IN4080 – 2020 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Tagging and sequence labeling

Lecture 7, 28 Sept

Today

- Tagged text and tag sets
- Tagging as sequence labeling
- □ HMM-tagging
- Discriminative tagging
- Neural sequence labeling

Tagged text and tagging

[('They', 'PRP'), ('saw', 'VBD'), 'a', 'DT'), ('saw', 'NN'), ('.', '.')] [('They', 'PRP'), ('like', 'VBP'), ('to', 'TO'), ('saw', 'VB'), ('.', '.')] [('They', 'PRP'), ('saw', 'VBD'), ('a', 'DT'), ('log', 'NN')]

- □ In tagged text each token is assigned a <u>"part of speech" (POS) tag</u>
- □ A tagger is a program which automatically ascribes tags to words in text
- □ From the context we are (most often) able to determine the tag.
 - But some sentences are genuinely ambiguous and hence so are the tags.

Various POS tag sets

- □ A tagged text is tagged according to a fixed small set of tags.
- □ There are various such tag sets.
- Brown tagset:
 - Original: 87 tags
 - Versions with extended tags <original>-<more>
 - Comes with the Brown corpus in NLTK
- Penn treebank tags: 35+9 punctuation tags
- Universal POS Tagset, 12 tags,

Universal POS tag set (NLTK)

6

Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
•	punctuation marks	.,;!
X	other	ersatz, esprit, dunno, gr8, univeristy

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM)	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	' or ''
POS	possessive ending	's	**	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	$[, (, \{, <$
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	•
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			

7

Penn treebank tags

Tag	Description	Example
(opening parenthesis	(, [
)	closing parenthesis),]
*	negator	not, n't
,	comma	,
-	dash	
	sentence terminator	.;?!
:	colon	:
ABL	pre-qualifier	quite, rather, such
ABN	pre-quantifier	ĥalf, all
ABX	pre-quantifier, double conjunction	both
AP	post-determiner	many, next, several, last
AT	article	a, the, an, no, a, every
BE/BEI	D/BEDZ/BEG/BEM/BEN/BER/BEZ	be/were/was/being/am/been/are/is
CC	coordinating conjunction	and, or, but, either, neither
CD	cardinal numeral	two, 2, 1962, million
CS	subordinating conjunction	that, as, after, whether, before
DO/DO	D/DOZ	do, did, does
DT	singular determiner	this, that
DTI	singular or plural determiner	some, any
DTS	plural determiner	these, those, them
DTX	determiner, double conjunction	either, neither
EX	existential there	there

Original Brown tags, part 1

HV/HVD	/HVG/HVN/HVZ	have, had, having, had, has
IN	preposition	of, in, for, by, to, on, at
JJ	adjective	
JJR	comparative adjective	better, greater, higher, larger, lower
JJS	semantically superlative adj.	main, top, principal, chief, key, foremost
JJT	morphologically superlative adj.	best, greatest, highest, largest, latest, worst
MD	modal auxiliary	would, will, can, could, may, must, should
NN	(common) singular or mass noun	time, world, work, school, family, door
NN\$	possessive singular common noun	father's, year's, city's, earth's
NNS	plural common noun	years, people, things, children, problems
NNS\$	possessive plural noun	children's, artist's parent's years'
NP	singular proper noun	Kennedy, England, Rachel, Congress
NP\$	possessive singular proper noun	Plato's Faulkner's Viola's
NPS	plural proper noun	Americans, Democrats, Chinese
NPS\$	possessive plural proper noun	Yankees', Gershwins' Earthmen's
NR	adverbial noun	home, west, tomorrow, Friday, North
NR\$	possessive adverbial noun	today's, yesterday's, Sunday's, South's
NRS	plural adverbial noun	Sundays, Fridays
OD	ordinal numeral	second, 2nd, twenty-first, mid-twentieth
PN	nominal pronoun	one, something, nothing, anyone, none
PN\$	possessive nominal pronoun	one's, someone's, anyone's
PP\$	possessive personal pronoun	his, their, her, its, my, our, your
PP\$\$	second possessive personal pronoun	mine, his, ours, yours, theirs
PPL	singular reflexive personal pronoun	myself, herself
PPLS	plural reflexive pronoun	ourselves, themselves
PPO	objective personal pronoun	me, us, him
PPS	3rd. sg. nominative pronoun	he, she, it
PPSS	other nominative pronoun	I, we, they
QL	qualifier	very, too, most, quite, almost, extremely
QLP	post-qualifier	enough, indeed
RB	adverb	
RBR	comparative adverb	later, more, better, longer, further
RBT	superlative adverb	best, most, highest, nearest
RN	nominal adverb	here, then

Original Brown tags, part 2

Tag	Description	Example
RP	adverb or particle	across, off, up
TO	infinitive marker	to
UH	interjection, exclamation	well, oh, say, please, okay, uh, goodbye
VB	verb, base form	make, understand, try, determine, drop
VBD	verb, past tense	said, went, looked, brought, reached, kept
VBG	verb, present participle, gerund	getting, writing, increasing
VBN	verb, past participle	made, given, found, called, required
VBZ	verb, 3rd singular present	says, follows, requires, transcends
WDT	wh- determiner	what, which
WP\$	possessive wh- pronoun	whose
WPO	objective wh- pronoun	whom, which, that
WPS	nominative wh- pronoun	who, which, that
WQL	how	
WRB	wh- adverb	how, when

Original Brown tags, part 3

Different tagsets - example

11

			Brown	Penn treebank ('wsj')	Universal
	he	she	PPS	PRP	PRON
I			PPSS	PRP	PRON
me	him	her	PPO	PRP	PRON
my	his	her	PP\$	PRP\$	DET
mine	his	hers	PP\$\$	Ś	PRON

Ambiguity rate

Types:		WSJ		Brown		
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)	
Ambiguous	(2 + tags)	7,025	(14%)	8,050	(15%)	
Tokens:						
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)	
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)	
Figure 8.2 Tag ambiguity	for word types in	n Brown ar	nd WSJ,	using Tree	bank-3 (45-	-tag)

tagging. Punctuation were treated as words, and words were kept in their original case.

How ambiguous are tags (J&M, 2.ed)

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous	(1 tag)	44,019		38,857	
Ambiguous (2	2–7 tags)	5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags	BUT.	Not directly	4	('s, half, back, a)
9 tags		comr	arable because (of 3	(that, more, in)
		diffe	erent tokenization		

Back

- earnings growth took a back/JJ seat
- □ a small building in the back/NN
- a clear majority of senators back/VBP the bill
- Dave began to back/VB toward the door
- enable the country to buy back/RP about debt
- □ I was twenty-one back/RB then

Today

- Tagged text and tag sets
- Tagging as sequence labeling
- □ HMM-tagging
- Discriminative tagging
- Neural sequence labeling

Tagging as Sequence Classification

Classification (earlier):

- a well-defined set of observations, O
- a given set of classes,
 - $S = \{s_1, s_2, ..., s_k\}$

Goal: a classifier, γ , a mapping from O to S

Sequence classification:

Goal: a classifier, γ, a mapping from sequences of elements from O to sequences of elements from S:

Baseline tagger

- 17
- □ In all classification tasks establish a baseline classifier.
- Compare the performance of other classifiers you make to the baseline.
- For tagging, a natural baseline is the Most Frequent Class Baseline:
 Assign each word the tag to which is occurred most frequent in the training set
 - For words unseen in the training set, assign the most frequent tag in the training set.

Today

- Tagged text and tag sets
- Tagging as sequence labeling
- □ HMM-tagging
- Discriminative tagging
- Neural sequence labeling

Hidden Markov Model (HMM) tagger

Extension of language model

- Two layers:
 - Observed: the sequence of words
 - Hidden: the tags/classes where each word is assigned a class

Extension of Naive Bayes

- NB assigns a class to each observation
- An HMM is a sequence classifier:
 It assigns a sequence of classes to a sequence of words

HMM is a probabilistic tagger

20

The goal is to decide: tⁿ₁ = argmax P(tⁿ₁|wⁿ₁)
 tⁿ₁ = t₁, t₂,...t_n

Using Bayes theorem: tⁿ₁ = argmax P(wⁿ₁|tⁿ₁)P(tⁿ₁)

This simplifies to: tⁿ₁ = argmax P(wⁿ₁|tⁿ₁)P(tⁿ₁)

because the denominator is the same for all tag sequences

Notation:

Simplifying assumption 1

21

□ For the tag sequence, we apply the chain rule

- $\square P(t_1^n) = P(t_1)P(t_2|t_1)P(t_3|t_1t_2) \dots P(t_i|t_1^{i-1}) \dots P(t_n|t_1^{n-1})$
- □ We then assume the Markov (chain) assumption
- $\square P(t_1^n) = P(t_1)P(t_2|t_1)P(t_3|t_2) \dots P(t_i|t_{i-1}) \dots P(t_n|t_{n-1})$

$$P(t_1^n) \approx P(t_1) \prod_{i=2}^n P(t_i | t_{i-1}) = \prod_{i=1}^n P(t_i | t_{i-1})$$

• Assuming a special start tag t_0 and $P(t_1) = P(t_1|t_0)$

Simplifying assumption 2

22

Applying the chain rule

$$P(w_1^n | t_1^n) = \prod_{i=1}^n P(w_i | w_1^{i-1} t_1^n)$$

20

i.e., a word depends on all the tags and on all the preceding words \square We make the simplifying assumption: $P(w_i|w_1^{i-1}t_1^n) \approx P(w_i|t_i)$ \square i.e., a word depends only on the immediate tag, and hence

$$P(w_1^n | t_1^n) = \prod_{i=1}^{n} P(w_i | t_i)$$

Training

From a tagged training corpus, we can estimate the probabilities with Maximum Likelihood (as in Language Models and Naïve Bayes:)

$$\widehat{P}(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$
$$\widehat{P}(w_i|t_i) = \frac{C(w_i,t_i)}{C(t_i)}$$

Putting it all together

25

From a trained model, it is straightforward to calculate the probability of a sentence with a tag sequence

$$P(w_1^n, t_1^n) = P(t_1^n) P(w_1^n | t_1^n) \approx \prod_{i=1}^n P(t_i | t_{i-1}) \prod_{i=1}^n P(w_i | t_i)$$
$$= \prod_{i=1}^n P(t_i | t_{i-1}) P(w_i | t_i)$$

To find the best tag sequence, we could – in principle – calculate this for all possible tag sequences and choose the one with highest score

$$\square \hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

□ Impossible in practice – There are too many

Possible tag sequences

	Tag	Tag	Tag	Tag	Tag
	ADJ	ADJ	ADJ	ADJ	ADJ
	ADP	ADP	ADP	ADP	ADP
	ADV	ADV	ADV	ADV	ADV
	CONJ	CONJ		CONJ	CONJ
	DET	DET	DET	DET	DET
	NOUN	NOUN		NOUN	NOUN
	NUM	NUM	NUM	NUM	NUM
×	PRT	PRT	PRT	PRT	PRT
	PRON	PRON	PRON	PRON	PRON
	VERB	VERB	VERB	VERB	VERB
	•		•	•	
•	X	X	x	X	X
	Janet	will	back	the	bill

- The number of possible tag sequences =
- The number of paths through the trellis =

 $\square m^n$

- \square *m* is the number of tags in the set
- n is the number of tokens in the sentence

■ Here: $12^5 \approx 250,000$.

Viterbi algorithm (dynamic programming)

	Tag	Tag	Tag	Tag	Tag
	ADJ	ADJ	ADJ	ADJ	ADJ
	ADP	ADP	ADP	ADP	ADP
	ADV	ADV	ADV	ADV	ADV
	CONJ	CONJ	CONJ	CONJ	CONJ
	DET	DET	DET	DET	DET
			NOUN	NOUN	NOUN
	NUM	NUM	NUM	NUM	NUM
	PRT	PRT	PRT	PRT	PRT
-	PRON	PRON	PRON	PRON	PRON
	VERB	VERB	VERB	VERB	VERB
	•	•	•	•	•
	Х	Х	Х	Х	Х
	Janet	will	back	the	bill

- Walk through the word sequence
- For each word keep track of
 - all the possible tag sequences up to this word and the probability of each sequence
- If two paths are equal from a point on, then
- The one scoring best at this point will also score best at the end
- Discard the other one

Viterbi algorithm

- □ A nice example of dynamic programming
- □ Skip the details:
 - Viterbi is covered in IN2110
 - We will use preprogrammed tools in this course not implement ourselves
 - HMM is not state of the art taggers

HMM trigram tagger

29

□ Take two preceding tags into consideration □ $P(t_1^n) \approx \prod_{i=1}^n P(t_i | t_{i-1}, t_{i-2})$ □ $P(w_1^n, t_1^n) = \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1}, t_{i-2})$

Add two initial special states and one special end state

i=1

Challenges for the trigram tagger

- □ More complex
- $\square (n+2) \times m^3$
 - $\square n$ words in the sequence
 - m tags in the model
- Example
 - 12 tags and 6 words: 15,552
 - With 45 tags: 820,125
 - With 87 tags: 5,926,527

- We have probably not seen all tag trigrams during training
- We must use back-off or interpolation to lower n-grams
 - (can also be necessary for bigram tagger)

Challenges for all (n-gram) taggers

- How to tag words not seen under training?
- We assign them all the most frequent tag (noun)
- Or use the tag frequencies: P(w|t) = P(t)
- Better: use morphological features
 - Can be added as an extra module to an HMM-tagger

We will later on consider discriminative taggers where morphological features may be added without changing the model.

Today

- Tagged text and tag sets
- Tagging as sequence labeling
- □ HMM-tagging
- Discriminative tagging
- Neural sequence labeling

Discriminative tagging

Notation: $t_1^n = t_1, t_2, \dots t_n$

- □ The goal of tagging is to decide: $\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$
- □ HMM is generative.
 - It estimates $P(w_1^n | t_1^n) P(t_1^n) = P(w_1^n, t_1^n)$
- As for text classification, we could instead use a discriminative procedure and try to estimate the tag sequence directly
- $\square P(t_1^n | w_1^n) = P(t_1 | w_1^n) P(t_2 | t_1, w_1^n) \dots P(t_i | t_1^{i-1}, w_1^n) \dots = \prod_{i=1}^n P(t_i | t_1^{i-1}, w_1^n)$

$$\Box \operatorname{argmax}_{t_1^n} P(t_1^n | w_1^n) = \operatorname{argmax}_{t_1^n} \prod_{i=1}^n P(t_i | t_1^{i-1}, w_1^n)$$

Features: Any properties of the words are possible features

□ History: How many previous tags should we consider?

Feature templates

```
t_i = VB and w_{i-2} = Janet

t_i = VB and w_{i-1} = will

t_i = VB and w_i = back

t_i = VB and w_{i+1} = the

t_i = VB and w_{i+2} = bill

t_i = VB and t_{i-1} = MD

t_i = VB and t_{i-1} = MD and t_{i-2} = NNP

t_i = VB and w_i = back and w_{i+1} = the
```

- The template is filled for each observation
- Resulting in very many features:
 - $\square 5mn + nn + n^3 + m^2n$
 - $\square m$ the number of words
 - $\square n$ the number of tags

Decoding

- □ Goal: argmax $P(t_1^n | w_1^n) = \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(t_i | t_1^{i-1}, w_1^n)$
- Simplest alternative: Greedy sequence decoding:
 - Choose the best tag for the first word in the sentence $\operatorname{argmax}_{t_1} P(t_1 | w_1^n)$
 - Then choose the best tag for the second word in the sentence, given the choice for the first word,
 - And so on, tagging one word at a time until we have finished the sentence.
 argmax P(t_i|t₁ⁱ⁻¹, w₁ⁿ) t_i

Shortcomings

Shortcomings of greedy decoding

- Early decisions
- Consider only one tag at a time
- Compare to HMM which considers whole tag sequences and choose the most probable sequence.

Maximum Entropy Markov Models (MEMM)

38

□ If the model uses a limited history,

□
$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(t_i | t_{i-k}^{i-1} w_{i-m}^{i+m})$$

one may use a form of Viterbi and optimize the whole sequence

However

- The greedy sequence decoding does surprisingly well
- And equally surprising: using preceding tags as features does not improve the tagger that much compared to not including them.
- See mandatory assignment 2A

□ Beam search:

- At each stage in the trellis keep the best hypotheses
 - But reject the hypotheses with a small probability for succeeding later on
- Also possible to produce the *n*-best hypotheses, e.g., the 5 best, from the trellis

More refinements

- J&M considers some finer details that may be a problem for the MEMM-tagger, we will not go into the details
- Conditional Random Fields (CRFs) is a generalization compared to MEMM:
 - Makes it possible to optimize training for whole tag sequences
 - Slow in training
 - Considered the best tool for sequence labelling until a few years ago
- Currently, neural networks ("deep learning") are considered the best tool

Today

- Tagged text and tag sets
- Tagging as sequence labeling
- □ HMM-tagging
- Discriminative tagging
- Neural sequence labeling

Neural NLP

- (Multi-layered) neural networks
- Using embeddings as word representations

Example: Neural language model (k-gram) $\square P(w_i | w_{i-k}^{i-1})$ □ Use embeddings for representing the W_i -s Use neural network for estmating $P(w_i | w_{i-k}^{i-1})$

Pretrained embeddings

- □ The last slide uses pretrained embeddings
 - Trained with some method, SkipGram, CBOW, Glove, ...
 - On some specific corpus
 - Can be downloaded from the web
- Pretrained embeddings can aslo be the input to other tasks, e.g. text classification
- The task of neural language modeling was also the basis for training the embeddings

Figure 7.13 Learning all the way back to embeddings. Notice that the embedding matrix *E* is shared among the 3 context words.

Training the embeddings

- 46
- Alternatively we may start with one-hot representations of words and train the embeddings as the first layer in our models (=the way we trained the embeddings)
- If the goal is a task different from language modeling, this may result in embeddings better for the specific tasks.
- We may even use two set of embeddings for each word one pretrained and one which is trained during the task.

Recurrent neural nets

47

Model sequences/temporal phenomena

□ A cell may send a signal back to itself – at the next moment in time

https://en.wikipedia.org/wiki/Recurrent_neural_network

Forward

- Each U, V and W are edges with weights
- \square x_1, x_2, \dots, x_n is the input sequence

Forward:

- 1. Calculate h_1 from h_0 and x_1 , and y_1 from h_1 .
- 2. Calculate h_2 from h_1 and x_2 , and y_2 from h_2 , etc
- 3. Calculate h_n from h_{n-1} and x_n , and y_n from h_n .

Update

- □ At each output node:
 - Calculate the loss and the
 - lacksquare δ -term
- Backpropagate the error, e.g.
 - lacksquare the δ -term at h_2 is calculated
 - from the δ-term at h₃ by U and
 the δ-term at y₂ by V
- □ Update V from the δ -terms at the y_i -s and U and W from the δ -terms at the w_i -s

Sequence labeling

51

Actual models for sequence labeling, e.g. tagging, are more complex
 For example, that it may take words after the tag into consideration.