IN4080 – 2020 FALL NATURAL LANGUAGE PROCESSING

Neural networks, Language models, word2wec

Lecture 6, 21 Sept

Today

- □ Neural networks
- Language models
- Word embeddings
- Word2vec

Artificial neural networks

- Inspired by the brain
 - neurons, synapses
- Does not pretend to be a model of the brain
- □ The simplest model is the
 - Feed forward network, also called
 - Multi-layer Perceptron

Linear regression as a network

- \square Each feature, x_i , of the input vector is an input node
- \square An additional bias node $x_0 = 1$ for the intercept
- A weight at each edge,
- \square Multiply the input values with the respective weights: $w_i x_i$
- Sum them
- $\square \hat{y} = \sum_{i=0}^{m} w_i x_i = \boldsymbol{w} \cdot \boldsymbol{x}$

Gradient descent (for linear regression)

- We start with an initial set of weights
- Consider training examples
- Adjust the weights to reduce the loss
- □ Hows
- Gradient descent
- Gradient means partial derivatives.

Linear regression: higher dimensions

- Linear regression of more than two variables works similarly
- We try to fit the best (hyper-)plane

$$\hat{y} = f(x_0, x_1, ..., x_n) = \sum_{i=0}^{n} w_i x_i = \vec{w} \cdot \vec{x}$$

We can use the same mean square:

$$\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Partial derivatives

- \square A function of more than one variable, e.g. f(x, y)
- □ The partial derivative, e.g. $\frac{\partial f}{\partial x}$ is the derivative one gets by keeping the other variables constant
- □ E.g. if f(x,y) = ax + by + c, $\frac{\partial f}{\partial x} = a$ and $\frac{\partial f}{\partial y} = b$

Gradient descent

We move in the opposite direction of where the gradient is pointing.

Intuitively:

- Take small steps in all direction parallel to the (feature) axes
- The length of the steps are proportional to the steepness in each direction

Properties of the derivatives

- 1. If f(x) = ax + b then f'(x) = a
 - \blacksquare we also write $\frac{df}{dx} = a$
 - \blacksquare and if y = f(x), we can write $\frac{dy}{dx} = a$
- 2. If $f(x) = x^n$ for an integer $\neq 0$ then $f'(x) = nx^{(n-1)}$
- 3. If f(x) = g(y) and y = h(x) then f'(x) = g'(y)h'(x)
 - \square if z = f(x) = g(y), this can be written $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$
- \square In particular, if $f(x) = (ax + b)^2$ then f'(x) = 2(ax + b)a

Gradient descent (for linear regression)

Loss: Mean squared error :

$$\square L(\widehat{\boldsymbol{y}}, \boldsymbol{y}) = \frac{1}{n} \sum_{j=1}^{n} (\widehat{y}_j - y_j)^2$$

$$\mathbf{D}\,\hat{y}_j = \sum_{i=0}^m w_i x_{j,i} = \mathbf{w} \cdot \mathbf{x}_j$$

- \square We will update the w_i -s
- □ Consider the partial derivatives w.r.t the W_i -s

$$\square \frac{\partial}{\partial w_i} L(\widehat{\boldsymbol{y}}, \boldsymbol{y}) = \frac{1}{n} \sum_{j=1}^n 2(\widehat{y}_j - y_j) x_{j,i}$$

 \square Update w_i : $w_i = w_i - \eta \frac{\partial}{\partial w_i} L(\widehat{m{y}}, m{y})$

n is the number of observations, $0 \leq j \leq n \text{ and } \\ m \text{ is the number of features for each observation,} \\ 0 \leq i \leq m$

Inspecting the update

 $w_{i} = w_{i} - \eta \frac{1}{n} \sum_{j=1}^{n} 2(\hat{y}_{j} - y_{j}) x_{j,i}$

The error term
(delta term) of this
prediction, from the
loss function

The contribution to the error from this weight

 η is the learning rate

Logistic regression as a network

$$z = \sum_{i=0}^{m} w_i x_i = \boldsymbol{w} \cdot \boldsymbol{x}$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

□ Loss:
$$L_{CE} = -\sum_{j=1}^{n} \log \left[\hat{y}_{j}^{j} (1 - \hat{y}_{j})^{(1-y_{j})} \right]$$

$$\Box \frac{\partial}{\partial \widehat{w_i}} L_{CE} = \frac{\partial}{\partial \widehat{y}} L_{CE} \times \frac{\partial \widehat{y}}{\partial z} \times \frac{\partial z}{\partial w_i}$$

$$\Box \frac{\partial}{\partial \hat{y}} L_{CE} = \frac{(y - \hat{y})}{\hat{y}(1 - \hat{y})}$$

$$\frac{\partial}{\partial \widehat{w_i}} L_{CE} = \frac{(y - \hat{y})}{\hat{y}(1 - \hat{y})} \hat{y} (1 - \hat{y}) x_i = (y - \hat{y}) x_i$$

To simplify, consider only one observation, y_j

Logistic regression as a network

From the loss

From the activation function

$$\frac{\partial}{\partial \widehat{w_i}} L_{CE} = \frac{(y - \widehat{y})}{\widehat{y}(1 - \widehat{y})} \widehat{y} (1 - \widehat{y}) x_i = (y - \widehat{y}) x_i$$

The delta term at the end of W

The contribution to the error from this weight

Feed forward network

- An input layer
- An output layer: the predictions
- One or more hidden layers
- Connections from one layer to the next (from left to right)

The hidden nodes

- Each hidden node is like a small logistic regression:
 - □ First sum of weighted inputs:

$$\mathbf{z} = \sum_{i=0}^{m} w_i x_i = \mathbf{w} \cdot \mathbf{x}$$

 \blacksquare Then the result is run through an activation function, e.g. σ

$$y = \sigma(z) = \frac{1}{1 + e^{-\overrightarrow{w} \cdot \overrightarrow{x}}}$$

It is the non-linearity of the activation function which makes it possible for MLP to predict non-linear decision boundaries

The output layer

Alternatives

- Regression:
 - One node
 - No activation function
- Binary classifier:
 - One node
 - Logistic activation function
- Multinomial classifier
 - Several nodes
 - Softmax
- + more alternatives
- Choice of loss function depends on task

Input Layer

Learning in multi-layer networks

- Consider two consecutive layers:
 - Layer M, with $1 \le i \le m$ nodes, and a bias node M0
 - \blacksquare Layer N, with $1 \le j \le n$ nodes
 - \blacksquare Let $w_{i,j}$ be the weight at the edge going from M_i to N_j
- Consider processing one observation:
 - lacksquare Let x_i be the value going out of node M_i
 - □ If M is a hidden layer:
 - $\mathbf{x}_i = \sigma(z_i)$, where $z_i = \sum (...)$

Learning in multi-layer networks

- If N is the output layer, calculate the error terms δ_j^N as before from the loss and the activation function at each node N_i
- If M is a hidden layer: Calculate the error term at the nodes combining
 - A weighted sum of the error terms at layer N
 - The derivative of the activation function

where $x_i = \sigma(z_i)$, where $z_i = \sum (...)$

Learning in multi-layer networks

- By repeating the process, we get error terms at all nodes in all the hidden layers.
- The update of the weights between the layers can be done as before:
- $\square w_{i,j} = w_{i,j} x_i \delta_j^N$
 - $lue{}$ where x_i is the value going out of node M_i

Alternative activation functions

There are alternative activation functions

- $\square ReLU(x) = \max(x, 0)$
- ReLU is the preferred method in hidden layers in deep networks

Today

- Neural networks
- □ Language models
- Word embeddings
- Word2vec

Language model

Probabilistic Language Models

- □ Goal: Ascribe probabilities to word sequences.
- Motivation:
 - Translation:
 - P(she is a tall woman) > P(she is a high woman)
 - P(she has a high position) > P(she has a tall position)
 - Spelling correction:
 - P(She met the prefect.) > P(She met the perfect.)
 - Speech recognition:
 - P(I saw a van) > P(eyes awe of an)

Probabilistic Language Models

- Goal: Ascribe probabilities to word sequences.
 - $\square P(w_1, w_2, w_3, ..., w_n)$
- Related: the probability of the next word
 - $\square P(w_n \mid w_1, w_2, w_3, ..., w_{n-1})$
- A model which does either is called a Language Model, LM
 - Comment: The term is somewhat misleading
 - (Probably origin from speech recognition)

Chain rule

- The two definitions are related by the chain rule for probability:
- $P(w_1, w_2, w_3, ..., w_n) =$
- $P(w_1) \times P(w_2|w_1) \times P(w_3|w_1, w_2) \times \cdots \times P(w_n|w_1, w_2, \dots, w_{n-1}) =$
- P("its water is so transparent") =
 P(its) × P(water | its) × P(is | its water)
 × P(so | its water is) × P(transparent | its water is so)
- But this does not work for long sequences
 - (we may not even have seen before)

Markov assumption

- A word depends only on the immediate preceding word
- $\square P(w_1, w_2, w_3, ..., w_n) \approx$
- $P(w_1) \times P(w_2|w_1) \times P(w_3|w_2) \times \cdots \times P(w_n|w_{n-1}) = P(w_1) \times P(w_2|w_1) \times P(w_2|w_2) \times \cdots \times P(w_n|w_n) = P(w_1|w_1) \times P(w_2|w_1) \times P(w_2|w_2) \times \cdots \times P(w_n|w_n) = P(w_1|w_1) \times P(w_1|w_2) \times \cdots \times P(w_n|w_n) = P(w_1|w_1) \times P(w_1|w_1) \times P(w_1|w_2) \times P(w_1|w_2)$
- $\square \prod_{i}^{n} P(w_i | w_{i-1})$
- □ P("its water is so transparent") \approx P(its) × P(water | its) × P(is | water) × P(so | is) × P(transparent | so)
- This is called a bigram model

Estimating bigram probabilities

- The probabilities can be estimated by counting
- This yields maximum likelihood probabilities
 - (=maximum probable on the training data)

$$\widehat{P}(w_i|w_{i-1}) = \frac{count(w_{i-1},w_i)}{count(w_{i-1})}$$

Example from J&M

$$\widehat{P}(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

<s>I do not like green eggs and ham </s>

$$P(I | ~~) = \frac{2}{3} = .67~~$$
 $P(Sam | ~~) = \frac{1}{3} = .33~~$ $P(am | I) = \frac{2}{3} = .67$ $P(| Sam) = \frac{1}{2} = 0.5$ $P(Sam | am) = \frac{1}{2} = .5$ $P(do | I) = \frac{1}{3} = .33$

General ngram models

- □ A word depends only on the k many immediately preceding words
- $\square P(w_1, w_2, w_3, \dots, w_n) \approx$

- This is called a
 - unigram model no preceding words
 - trigram model two preceding words
 - \blacksquare *k*-gram model *k*-1 preceding words

- We can train them similarly to the bigram model.
- Have to be more careful with the smoothing for larger k-s.

Generating with n-grams

- □ Goal: Generate a sequence of words
- Unigram:
 - Choose the first word according to how probable it is
 - Choose the second word according to how probable it is, etc.
 - = the generative model for multinomial NB text classification
- Bigram
 - Select word k according to $\hat{P}(w_i|w_{i-1})$
- □ *k*-gram
 - Select word w_i according to how probable it is given the k-1 preceding words $P(w_i|w_{i-k}^{i-1})$

Shakespeare

-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have -Hill he late speaks; or! a more to leg less first you enter gram -Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. gram -What means, sir. I confess she? then all sorts, he is trim, captain. -Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done. -This shall forbid it should be branded, if renown made it empty. gram -King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; -It cannot be but so.

Unknown words

- There might be words that is never observed during training.
- □ Use a special symbol for unseen words during application, e.g. UNK
- Set aside a probability for seeing a new word
 - This may be estimated from a held-out corpus
- Adjust
 - the probabilities for the other words in a unigram model accordingly
 - the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone

 Since we might not have seen all possibilities in training data, we might use Lidstone or, more generally, Laplace smoothing

 $lue{}$ where |V| is the size of the vocabulary V.

But:

- Shakespeare produced
 - \square N = 884,647 word tokens
 - ∇ V = 29,066 word types
- □ Bigrams:
 - Possibilities:
 - $V^2 = 844,000,000$
 - Shakespeare,
 - bigram tokens: 884,647
 - bigram types: 300,000

Add-k smoothing is not appropriate

Smoothing n-grams

Backoff

- If you have good evidence, use the trigram model,
- □ If not, use the bigram model,
- or even the unigram model

Interpolation

Combine the models

Use either of this. According to J&M interpolation works better

Interpolation

Simple interpolation:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$

- \square The λ -s can be tuned on a held out corpus
- \square A more elaborate model will condition the λ -s on the context
 - □ (Brings in elements of backoff)

Evaluation of n-gram models

- Extrinsic evaluation:
 - To compare two LMs, see how well they are doing in an application, e.g. translation, speech recognition
- Intrinsic evaluation:
 - Use a held out-corpus and measure $P(w_1, w_2, w_3, ..., w_n)^{\frac{1}{n}}$
 - The n-root compensate for different lengths

 - It is normal to use the inverse of this, called the perplexity

$$PP(w_1^n) = \frac{1}{P(w_1, w_2, w_3, \dots, w_n)^{\frac{1}{n}}} = P(w_1, w_2, w_3, \dots, w_n)^{-\frac{1}{n}}$$

Properties of LMs

- The best smoothing is achieved with Kneser-Ney smoothing
- Short-comings of all n-gram models
 - The smoothing is not optimal
 - The context are restricted to a limited number of preceding words.

A practical advice: Use logarithms when working with n-grams

Today

- Neural networks
- □ Language models
- □ Word embeddings
- Word2vec

Word-context matrix

□ Two words are similar in meaning if their context vectors are similar

sugar, a sliced lemon, a tablespoonful of **apricot** their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**. for the purpose of gathering data and information necessary for the study authorized in the

jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from

	aardvark	computer	data	pinch	result	sugar	•••
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

So-far

- lacktriangle A word w can be represented by a context vector v_w where position j in the vector reflects the frequency of occurrences of w_i with w.
- Can be used for
 - studying similarities between words.
 - document similarities

- But the vectors are sparse
 - □ Long: 20-50,000
 - Many entries are 0
- Even though car and automobile get similar vectors, because both co-occur with e.g., drive, in the vector for drive there is no connection between the car element and the automobile element.

Today

- Lexical semantics
- Vector models of documents
- tf-idf weighting
- Word-context matrices
- □ Word embeddings with dense vectors

Dense vectors

How?

- Shorter vectors.
 - (length 50-1000)
 - `low-dimensional" space
- Dense (most elements are not 0)
- Intuitions:
 - Similar words should have similar vectors.
 - Words that occur in similar contexts should be similar.

Properties

- Generalize better than sparse vectors.
- Input to deep learning
 - Fewer weights (or other weights)
- Capture semantic similarities better.
- Better for sequence modelling:
 - Language models, etc.

Word embeddings

- In current LT: Each word is represented as a vector of reals
- Words are more or less similar
- A word can be similar to one word in some dimensions and other words in other dimensions

Figure from https://medium.com/@jayeshbahire

Analogy: Embeddings capture relational meaning!

```
vector('king') - vector('man') + vector('woman') \approx vector('queen') vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome')
```


From J&M slides

Demo

□ http://vectors.nlpl.eu/explore/embeddings/en/

Track change of meaning of words

~30 million books, 1850-1990, Google Books data

From J&M slides

Evolution of sentiment words

Negative words change faster than positive words

Bias

- □ Man is to computer programmer as woman is to homemaker.
- Different adjectives associated with:
 - male and female terms
 - typical black names and typical white names
- Embeddings may be used to study historical bias

Debiasing (research topic)

- Goal: neutralize the biases
- Some positive results
- But also reports that is is not fully possible

- Is debiasing a goal?
- When should we (not) debias?

https://vagdevik.wordpress.com/2018/07/08/debiasing-word-embeddings/

Evaluation of embeddings

- Extrinsic evaluation:
 - Evaluate contribution as part of an application
- Intrinsic evaluation:
 - Evaluate against a resource
- Some datasets
 - □ WordSim-353:
 - Broader "semantic relatedness"
 - SimLex-999:
 - Narrower: similarity
 - Manually annotated for similarity

Word1	Word2	POS	Sim-score	
old	new	A	1.58	
smart	intelligent	A	9.2	
plane	jet	N	8.1	
woman	man	N	3.33	
word	dictionary	N	3.68	
create	build	V	8.48	
get	put	V	1.98	
keep	protect	V	5.4	

Part of SimLex-999

Use of embeddings

- Embeddings are used as representations for words as input in all kinds of NLP tasks using deep learning:
 - Text classification
 - Language models
 - Named-entity recognition
 - Machine translation
 - etc.

Resources

- gensim
 - Easy-to-use tool for training own models
- Word2wec
 - https://code.google.com/archive/p/word2vec/
- □ https://fasttext.cc/
- □ https://nlp.stanford.edu/projects/glove/
- □ http://vectors.nlpl.eu/repository/
 - Pretrained embeddings, also for Norwegian

Today

- Neural networks
- □ Language models
- Word embeddings
- □ Word2vec

ldea

- Instead of counting, use a neural network to learn a LM
- □ Simplest form: a bigram model:
 - \blacksquare For a given word w_{i-1} , try to predict the next word w_i
 - \blacksquare i.e. try to estimate $P(w_i | w_{i-1})$

Model

Figure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov et al. 2013a).

From J&M 3.ed. 2018 Ch. 16

Model

- Input and output word are represented by sparse one-hot vectors
- □ Dim *d* typically 50-300
- □ Independent learning for each input word w_t :
 - ldot Consider all possible next words for w' for this word
 - Use softmax to get a probability distribution of all next words

Figure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov et al. 2013a).

Embeddings from this

- Idea: Use the weight matrix $W_{|V|\times d}$ as embeddings, i.e.:
- Represent word j by $(w_{i,1}, w_{i,2}, ..., w_{i,d}) =$ the weights that sends this word to the hidden layer
- Why? since similar words will predict more or less the same words, they will get similar embeddings

et al. 2013a).

Observations

- □ Since two words that are similar are predicted by the same words, there will also be similarities between similar words in $C_{d \times |V|}$
- $\hfill\Box$ This will help the training of $W_{|V|\times d}$
- \Box We could alternatively use $C_{d \times |V|}$ as the embeddings

Figure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov et al. 2013a).

CBOW

- We could generalize to predicting from a number of preceding words, e.g. 3, as indicated in the figure.
- Observe this is orderindependent
- Continuous bag of words model (CBOW):
 - Predict w_t from a window $(w_{t-k}, ..., w_{t-1}, w_{t+1}, ..., w_{t+k})$

Skip-gram

 \square From w_t predict all the words in a window

$$(w_{t-k}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+k})$$

- □ Assume independence of the context words, i.e. from w_t predict each of the words w_t in $\{w_{t-k}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+k}\}$
- Boils down to similar to unigram model.

Skip-gram model

Pigure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov et al. 2013a).

Skip-gram with negative sampling

□ To train a skip gram model is expensive

$$\square \text{ Soft-max } P(C_j | \vec{x}) = \frac{e^{w_j \cdot \vec{x}}}{\sum_{i=1}^k e^{\overrightarrow{w}_i \cdot \vec{x}}}$$

- where the classes corresponds to the next word
- $lue{}$ i.e. in making an update for a pair (w_t,w_s) one has to calculate the weighted expression $e^{\overrightarrow{w_i}\cdot\overrightarrow{x}}$ for each word in the vocabulary
- Looking for cheaper training methods

Skip-gram with negative sampling

- Treat the target word and a neighboring context word as a positive example.
- 2. Randomly sample other words in the lexicon to get negative samples
- 3. Use logistic regression to train a classifier to distinguish those two cases
- 4. Use the weights as the embeddings

Skip-Gram Training Data

□ Training sentence:

```
lemon, a tablespoon of apricot jam a pinch ...c1 c2 t c3 c4
```

- Training data: input/output pairs centering on apricot
- \square Asssume a +/-2 word window

Skip-Gram Training Data

```
lemon, a tablespoon of apricot preserves or a ...c1 c2 t c3 c4
```

- \square For each positive example, we'll create k negative examples.
 - lacktriangle Using noise words: Any random word that isn't t

```
positive examples +
t c

apricot tablespoon
apricot of
apricot preserves
apricot or
```

negative examples -							
t	c	t	c				
apricot	aardvark	apricot	twelve				
apricot	puddle	apricot	hello				
apricot	where	apricot	dear				
apricot	coaxial	apricot	forever				

How to compute p(+ | t,c)?

Word2vec

- □ One of various ways to train the classifier to distinguish pos and neg words
- Intuition:
 - Words are likely to appear near similar words
 - Model similarity with dot-product!
 - Similarity $(t,c) \sim t \cdot c$
- □ Problem:
 - Dot product is not a probability!
 - (Neither is cosine)

Goal

- □ Given a tuple (target, context)
 - □ (apricot, jam)
 - (apricot, aardvark)
- Calculate the probabilities
 - $\square P(+|t,c)$
 - P(-|t,c) = 1 P(+|t,c)

Maximize

$$\sum_{(t,c)\in +} log P(+|t,c) + \sum_{(t,c)\in -} log P(-|t,c)$$

where

$$P(+|t,c) = \frac{1}{1+e^{-t\cdot c}}$$

Another view

- We feed a pair of words (w, c) to distinct hidden embedding layers
- Compare to target(1 or 0)
- Update weights
- We learn the set of embeddings W and C

Result

- We learn two separate embedding matrices W and C
- We can use W as representations for the words
 - (or combine with C in some ways)

- What have we learned:
 - □ If two words w1 and w2 occur in similar contexts
 - \blacksquare = with the same (or similar) context words, e.g. c,
 - \blacksquare then both w1 and w2 should have a large cosine with c,
 - hence have similar vectors.

Use of embeddings

- Embeddings are used as representations for words as input in all kinds of NLP tasks using deep learning:
 - Text classification
 - Language models
 - Named-entity recognition
 - Machine translation
 - etc.
- □ IN5550 Spring 2020

Resources

- gensim
 - Easy-to-use tool for training own models
- Word2wec
 - https://code.google.com/archive/p/word2vec/
- □ https://fasttext.cc/
- □ https://nlp.stanford.edu/projects/glove/
- □ http://vectors.nlpl.eu/explore/embeddings/en/
 - Pretrained embeddings, also for Norwegian