝑦

𝜕 ො𝑦

𝜕𝑧
= ො𝑦 1 − ො𝑦

𝜕𝑧

𝜕𝑤𝑖
= 𝑥𝑖

𝜕

𝜕ෞ𝑤𝑖
𝐿𝐶𝐸 =

𝑦− ො𝑦

ො𝑦 1− ො𝑦
ො𝑦 1 − ො𝑦 𝑥𝑖= 𝑦 − ො𝑦 𝑥𝑖

13

x1

x2

x3

1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦
To simplify,

consider only one

observation, 𝑦𝑗

Logistic regression as a network
14

x1

x2

x3

1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦𝜕

𝜕ෞ𝑤𝑖
𝐿𝐶𝐸 =

𝑦− ො𝑦

ො𝑦 1− ො𝑦
ො𝑦 1 − ො𝑦 𝑥𝑖= 𝑦 − ො𝑦 𝑥𝑖

The delta term

at the end of

W

The contribution

to the error from

this weight

From the

activation

function
From the

loss

Feed forward network

 An input layer

 An output layer: the predictions

 One or more hidden layers

 Connections from one layer to

the next (from left to right)

15

1 1

The hidden nodes

 Each hidden node is like a small
logistic regression:

 First sum of weighted inputs :

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 Then the result is run through an
activation function, e.g. σ

 𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥

16

x1

x2

x3

1

Σ

w0
w1

w2

w3

z y

It is the non-linearity of the activation

function which makes it possible for MLP to

predict non-linear decision boundaries

The output layer

Alternatives

 Regression:

 One node

 No activation function

 Binary classifier:

 One node

 Logistic activation function

 Multinomial classifier

 Several nodes

 Softmax

 + more alternatives

 Choice of loss function depends on task

17

1 1

Learning in multi-layer networks
18

 Consider two consecutive layers:

 Layer M, with 1 ≤ 𝑖 ≤ 𝑚 nodes, and a bias
node M0

 Layer N, with 1 ≤ 𝑗 ≤ 𝑛 nodes

 Let 𝑤𝑖,𝑗 be the weight at the edge going

from 𝑀𝑖 to 𝑁𝑗

 Consider processing one observation:

 Let 𝑥𝑖 be the value going out of node 𝑀𝑖

 If M is a hidden layer:

 𝑥𝑖 = 𝜎(𝑧𝑖), where 𝑧𝑖 = σ(…)

M1

M2

M3

M0

N3

N1

N2

N4

Learning in multi-layer networks
19

 If N is the output layer, calculate the error

terms 𝛿𝑗
𝑁 as before from the loss and the

activation function at each node 𝑁𝑗
 If M is a hidden layer: Calculate the error

term at the nodes combining

 A weighted sum of the error terms at layer N

 The derivative of the activation function

 𝛿𝑖
𝑀 = σ𝑗=1

𝑛 𝑤𝑖,𝑗𝛿𝑗
𝑁 𝑑𝑥𝑖

𝑑𝑧𝑖

 where 𝑥𝑖 = 𝜎(𝑧𝑖), where 𝑧𝑖 = σ(…)

M1

M2

M3

M0

N3

N1

N2

N4

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

Learning in multi-layer networks
20

 By repeating the process, we get error

terms at all nodes in all the hidden layers.

 The update of the weights between the

layers can be done as before:

 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝑥𝑖𝛿𝑗
𝑁

 where 𝑥𝑖 is the value going out of node 𝑀𝑖

M1

M2

M3

M0

N3

N1

N2

N4

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

Alternative activation functions

 There are alternative activation functions

 tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

 ReLU is the preferred method in hidden layers
in deep networks

21

Today
22

 Neural networks

 Language models

 Word embeddings

 Word2vec

Language model

23

Probabilistic Language Models
24

 Goal: Ascribe probabilities to word sequences.

 Motivation:

 Translation:

 P(she is a tall woman) > P(she is a high woman)

 P(she has a high position) > P(she has a tall position)

 Spelling correction:

 P(She met the prefect.) > P(She met the perfect.)

 Speech recognition:

 P(I saw a van) > P(eyes awe of an)

Probabilistic Language Models
25

 Goal: Ascribe probabilities to word sequences.

 𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛)

 Related: the probability of the next word

 𝑃(𝑤𝑛 | 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛−1)

 A model which does either is called a Language Model, LM

 Comment: The term is somewhat misleading

 (Probably origin from speech recognition)

Chain rule
26

 The two definitions are related by the chain rule for probability:

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 =

 𝑃 𝑤1 × 𝑃 𝑤2 𝑤1 × 𝑃 𝑤3|𝑤1, 𝑤2 ×∙∙∙× 𝑃 𝑤𝑛|𝑤1, 𝑤2, … , 𝑤𝑛−1 =

 ς𝑖
𝑛𝑃 𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖|𝑤1
𝑖−1

 P(“its water is so transparent”) =
P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is so)

 But this does not work for long sequences
 (we may not even have seen before)

Markov assumption
27

 A word depends only on the immediate preceding word

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 𝑃 𝑤1 × 𝑃 𝑤2 𝑤1 × 𝑃 𝑤3|𝑤2 ×∙∙∙× 𝑃 𝑤𝑛| 𝑤𝑛−1 =

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−1

 P(“its water is so transparent”) ≈

P(its) × P(water|its) × P(is| water) × P(so|is) × P(transparent| so)

 This is called a bigram model

Estimating bigram probabilities
28

 The probabilities can be estimated by counting

 This yields maximum likelihood probabilities

 (=maximum probable on the training data)

𝑃 𝑤𝑖 𝑤𝑖−1 =

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−1,𝑤𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−1)

Example from J&M
29

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

𝑃 𝑤𝑖 𝑤𝑖−1 =
𝑐(𝑤𝑖−1, 𝑤𝑖)

𝑐(𝑤𝑖−1)

General ngram models
30

 A word depends only on the k many immediately preceding words

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘 , 𝑤𝑖+1−𝑘 , … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 This is called a
 unigram model – no preceding words

 trigram model – two preceding words

 k-gram model – k-1 preceding words

• We can train them similarly to

the bigram model.

• Have to be more careful with

the smoothing for larger k-s.

Generating with n-grams
31

 Goal: Generate a sequence of words

 Unigram:

 Choose the first word according to how probable it is

 Choose the second word according to how probable it is, etc.

 = the generative model for multinomial NB text classification

 Bigram

 Select word k according to 𝑃 𝑤𝑖 𝑤𝑖−1

 k-gram

 Select word 𝑤𝑖 according to how probable it is given the 𝑘 − 1 preceding words

𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

Shakespeare
32

Unknown words
33

 There might be words that is never observed during training.

 Use a special symbol for unseen words during application, e.g. UNK

 Set aside a probability for seeing a new word

 This may be estimated from a held-out corpus

 Adjust

 the probabilities for the other words in a unigram model accordingly

 the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone
34

 Since we might not have seen all possibilities in training data, we might

use Lidstone or, more generally, Laplace smoothing

𝑃 𝑤𝑖 𝑤𝑖−1 =

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1,𝑤𝑖 +𝑘

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1 +𝑘 |𝑉|

 where |𝑉| is the size of the vocabulary 𝑉.

But:

 Shakespeare produced

 N = 884,647 word tokens

 V = 29,066 word types

 Bigrams:

 Possibilities:

 𝑉2 = 844,000,000

 Shakespeare,

 bigram tokens: 884,647

 bigram types: 300,000

 Add-k smoothing is not

appropriate

35

Smoothing n-grams

 If you have good evidence, use

the trigram model,

 If not, use the bigram model,

 or even the unigram model

 Combine the models

36

Backoff Interpolation

Use either of this. According to J&M interpolation works better

Interpolation

 Simple interpolation:

 The 𝜆-s can be tuned on a held out corpus

 A more elaborate model will condition the 𝜆-s on the context

 (Brings in elements of backoff)

37

Evaluation of n-gram models
38

 Extrinsic evaluation:

 To compare two LMs, see how well they are doing in an application, e.g.
translation, speech recognition

 Intrinsic evaluation:

 Use a held out-corpus and measure 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛

1

𝑛

 The n-root compensate for different lengths

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘

𝑖−1
1

𝑛 for a k-gram model

 It is normal to use the inverse of this, called the perplexity

 𝑃𝑃 𝑤1
𝑛 =

1

𝑃 𝑤1,𝑤2,𝑤3,…,𝑤𝑛

1
𝑛

=𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛
−
1

𝑛

Properties of LMs

 The best smoothing is achieved with Kneser-Ney smoothing

 Short-comings of all n-gram models

 The smoothing is not optimal

 The context are restricted to a limited number of preceding words.

39

A practical advice: Use

logarithms when working with n-

grams

Today
40

 Neural networks

 Language models

 Word embeddings

 Word2vec

Word-context matrix

 Two words are similar in meaning if their context vectors are similar

aardvark computer data pinch result sugar …

apricot 0 0 0 1 0 1

pineapple 0 0 0 1 0 1

digital 0 2 1 0 1 0

information 0 1 6 0 4 0

41

So-far

 A word 𝑤 can be represented
by a context vector 𝑣𝑤 where
position 𝑗in the vector reflects
the frequency of occurrences of

𝑤𝑗 with 𝑤.

 Can be used for

 studying similarities between
words.

 document similarities

 But the vectors are sparse

 Long: 20-50,000

 Many entries are 0

 Even though car and automobile
get similar vectors, because
both co-occur with e.g., drive,
in the vector for drive there is
no connection between the car
element and the automobile
element.

42

Today
43

 Lexical semantics

 Vector models of documents

 tf-idf weighting

 Word-context matrices

 Word embeddings with dense vectors

Dense vectors

 Shorter vectors.

 (length 50-1000)

 ``low-dimensional’’ space

 Dense (most elements are not 0)

 Intuitions:

 Similar words should have similar
vectors.

 Words that occur in similar contexts
should be similar.

 Generalize better than sparse
vectors.

 Input to deep learning

 Fewer weights (or other weights)

 Capture semantic similarities
better.

 Better for sequence modelling:

 Language models, etc.

44

How? Properties

Word embeddings

 In current LT: Each word is

represented as a vector of

reals

 Words are more or less similar

 A word can be similar to one

word in some dimensions and

other words in other dimensions

45

Figure from

https://medium.com/@jayeshbahire

https://medium.com/@jayeshbahire

From J&M

slides

From J&M

slides

Analogy: Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

48

From J&M

slides

Demo

 http://vectors.nlpl.eu/explore/embeddings/en/

49

http://vectors.nlpl.eu/explore/embeddings/en/

Track change of meaning of words
50

~30 million books, 1850-1990, Google Books data From J&M

slides

Evolution of sentiment words

 Negative words change

faster than positive words

51

From J&M

slides

Bias
52

 Man is to computer programmer as woman is to homemaker.

 Different adjectives associated with:

 male and female terms

 typical black names and typical white names

 Embeddings may be used to study historical bias

Debiasing (research topic)

 Goal: neutralize the biases

 Some positive results

 But also reports that is is not

fully possible

 Is debiasing a goal?

 When should we (not) debias?

53

https://vagdevik.wordpress.com/2018/07/08/debiasing-word-embeddings/

Evaluation of embeddings

 Extrinsic evaluation:

 Evaluate contribution as part of an
application

 Intrinsic evaluation:

 Evaluate against a resource

 Some datasets

 WordSim-353:

 Broader "semantic relatedness"

 SimLex-999:

 Narrower: similarity

 Manually annotated for similarity

54

Part of SimLex-999

Use of embeddings
55

 Embeddings are used as representations for words as input in all kinds

of NLP tasks using deep learning:

 Text classification

 Language models

 Named-entity recognition

 Machine translation

 etc.

Resources

 gensim

 Easy-to-use tool for training own models

 Word2wec

 https://code.google.com/archive/p/word2vec/

 https://fasttext.cc/

 https://nlp.stanford.edu/projects/glove/

 http://vectors.nlpl.eu/repository/

 Pretrained embeddings, also for Norwegian

56

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://vectors.nlpl.eu/repository/

Today
57

 Neural networks

 Language models

 Word embeddings

 Word2vec

Idea
58

 Instead of counting, use a neural network to learn a LM

 Simplest form: a bigram model:

 For a given word 𝑤𝑖−1, try to predict the next word 𝑤𝑖

 i.e. try to estimate 𝑃 𝑤𝑖| 𝑤𝑖−1

Model
59

From J&M 3.ed. 2018 Ch. 16

Model
60

 Input and output word are repre-

sented by sparse one-hot vectors

 Dim d typically 50-300

 Independent learning for each

input word 𝑤𝑡:

 Consider all possible next words for

𝑤′ for this word

 Use softmax to get a probability

distribution of all next words

Embeddings from this

 Idea: Use the weight matrix

𝑊|𝑉|×𝑑 as embeddings, i.e.:

 Represent word 𝑗 by

(𝑤𝑗,1, 𝑤𝑗,2, … , 𝑤𝑗,𝑑) = the

weights that sends this word to
the hidden layer

 Why? since similar words will
predict more or less the same
words, they will get similar
embeddings

61

Observations

 Since two words that are similar

are predicted by the same

words, there will also be

similarities between similar

words in 𝐶𝑑×|𝑉|

 This will help the training of

𝑊|𝑉|×𝑑

 We could alternatively use

𝐶𝑑×|𝑉| as the embeddings

62

CBOW

 We could generalize to
predicting from a number of
preceding words, e.g. 3, as
indicated in the figure.

 Observe this is order-
independent

 Continuous bag of words model
(CBOW):

 Predict 𝑤𝑡 from a window

(𝑤𝑡−𝑘 , … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘)

63

https://commons.wikimedia.org/wiki/File:Cbow.png

Skip-gram

 From 𝑤𝑡 predict all the words in

a window

(𝑤𝑡−𝑘, … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘)

 Assume independence of the

context words, i.e. from 𝑤𝑡

predict each of the words w in

{𝑤𝑡−𝑘, … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘}

 Boils down to similar to unigram

model.

64

https://commons.wikimedia.org/wiki/File:Skip-gram.png

Skip-gram model
65

From J&M 3.ed. 2018 Ch. 16

Skip-gram with negative sampling
66

 To train a skip gram model is expensive

 Soft-max 𝑃 𝐶𝑗 Ԧ𝑥 =
𝑒
𝑤𝑗∙𝑥

σ𝑖=1
𝑘 𝑒𝑤𝑖∙𝑥

 where the classes corresponds to the next word

 i.e. in making an update for a pair (𝑤𝑡, 𝑤𝑠) one has to calculate the

weighted expression 𝑒𝑤𝑖∙ Ԧ𝑥 for each word in the vocabulary

 Looking for cheaper training methods

Skip-gram with negative sampling
67

1. Treat the target word and a neighboring context word as a positive

example.

2. Randomly sample other words in the lexicon to get negative samples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the weights as the embeddings

Skip-Gram Training Data

 Training sentence:

 ... lemon, a tablespoon of apricot jam a pinch ...

 c1 c2 t c3 c4

 Training data: input/output pairs centering on apricot

 Asssume a +/- 2 word window

9/22/2020

68

Skip-Gram Training Data

 ... lemon, a tablespoon of apricot preserves or a ...

 c1 c2 t c3 c4

 For each positive example, we'll create k negative examples.

 Using noise words: Any random word that isn't 𝑡

69

How to compute p(+|t,c)?

Word2vec
 One of various ways to train the classifier to distinguish pos and neg words

 Intuition:
 Words are likely to appear near similar words

 Model similarity with dot-product!

 Similarity 𝑡, 𝑐 ~ 𝑡 ∙ 𝑐

 Problem:

Dot product is not a probability!
 (Neither is cosine)

Goal

 Given a tuple (target, context)

 (apricot, jam)

 (apricot, aardvark)

 Calculate the probabilities

 𝑃 + 𝑡, 𝑐)

 𝑃 − 𝑡, 𝑐) = 1 − 𝑃 + 𝑡, 𝑐)

 Maximize

where

71

Another view
73

 We feed a pair of
words (𝑤, 𝑐) to
distinct hidden
embedding layers

 Compare to target
(1 or 0)

 Update weights

 We learn the set of
embeddings W and
C0 0 0…0 1 0…0 0 0 0 0 0 0 0 0 0 0…0 1 0… 0 0 0 0

apricot preserves

𝒘 𝒄

𝒘 ∙ 𝒄

𝝈(𝒘 ∙ 𝒄)

𝑾 𝑪

Result
74

 We learn two separate embedding matrices W and C

 We can use W as representations for the words

 (or combine with C in some ways)

 What have we learned:

 If two words w1 and w2 occur in similar contexts

 = with the same (or similar) context words, e.g. c,

 then both w1 and w2 should have a large cosine with c,

 hence have similar vectors.

Use of embeddings
75

 Embeddings are used as representations for words as input in all kinds

of NLP tasks using deep learning:

 Text classification

 Language models

 Named-entity recognition

 Machine translation

 etc.

 IN5550 Spring 2020

Resources

 gensim

 Easy-to-use tool for training own models

 Word2wec

 https://code.google.com/archive/p/word2vec/

 https://fasttext.cc/

 https://nlp.stanford.edu/projects/glove/

 http://vectors.nlpl.eu/explore/embeddings/en/

 Pretrained embeddings, also for Norwegian

76

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://vectors.nlpl.eu/explore/embeddings/en/

