
IN4080 – 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 12, 2 Nov.

Neural LMs, Recurrent networks, Sequence labeling

2

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information Extraction

3

Today

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

4

Feed forward network

 An input layer

 An output layer: the predictions

 One or more hidden layers

 Connections from one layer to

the next (from left to right)

 A weight at each connection

5

1 1

The hidden nodes

 Each hidden node is like a small logistic
regression:

 First sum of weighted inputs :

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 where 𝑥 = 1 and 𝑤0 = 𝑏, bias

 alternatively, z = σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 + 𝑏

 Then the result is run through an
activation function, e.g. σ

 𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥

6

x1

x2

x3

1

Σ

w0 (=b in J&M)
w1

w2

w3

z y

It is the non-linearity of the activation

function which makes it possible for MLP to

predict non-linear decision boundaries

The output layer

Alternatives

 Regression:

 One node

 No activation function

 Binary classifier:

 One node

 Logistic activation function

 Multinomial classifier

 Several nodes

 Softmax

 + more alternatives

7

1 1

Forward

 Applying the network:

 Start with the input vector

 Run it step-by-step through the

network

8

1 1

Forward

 Each layer can be considered a vector

 The connections between the layers:
a matrix

 Running it through the connections:
matrix multiplication

Example network:

 𝒉 = 𝜎 𝑊𝒙 + 𝑏

 𝒛 = 𝑈𝒉

 𝒚 = softmax(𝒛)

9

1

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖
Marsland, and Goldberg (IN5550): 𝒉 = 𝜎 𝒙𝑊 + 𝑏 , where 𝒙 is a row vector

1 1

W Ux
Soft

max

Today

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

10

Learning in neural networks

 Introduce a loss function: 𝐿 ෝ𝒚 , 𝒚

 tells something about the difference between ෝ𝒚 and𝒚

 Update 𝑤𝑖 according to how much it contributes to the loss

𝑤𝑖: 𝑤𝑖 ← 𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚

 Calculate the partial derivatives using the chain rule
𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚

 "Follow the network backwards collecting partial derivaties along the path"

11

Example: Logistic regression as a network

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 ො𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑧

𝜕

𝜕ෞ𝑤𝑖
𝐿𝐶𝐸 =

𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 ×

𝜕 ො𝑦

𝜕𝑧
×

𝜕𝑧

𝜕𝑤𝑖

12

x1

x2

x3

1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦

𝐿(ො𝑦, 𝑦)

Learning in multi-layer networks
13

 If N is the output layer, calculate the error

terms 𝛿𝑗
𝑁 as before from the loss and the

activation function at each node 𝑁𝑗
 If M is a hidden layer: Calculate the error

term at the nodes combining

 A weighted sum of the error terms at layer N

 The derivative of the activation function

 𝛿𝑖
𝑀 = σ𝑗=1

𝑛 𝑤𝑖,𝑗𝛿𝑗
𝑁 𝑑𝑥𝑖

𝑑𝑧𝑖

 where 𝑥𝑖 = 𝜎(𝑧𝑖), where 𝑧𝑖 = σ(…)

M2

M3

M0

N3

N1

N2

N4

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

𝛿1
𝑀

𝛿1
𝑁

𝛿2
𝑁

𝛿3
𝑁

𝛿4
𝑁

𝑥1𝑧1 M1

Learning in multi-layer networks
14

 By repeating the process, we get error

terms at all nodes in all the hidden layers.

 The update of the weights between the

layers can be done as before:

 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝑥𝑖𝛿𝑗
𝑁

 where 𝑥𝑖 is the value going out of node 𝑀𝑖

M1

M2

M3

M0

N3

N1

N2

N4

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

Beware: We have here used 𝑤𝑖,𝑗 for the weight

connecting node 𝑖 and node 𝑗, while Jurafsky and

Martin uses 𝑤𝑗,𝑖 for this edge.

𝛿2
𝑁

𝑥1

Alternative activation functions

 There are alternative activation functions

 tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

 ReLU is the preferred method in hidden layers
in deep networks

15

Footnote
16

JTL 2020

Today

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

17

Computational graphs

 A convenient tool for describing composite functions

 And follow the partial derivatives backwards

 There are tools that let us specify the computations at an high-level as graphs

 In particular useful for "hiding" vectors, matrices, tensors

18

From J&M,

3.ed., 2019

19

From J&M,

3.ed., 2019

20

How would you draw this if x has dim 100,000 and there are

3 million parameters (weights)?

From J&M,

3.ed., 2019

Unfortunately:

Many mistakes

in the indices in

the drawing

Using vector notation
21

𝒙

𝑊[1] 𝑊[2]𝒃[1] 𝒃[2]

𝒖[1] =
𝑊[1]𝒙

𝒛[1] =
𝒖[1]+𝒃[1]

𝒙[2] =

𝑅𝑒𝑙𝑈(𝒛 1)
𝒖[1] =
𝑊[1]𝒙

𝒛[1] =
𝒖[1]+𝒃[1]

𝒂[2] =

σ(𝒛 1)
𝐿(𝒂 2 , 𝑦)

Or even simpler notation
22

𝒙

𝑊[1] 𝑊[2]𝒃[1] 𝒃[2]

𝑑𝑜𝑡 + 𝑅𝑒𝑙𝑈 𝑑𝑜𝑡 + σ 𝐿(_ , 𝑦)

Details on training

 First round

 Start with random weights.

 Train the network.

 Test on dev data

 Repeat:

 You get a different result

 Why?

 Solution:

 Run several rounds

 Repeat

 Report mean and st.dev.

 There are many hyper-
parameters that may be tuned

 Example: embeddings
 Context window size

 Dimensions

 "Drop-out"

 Drop-out

 A way of regularization

 Disregard som features during
training

 Different features for each round
of training

23

Today

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

24

Neural NLP

 (Multi-layered) neural networks

 Using embeddings as word

representations

 Example: Neural language

model (k-gram)

 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 Use embeddings for

representing the 𝑤𝑖-s

 Use neural network for

estimating 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

25

26

From J&M,

3.ed., 2019

Pretrained embeddings

 The last slide uses pretrained embeddings

 Trained with some method, SkipGram, CBOW, Glove, …

 On some specific corpus

 Can be downloaded from the web

 Pretrained embeddings can aslo be the input to other tasks, e.g. text

classification

 The task of neural language modeling was also the basis for training

the embeddings

27

Or simpler notation
28

𝒙2

E W 𝒃[1] 𝒃[2]

𝑑𝑜𝑡 𝑐𝑜𝑛𝑐𝑎𝑡 𝑅𝑒𝑙𝑈𝑑𝑜𝑡 + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝒙𝟑

𝒙𝟏

𝑑𝑜𝑡

𝑑𝑜𝑡

U

𝑑𝑜𝑡 +

Training the embeddings

 Alternatively we may start with one-hot representations of words and

train the embeddings as the first layer in our models (=the way we

trained the embeddings)

 If the goal is a task different from language modeling, this may result

in embeddings better suited for the specific tasks.

 We may even use two set of embeddings for each word – one

pretrained and one which is trained during the task.

29

Recurrent networks

30

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Information Extraction

31

Recurrent neural nets

 Model sequences/temporal phenomena

 A cell may send a signal back to itself – at the next moment in time

32

https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing

during time

Forward

 Each U, V and W are edges

with weights

 𝑥1, 𝑥2, … , 𝑥𝑛 is the input

sequence

 Forward:

1. Calculate ℎ1 from ℎ0 and .

2. Calvculate 𝑦1 from ℎ1.

3. Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖,
and 𝑦𝑖 from 𝑖, for 𝑖 = 1,… , 𝑛

33

From J&M, 3.ed., 2019

Forward

 𝒉𝑡 = 𝑔 𝑈𝒉𝑡−1 +𝑊𝒙𝑡
 𝒚𝑡 = 𝑓 𝑉𝒉𝑡

34

From J&M, 3.ed., 2019

Training

 At each output node:

 Calculate the loss and the

 𝛿-term

 Backpropagate the error, e.g.

 the 𝛿-term at ℎ2is calculated

 from the 𝛿-term at ℎ3 by U and

 the 𝛿-term at 𝑦2 by V

 Update

 V from the 𝛿-terms at the 𝑦𝑖-s and

 U and W from the 𝛿-terms at the
ℎ𝑖-s

35

From J&M, 3.ed., 2019

Remark

 J&M, 3. ed., 2019, sec 9.1.2

explain this at a high-level

using vectors and matrices, OK

 The formulas, however, are not

correct:

 Describing derivatives of

matrices and vectors demand a

little more care, e.g. one has to

transpose matrices

 It is beyond this course to

explain how this can be done in

detail

 But you should be able to do

the actual calculations if you

stick to the entries of the

vectors and matrices, as we did

above (ch. 7).

36

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Information Extraction

37

RNN Language model

 ො𝑦 = 𝑃 𝑤𝑛 𝑤1
𝑛−1 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

 In principle:

 unlimited history

 a word depends on all preceding
words

 The word 𝑤𝑖 is represented by an
embedding

 or a one-hot and the embedding is
made by the LM

38

<s>

w1

w2

Autoregressive generation

 Generated by

probabilities:

 Choose word in

accordance with

prob.distribution

 Part of more complex

models

 Encoder-decoder

models

 Translation

39

From J&M, 3.ed., 2019

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Information Extraction

40

Neural sequence labeling: tagging
41

From J&M, 3.ed., 2019

Sequence labeling

 Actual models for sequence labeling, e.g. tagging, are more complex

 For example, that it may take words after the tag into consideration.

42

Information extraction

43

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named entity recognition

 Next week: Relation extraction

44

IE basics

 Bottom-Up approach

 Start with unrestricted texts, and do the best you can

 The approach was in particular developed by the Message Understanding
Conferences (MUC) in the 1990s

 Select a particular domain and task

45

Information extraction (IE) is the task of

automatically extracting structured information

from unstructured and/or semi-structured

machine-readable documents. (Wikipedia)

Steps
46

(Some appro-

aches do these

steps in a

different order

– or

simultaneously)
From NLTK

Some example systems
47

 Stanford core nlp: http://corenlp.run/

 SpaCy (Python): https://spacy.io/docs/api/

 OpenNLP (Java): https://opennlp.apache.org/docs/

 GATE (Java): https://gate.ac.uk/

 UDPipe: http://ufal.mff.cuni.cz/udpipe

 Online demo: http://lindat.mff.cuni.cz/services/udpipe/

http://corenlp.run/
https://spacy.io/docs/api/
https://opennlp.apache.org/docs/
https://gate.ac.uk/
http://ufal.mff.cuni.cz/udpipe
http://lindat.mff.cuni.cz/services/udpipe/

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named entity recognition

 Next week: Relation extraction

48

Next steps

 Chunk together words to phrases

49

NP-chunks

 Exactly what is an NP-chunk?

 It is an NP

 But not all NPs are chunks

 Flat structure: no NP-chunk is part
of another NP chunk

 Maximally large

 Opposing restrictions

50

[The/DT market/NN] for/IN

[system-management/NN software/NN] for/IN

[Digital/NNP]

['s/POS hardware/NN] is/VBZ fragmented/JJ enough/RB that/IN

[a/DT giant/NN] such/JJ as/IN

[Computer/NNP Associates/NNPS] should/MD do/VB well/RB there/RB ./.

Regular Expression Chunker

 Input POS-tagged sentences

 Use a regular expression over POS to identify NP-chunks

 NLTK example:

 It inserts parentheses

51

grammar = r"""
NP: {<DT|PP\$>?<JJ>*<NN>}

{<NNP>+}
"""

http://www.nltk.org/book/ch07.html

IOB-tags

 B-NP: First word in NP

 I-NP: Part of NP, not first word

 O: Not part of NP (phrase)

 Properties

 One tag per token

 Unambiguous

 Does not insert anything in the

text itself

52

Assigning IOB-tags

 The process can be considered a form for tagging

 POS-tagging: Word to POS-tag

 IOB-tagging: POS-tag to IOB-tag

 But one may in addition use additional features, e.g. words

 Can use various types of classifiers

 NLTK uses a MaxEnt Classifier (=LogReg, but the implementation is slow)

 We can modify along the lines of mandatory assignment 2, using scikit-learn

53

54

J&M, 3. ed.

Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("")

 test_sents = conll ('test',
chunks=['NP'])

 IOB Accuracy: 43.4%

 Precision: 0.0%

 Recall: 0.0%

 F-Measure: 0.0%

 What do we evaluate?

 IOB-tags? or

 Whole chunks?

 Yields different results

 For IOB-tags:

 Baseline:
 majority class O,

 yields > 33%

 Whole chunks:

 Which chunks did we find?

 Harder

 Lower numbers

55

Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("")

 test_sents = conll ('test',

chunks=['NP'])

 IOB Accuracy: 43.4%

 Precision: 0.0%

 Recall: 0.0%

 F-Measure: 0.0%

>> cp = nltk.RegexpParser(

r"NP: {<[CDJNP].*>+}")

 IOB Accuracy: 87.7%

 Precision: 70.6%

 Recall: 67.8%

 F-Measure: 69.2%

56

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named entity recognition

 Next week: Relation extraction, 5 different ways

57

Named entities
58

 Named entity:

 Anything you can refer
to by a proper name

 i.e. not all NP (chunks):

 high fuel prices

 Maybe longer NP than
just chunk:

 Bank of America

 Find the phrases

 Classify them

Citing high fuel prices, [ORG United Airlines]

said [TIME Friday] it has increased fares by

[MONEY $6] per round trip on flights to

some cities also served by lower-cost

carriers. [ORG American Airlines], a unit of

[ORG AMR Corp.], immediately matched the

move, spokesman [PER Tim Wagner] said.

[ORG United], a unit of [ORG UAL Corp.],

said the increase took effect [TIME Thursday]

and applies to most routes where it

competes against discount carriers, such as

[LOC Chicago] to [LOC Dallas] and [LOC

Denver] to [LOC San Francisco].

Types of NE

 The set of types vary between different systems

 Which classes are useful depend on application

59

Ambiguities
60

Gazetteer

 Useful: List of names,

e.g.

 Gazetteer: list of

geographical names

 But does not remove all

ambiguities

 cf. example

61

Representation (IOB)
62

Feature-based NER

 Similar to tagging and chunking

 You will need features from several layers

 Features may include

 Words, POS-tags, Chunk-tags, Graphical prop.

 and more (See J&M, 3.ed)

63

Neural sequence labeling: NER

 We can use IOB-tags

 RNN

 Similarly to POS-

tagging

64

From J&M, 3.ed., 2019

Evaluation

 Have we found the correct NERs?

 Evaluate precision and recall as for chunking

 For the correctly identified NERs, have we labelled them correctly?

65

To be continued

66

