INAO80 — 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lenning

- Neural networks, Language models, word2wec

Lecture 6, 21 Sept

Today

Neural networks
Language models
Word embeddings
Word2vec

Artificial neural networks
.

71 Inspired by the brain

—
—

1 neurons, synapses

-1 Does not pretend to be a

model of the brain

11 The simplest model is the

o Feed forward network, also
called

o0 Multi-layer Perceptron

R

Linear regression as a network
s

-1 Each feature, x;, of the input
vector is an input node

= An additional bias node x5 = 1
for the intercept

bias
node

1 A weight at each edge,

o Multiply the input values with
the respective weights: w;Xx;

1 Sum them

A m _
Y= LisoWiXi =W X

[input nodes]

Gradient descent (for linear regression)

1 We start with an initial set of
weights

11 Consider training examples

11 Adjust the weights to reduce the
loss

Cost

1 How?e

1 Gradient descent

11 Gradient means partial
derivatives.

Linear regression: higher dimensions

Linear regression of more than two variables

works similarly
We try to fit the best (hyper-)plane
n

5} :f(xOrxl;---;xn) — zwixi —_ V_V>'.')_C>
=0

We can use the same mean square:

m
1 (o
mz Vi — i)
=1

Partial derivatives

8

=1 A function of more than one Rotmgn e it

variable, e.g. f(x,y) [
0

01 The partial derivative, e.g. é is
the derivative one gets by ;
keeping the other variables
constant

0 Eg.if f(x,y) =ax + by +c,
of _ of _
= a and 3y b

:/ /www.wikihow.com /Image:OyXsh.png

Gradient descent

9|
1 We move in the opposite
direction of where the gradient
is pointing.
0 Intuitively:

Take small steps in all direction
parallel to the (feature) axes

Cost

The length of the steps are
proportional to the steepness in

each direction

Properties of the derivatives

. I f(x) =ax+ bthen f'(x) =a
.. df
we also write — = a
dx

d
and if y = f(x), we can write d_ic/ =a

2. If f(x) = x™ for an integer # 0 then f'(x) = nx(*~ D
. f f(x) =g(y) and y = h(x) then f'(x) = g’ (y)h'(x)

dz dz dy

if z= f(x) = g(y), this can be written =4y i

1 In particular, if f(x) = (ax + b)? then f'(x) = 2(ax + b)a

Gradient descent (for linear regression)

0 Loss: Mean squared error :
2
L(y Y) —_Z 1(3’])
Vi = ZiZoWiXj;i = W X;
0 We will update the w;-s

11 Consider the partial derivatives w.r.t

’rhe W;i-s
> Ly, y)—— n Z(y,

0 Update w;: w; = w; — 1

awl

aWi

y,-) Xj i
L(? ,Y)

Cost

I 50
A 4 \
W ;
Ay y '\(V.) A4 X .'r'_",“l

'''''''''

2
2 0

N is the number of observations,

0<j<nand

m is the number of features for each observation,
0<i<m

Inspecting the update

4 The error term N @ The A
(delta term) of this contribution to
prediction, from the the error from

\ loss function o this weight)

[input nodes]

[1 is the learning rate }

Logistic regression as a network

bias
node

O Z=Z?;0Wixi=W'x
1

0 y=o0(2)=

1+e~% ()
~ . ~ 1_y.
0 Loss: Lep = — XY= log [yf](l — yf) :] w0
d _ 2 ay _ oz
O av’v\iLCE - 6_’)7LCE X X
CE _ -9
a9 "CE T 9(1-9) To simplify,
0 3_327 =5(1—9) consider only one
observation, y;
0z _
9w = X;
g _ O 501 Vv =1 — S\
u au/}\l LCE - 5;(1_5;) Y(l y)xl_(y y)xl

[input nodes }

Logistic regression as a network

14|
« N
From the
From the activation node
loss function
RS ¢
a (y_j;) A A _ A
— Lep = = (1 = Px; =y — J)x;
Iw; ‘ y(1-9)) \
« N
The delta term The contribution
at the end of to the error from
"\ this weight

- / \\ // [input nodes]

Feed forward network

71 An input layer
71 An output layer: the predictions
-1 One or more hidden layers

-1 Connections from one layer to
the next (from left to right)

Input Layer

Hidden Layer Output Layer

)

The hidden nodes

71 Each hidden node is like a small
logistic regression:
o1 First sum of weighted inputs :
0Z=2toWiXi =W:*X
=1 Then the result is run through an
activation function, e.g. 0
1

1+e—V_")‘7

ny=o0(z) =

It is the non-linearity of the activation

function which makes it possible for MLP to
predict non-linear decision boundaries

The output layer

Alternatives
©1 Regression:

One node
No activation function

o Binary classifier:
One node

Logistic activation function

1 Multinomial classifier
Several nodes

SOmeGX Input Layer
1 + more alternatives

1 Choice of loss function depends on task >

Hidden Layer Output Layer

Learning in multi-layer networks

11 Consider two consecutive layers:

O Layer M, with 1 < i < m nodes, and a bias
node MO

0 Layer N, with 1 < j < n nodes

o Let w; ; be the weight at the edge going
from M; to N;
11 Consider processing one observation:
o Let x; be the value going out of node M;

o If M is a hidden layer:
mx; = o0(z;), where z; =)(...)

Learning in multi-layer networks

0 If N is the output layer, calculate the error
terms 5]!\’ as before from the loss and the
activation function at each node N;

o If M is a hidden layer: Calculate the error
term at the nodes combining
o1 A weighted sum of the error terms at layer N
o1 The derivative of the activation function

né.l]\,[(Z] 1Wl])dxl

= where x; = a(z;), where z; =).(...)

Learning in multi-layer networks

11 By repeating the process, we get error
terms at all nodes in all the hidden layers.

71 The update of the weights between the
layers can be done as before:

_ N
] Wi,j = Wi,j — xi6j

o where x; is the value going out of node M;

Alternative activation functions
e

100 4 30
n

075

050 4

025 4

000 4

-0.25 A

—0.50 1

1 There are alternative activation functions 10— e
ex_e—x oad relu der
o0 tanh(x) =
() =S
o ReLU(x) = max(x,0) 0
71 RelU is the preferred method in hidden layers 02
in deep networks 00

Today

Neural networks
Language models
Word embeddings
Word2vec

- Language model

Probabilistic Language Models

Goal: Ascribe probabilities to word sequences.

Motivation:

Translation:
P(she is a tall woman) > P(she is a high woman)
P(she has a high position) > P(she has a tall position)
Spelling correction:

P(She met the prefect.) > P(She met the perfect.)

Speech recognition:

P(l saw a van) > P(eyes awe of an)

Probabilistic Language Models

Goal: Ascribe probabilities to word sequences.
P(wy,wy,ws, ..., wy)

Related: the probability of the next word
P(wy | Wy, wa, w3, ..., Wy _q)

A model which does either is called a Language Model, LM

Comment: The term is somewhat misleading

(Probably origin from speech recognition)

Chain rule

O

[

[

The two definitions are related by the chain rule for probability:
P(Wl, Wy, W3, ..., WTL) =
P(wy) X P(wz| wy) X P(W3|wq, wy) X--X P(Wp|wy, Wy, o, Wy_q) =

[T* P(w;|wy, Wy, ..., wi_1) = [TFP(w;jwi~t)

P(“its water is so transparent”) =
P(its) x P(water|[its) x P(is[its water)
x P(solits water is) x P(transparent/its water is so)

But this does not work for long sequences
(we may not even have seen before)

Markov assumption

1 A word depends only on the immediate preceding word
0 P(Wy, Wo, W3, o, Wyy) =

0 P(wy) X P(wy| wy) X P(ws|wy) XeooX P(wp| wy_1) =

O H?P(Wd Wi_1)

0 P(“its water is so transparent”) =
P(its) X P(water |its) X P(is| water) X P(so|is) X P(transparent| so)

o1 This is called a bigram model

Estimating bigram probabilities

The probabilities can be estimated by counting

This yields maximum likelihood probabilities

(=maximum probable on the training data)

p(Wilwi—1) _ count(wj_q,wj)

count(wi_q)

Example from J&M

<s>| am Sam </s>

~ c(Wi_q1, W;
P(w;|lw;_q) = (Wi-1, Wi) <s>Sam | am </s>

C(Wi—l) <s> | do not like green eggs and ham </s>
P(I|<s>)=2=.67 P(sam|<s>)=1=.33 P(am|I)=3=.67
P({/s}|Sam):%:0.5 P(Sam|am):%:.5 P(dD|I):%:.33

General ngram models

A word depends only on the k many immediately preceding words
P(wy,wy, Wy, .., Wy,) =

[T} P(Wi| Wik, Wis1—i -, Wi_1) = [TF P(w;| wizy

This is called a * We can train them similarly to

unigram model — no preceding words i Il fuee el

trigram model —two preceding words
k-gram model — k-1 preceding words

* Have to be more careful with
the smoothing for larger k-s.

Generating with n-grams

Goal: Generate a sequence of words
Unigram:
Choose the first word according to how probable it is
Choose the second word according to how probable it is, etc.
= the generative model for multinomial NB text classification
Bigram
Select word k according to P(w;|w;_)
k-gram

Select word w; according to how probable it is given the k — 1 preceding words
P(w;| wi

Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he 1s trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
"tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

Unknown words

There might be words that is never observed during training.
Use a special symbol for unseen words during application, e.g. UNK

Set aside a probability for seeing a new word

This may be estimated from a held-out corpus
Adjust
the probabilities for the other words in a unigram model accordingly

the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone

Since we might not have seen all possibilities in training data, we might
use Lidstone or, more generally, Laplace smoothing

~ __count(w;_q,w;)+k
P(wilw;_1) =

count(w;_q)+k |V]|

where || is the size of the vocabulary V.

—

F Mr. WILLIAM

BU.I.. SHAKESPEARES

o COMEDIES,
HISTORIES, &
TRAGEDIES, 1

s | L pwind d b= T O Coi ?
11 Shakespeare produced =
N = 884,647 word tokens

V = 29,066 word types

-1 Bigrams: j‘

Possibilities: N

= V2 = 844,000,000 ST
Shakespeare, L

= bigram tokens: 884,647 - Add-k smoothing is not

= bigram types: 300,000 appropriate

Smoothing n-grams
N

o If you have good evidence, use 1 Combine the models
the trigram model,

o If not, use the bigram model,

-1 or even the unigram model

Use either of this. According to J&M interpolation works better

Interpolation
Simple interpolation: p(Wn‘Wn—ZWn—l) — AIP(Wn|Wn—2W”_1)

—-AZP(Wn|Wn—1)

+A3P(wy)

The A-s can be tuned on a held out corpus

A more elaborate model will condition the A-s on the context

(Brings in elements of backoff)

Evaluation of n-gram models

Extrinsic evaluation:

To compare two LMs, see how well they are doing in an application, e.g.
translation, speech recognition

Intrinsic evaluation:
1

Use a held out-corpus and measure P(wq, Wy, W3, ..., Wy)n

The n-root compensate for different lengths
1

H?P(Wd Wil__,%)” for a k-gram model
It is normal to use the inverse of this, called the perplexity

1 1
PP(W{L) — 1:P(W1; Wy, W3, ...,Wn) n

P(w1,wp,w3,...wp)n

Properties of LMs

The best smoothing is achieved with Kneser-Ney smoothing

Short-comings of all n-gram models
The smoothing is not optimal

The context are restricted to a limited number of preceding words.

A practical advice: Use
logarithms when working with n-
grams

Today

Neural networks
Language models
Word embeddings
Word?2vec

Word-context matrix

Two words are similar in meaning if their context vectors are similar

sugar, a sliced lemon, a tablespoonful of apricot jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened
well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

apricot 0] 0] 0 1 0] 1
pineapple 0] 0 0 1 0 1
digital o) 2 1 0 1 o)
information 0O 1 6 o) 4 o)

So-far

A word W can be represented
by a context vector v, where
position jin the vector reflects
the frequency of occurrences of
W;j with w.

Can be used for

studying similarities between
words.

document similarities

But the vectors are sparse
Long: 20-50,000
Many entries are O

Even though car and automobile
get similar vectors, because
both co-occur with e.g., drive,

in the vector for drive there is
no connection between the car
element and the automobile
element.

Today
R
01 Lexical semantics
1 Vector models of documents
0 tf-idf weighting
7 Word-context matrices

0 Word embeddings with dense vectors

Dense vectors

I

1 Shorter vectors.
o (length 50-1000)
2 “low-dimensiona

space
-1 Dense (most elements are not O)

1 Intuitions:

1 Similar words should have similar
vectors.

=1 Words that occur in similar contexts
should be similar.

1 Generalize better than sparse
vectors.

71 Input to deep learning
o1 Fewer weights (or other weights)

11 Capture semantic similarities
better.

-1 Better for sequence modelling:

o Language models, etc.

Word embeddings

1 In current LT: Each word is P
represen’red as d vector Of dog 0.4 0.37 0.02 -0.34 animal
cat -0.15 -0.02 -0.23 -0.23 domesticated
reals lion 0.19 0.4 0.35 -0.48 pet
§ tiger 0.08 0.31 0.56 0.07 fluffy
7 Words are more or less similar ¢ eephant 004005 oat 006
T cheetah 0.27 028 02 -0.43
o o = monkey -0.02 -0.67 0.21 -0.48
-1 A word can be similar to one rabbit 004 03 018 047
. o . mouse 0.09 -0.46 -0.35 -0.24
word in some dimensions and mt 021 048 056 037

other words in other dimensions

https://medium.com/@jayeshbahire

Q5

0.4 -

0.3

0.2

0.1 F

r heiress

- countess
7 duchess—

/
/s empress

|
I

!

[

i From J&M
lking slides

0.2 0.3 0.4 0.5

0.5 T T T T T T T T !
g slowest
0.4 i)
& Blower 0 s shortest
B i ST
— N o F ~ shorter .
’ slow « B
-
o
short~
0.2 ol
0.1 .
= P ~strongerr — T — —— — — — _ strongest o
>
- P NOQUAEE T T T R e S o -
Sirong# _ loudest
01+ Wt o i N
L ?tlea"e" ———————— — clearest
ZIeoHer 7 T TV Y/ & e e
il = PRNIDE T T S et M ety softest From J&M
S
-0.2- gledt o= a=daiker = = = = e e :
soft — - darkest slides
= g
dark «
—0-3 | 1 1 1 1 1 | | |
—-0.4 —0.3 —-0.2 —0.1 (0] 0.1 0.2 0.3 0.4 0.5 0.6

Analogy: Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘ltaly’) = vector(‘Rome’)

WOMAN

MAN/ /

UNCLE

AUNT

QUEEN

KING

KINGS

QUEENS

N\

AN

KING

QUEEN

From J&M
slides

Demo

49—
O http://vectors.nlpl.eu/explore /embeddings/en/

http://vectors.nlpl.eu/explore/embeddings/en/

Track change of meaning of words

a . 9ay (1900s)

flaunting sweet
tasteful cheerful
pleasant
frolicso
witty Y gay (1950s)
bright
gays iIsexual
gay (1990s) homosexual
leshian

b
spread
broadcast (1850s).. esé%w
. SOWS
circulated scatter
broadcast (1900s)
newspapers
television
radio
hhc broadcast (1990s)

~30 million books, 1850-1990, Google Books data

C solemn
awful (1850s)
majestic
awe

dread ensive

glm?my

horrible

appalliwg terrible

awful (1900s) wonderful

awful (1990s)
awfull\e'rd

From J&M
slides

Evolution of sentiment words
T

-1 Negative words change

faster than positive words

Sentiment of terrific

1860 1900 1940 1980

From J&M
slides

Bias

Man is to computer programmer as woman is to homemaker.

Different adjectives associated with:
male and female terms

typical black names and typical white names

Embeddings may be used to study historical bias

Debiasing (research topic)

Coss
1 Goal: neutralize the biases

non-bias direction

1+1 unrelated
-1 Some positive results ‘) A

11 But also reports that is is not

doctor
° »@o
fully possible babysiter
>
bias direction
s debiqsing d goc||2 - grandmother - grandfather (unrelated)
| e -boy
: s

1 When should we (not) debias?

https:/ /vagdevik.wordpress.com/2018 /07 /08 /debiasing-word-embeddings/

Evaluation of embeddings

1 Extrinsic evaluation:

Evaluate contribution as part of an
application

-1 Intrinsic evaluation:

Evaluate against a resource

1 Some datasets
WordSim-353:

® Broader "semantic relatedness”

SimLex-999:

® Narrower: similarity

® Manually annotated for similarity

Wordl Word2 OS | Sim-score
old new A 1.58
smart intelligent A 9.2
plane jet N 8.1
woman man N 3.33
word dictionary N 3.68
create build \% 8.48
get put \Y% 1.98
keep protect \% 54

Use of embeddings

Embeddings are used as representations for words as input in all kinds
of NLP tasks using deep learning:

Text classification
Language models
Named-entity recognition
Machine translation

etc.

Resources
s 4
1 gensim
o1 Easy-to-use tool for training own models

1 Word2wec
O https: / /code.google.com/archive /p /word2vec/

0 https://fasttext.cc/

0 https:/ /nlp.stanford.edu/projects/glove /

O http://vectors.nlpl.eu /repository /

o1 Pretrained embeddings, also for Norwegian

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://vectors.nlpl.eu/repository/

Today

Neural networks
Language models
Word embeddings
Word2vec

ldea

Instead of counting, use a neural network to learn a LM

Simplest form: a bigram model:
For a given word w;_4, try to predict the next word w;

i.e. try to estimate P(w;| w;_1)

Model

Input layer Projection layer ﬂ“tl"ﬂ_ l_ﬂl'f‘E"
_ _ probabilities of
1-hot input vector embedding for w; context words
:1 E-_-_-_-_-_-_-_-_-_-_'_'_'—'—- i V1
:2 . : ? ¥2
W, . W . b
£ . Vixd N C axv ® % Wi+1
S e o :
e — E!?m
1|V Ixd 1|V

The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov

From J&M 3.ed. 2018 Ch. 16

et al. 2013a).

Model

Input and output word are repre- pat laser projection layer Outputlayer
ToDabDIInes o
sented by sparse one-hot vectors 1-hot input vector embedding for w; “context words
X o — . i
° . %@ ______"______ o
Dim d typically 50-300 :
Ttonle W e :
Independent learning for each o :
e ———— ol
input word wyg: IV 1xd Tl
The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov

Consider all possible next words for EEES
! .
w' for this word

Use softmax to get a probability
distribution of all next words

Embeddings from this

ldea: Use the weight matrix

Input laver Projection layer Output layer

Wy xa as embeddings, i.e.: ot it vector embedding o probabilities of

context words

—

:'El 'l'_______________'
Represent word j by :
“t x lo ‘ﬁ:»i: o]

(Wj,l» Wj,z; cer Wj,d) = the '
weights that sends this word to L
the hidden layer

The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov
et al. 2013a).

Why? since similar words will
predict more or less the same
words, they will get similar
embeddings

Observations

Since two words that are similar
are predicted by the same
words, there will also be
similarities between similar
words in Cgx |y

This will help the training of
VV|V|><d

We could alternatively use
Cax|v| as the embeddings

Input layer

1-hot input vector

%, ®

|

Projection laver

embedding for w

—

Output layer

probabilities of
context words

— @ Vo

1 x|V

et al. 2013a).

The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov

CBOW

We could generalize to
predicting from a number of
preceding words, e.g. 3, as
indicated in the figure.

Observe this is order-
independent

Continuous bag of words model
(CBOW):
Predict w; from a window
(Wt—k' o We— g Wep 1) ey Wt+k)

[eXeXe]|

- O s

oXoXel I ko) 0 =+ 000]

- o LR

1O

- g : ;
WV' N Ihi W NxV

Input layer

Wi\

\ Hidden layer

[eXXIeXXYe]e)

/N-dim

Wy

CxV-dim

Output layer

[LleXeXe]

Skip-gram

QOutput layer

yj'ua'

From w; predict all the words in

a win d oY Input layer

Wi oo s Wemy, Wi 15 s Wetk)

. yJ-
Assume independence of the 2

context words, i.e. from wy
predict each of the words w in

{Wt—k' oy Wi, Wit 1) oee) Wt+k}

Boils down to similar to unigram

model.

Skip-gram model
B

Input layer Projection laver ﬂ“tl“ﬂ_ 1_1‘}’“'
_ _ probabilities of
1-hot input vector embedding for w; context words
:1 E-_-_-_-_-_-_-_-_-_-_'_'_'—'—- 9| v,
'2 - : e ¥2
£ Vixd 3 Caxvi jo{n Mi+1
° — ; o :
Xyie_ —— _'_'_‘—'—-—-—-_._______________-_._-—=
y 1xd =
1%V 1%V

The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov
et al. 2013a).

From J&M 3.ed. 2018 Ch. 16

Skip-gram with negative sampling

To train a skip gram model is expensive

Soft-max P(C ‘x) =]_,ﬁ

x
113

where the classes corresponds to the next word
i.e. in making an updq’re for a pair (W, W) one has to calculate the

weighted expression e Wi'X for each word in the vocabulary

Looking for cheaper training methods

Skip-gram with negative sampling

Treat the target word and a neighboring context word as a positive
example.

Randomly sample other words in the lexicon to get negative samples
Use logistic regression to train a classifier to distinguish those two cases

Use the weights as the embeddings

Skip-Gram Training Data
—

71 Training sentence:

O tablespoon of apricot jam a
O cl c2 t c3 c4

0 Training data: input/output pairs centering on apricot

7 Asssume a +/- 2 word window

9/22/2020

Skip-Gram Training Data

tablespoon of apricot preserves or
cl c2 t c3 c4

For each positive example, we'll create k negative examples.

Using noise words: Any random word that isn't t

positive examples + negative examples -

t C t C t C
apricot tablespoon apricot aardvark apricot twelve
apricot of apricot puddle apricot hello
apricot preserves apricot where apricot dear

apricot or apricot coaxial apricot forever

How to compute p(+ |1,c)?

Word2vec
One of various ways to train the classifier to distinguish pos and neg words
Intuition:
Words are likely to appear near similar words
Model similarity with dot-product!
Similarity (t,c)~t:c
Problem:
Dot product is not a probability!

(Neither is cosine)

Goadl

Given a tuple (target, context) Maximize
(apricot, jam) Z logP(+|t, c) + Z logP(—|t, ¢)
(apricot, aardvark) (t,c)e+ (t,c)e—
Calculate the probabilities where
P(+lt, c)
1
P(—|t,c) =1—=P(+lt,c) P(+|t,c) =

1 e ¢

iIncrease

similarity(apricot , jam) C
B . W:;.C
W R I 1 d
1.2.?.9.'}!99’.‘..v 1
o . _ _ , « «[ee-0:e8) jam neighbor word
. ...apricot jam... _
° - ,n[@e-e-ee)aardvark random noise
: T e word
— Vv
.-~ decrease
e ““similarity(apricot , aardvark)
W; . C

J N

Another view

W (OO0 OO0OO0O0O]

w

1 000...010...000000 |

apricot

o(w-c)

w-C

L0000 000] C

C

100000...010...0000 |

preserves

We feed a pair of
words (W, ¢) to
distinct hidden
embedding layers

Compare to target

(1 or O)
Update weights

We learn the set of
embeddings W and
C

Result

We learn two separate embedding matrices W and C

We can use W as representations for the words

(or combine with C in some ways)

What have we learned:
If two words wl and w2 occur in similar contexts
= with the same (or similar) context words, e.qg. c,

then both wl and w2 should have a large cosine with c,

hence have similar vectors.

Use of embeddings

Embeddings are used as representations for words as input in all kinds
of NLP tasks using deep learning:

Text classification
Language models
Named-entity recognition
Machine translation

etc.

IN5550 Spring 2020

Resources
e
1 gensim
o1 Easy-to-use tool for training own models

1 Word2wec
O https: / /code.google.com/archive /p /word2vec/

0 https://fasttext.cc/

0 https:/ /nlp.stanford.edu/projects /glove /

0 http://vectors.nlpl.eu/explore /embeddings/en/

o1 Pretrained embeddings, also for Norwegian

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://vectors.nlpl.eu/explore/embeddings/en/

