IN4080 - 2020 FALL
NATURAL LANGUAGE PROCESSING

Neural LMs, Recurrent networks, Sequence labeling

Lecture 12, 2 Nov.

Today

\square Feedforward neural networks (partly recap)
\square Recurrent networks
\square Information Extraction

Today

\square Feedforward neural networks (partly recap)
\square Model
\square Training
\square Computational graphs
\square Neural Language Models
\square Recurrent networks

- Information Extraction

Feed forward network

\square An input layer
\square An output layer: the predictions
\square One or more hidden layers
\square Connections from one layer to the next (from left to right)
\square A weight at each connection

Input Layer

The hidden nodes

\square Each hidden node is like a small logistic regression:
\square First sum of weighted inputs :
$\square \mathrm{z}=\sum_{i=0}^{m} w_{i} x_{i}=\boldsymbol{w} \cdot \boldsymbol{x}$

- where $x=1$ and $w_{0}=b$, bias
- alternatively, $\mathrm{z}=\sum_{i=1}^{m} w_{i} x_{i}+b$
\square Then the result is run through an activation function, e.g. σ
$\square y=\sigma(z)=\frac{1}{1+e^{-\vec{w} \cdot \vec{x}}}$

It is the non-linearity of the activation function which makes it possible for MLP to predict non-linear decision boundaries

The output layer

Alternatives
\square Regression:
\square One node
\square No activation function
\square Binary classifier:
\square One node
\square Logistic activation function
\square Multinomial classifier
\square Several nodes
\square Softmax
$\square+$ more alternatives

Input Layer

Forward

Applying the network:\square Start with the input vector
\square Run it step-by-step through the network

Input Layer
$W \mathbf{x}=\left[\begin{array}{rrlr}w_{1,1} & w_{1,2} & \cdots & w_{1, n} \\ \hline w_{2,1} & w_{2,2} & \cdots & w_{2, n} \\ \hline \vdots & \vdots & \ddots & \vdots \\ w_{m, 1} & w_{m, 2} & \cdots & w_{m, n}\end{array}\right]\left[\left[\begin{array}{r}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]+\left[\begin{array}{r}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right]=\left[\begin{array}{r}z_{1} \\ z_{2} \\ \vdots \\ z_{m}\end{array}\right]=\mathbf{z}\right.$
\square Each layer can be considered a vector
\square The connections between the layers: a matrix
\square Running it through the connections: matrix multiplication

Input Layer

Example network:
$\square \boldsymbol{h}=\sigma(W \boldsymbol{x}+b)$
$\mathbf{z}=U \boldsymbol{h}$
$\boldsymbol{y}=\operatorname{softmax}(\mathbf{z})$

Today

\square Feedforward neural networks (partly recap)
\square Model

- Training
\square Computational graphs
\square Neural Language Models
\square Recurrent networks
- Information Extraction

Learning in neural networks

\square Introduce a loss function: $L(\widehat{\boldsymbol{y}}, \boldsymbol{y})$
\square tells something about the difference between $\widehat{\boldsymbol{y}}$ and \boldsymbol{y}
\square Update w_{i} according to how much it contributes to the loss
$\square w_{i}: w_{i} \leftarrow w_{i}-\eta \frac{\partial}{\partial w_{i}} L(\widehat{\boldsymbol{y}}, \boldsymbol{y})$
\square Calculate the partial derivatives using the chain rule $\frac{\partial}{\partial w_{i}} L(\widehat{\boldsymbol{y}}, \boldsymbol{y})$
\square "Follow the network backwards collecting partial derivaties along the path"

Example: Logistic regression as a network

$\square \mathrm{Z}=\sum_{i=0}^{m} w_{i} x_{i}=w \cdot \boldsymbol{x}$
$\square \hat{y}=\sigma(z)=\frac{1}{1+e^{-z}}$
$\square \frac{\partial}{\partial \widehat{w_{i}}} L_{C E}=\frac{\partial}{\partial \hat{y}} L_{C E} \times \frac{\partial \hat{y}}{\partial z} \times \frac{\partial z}{\partial w_{i}}$

Learning in multi-layer networks

\square If N is the output layer, calculate the error terms δ_{j}^{N} as before from the loss and the activation function at each node N_{j}
\square If M is a hidden layer: Calculate the error term at the nodes combining
\square A weighted sum of the error terms at layer N
\square The derivative of the activation function
$\square \delta_{i}^{M}=\left(\sum_{j=1}^{n} w_{i, j} \delta_{j}^{N}\right) \frac{d x_{i}}{d z_{i}}$

Learning in multi-layer networks

\square By repeating the process, we get error terms at all nodes in all the hidden layers.
\square The update of the weights between the layers can be done as before:
$\square w_{i, j}=w_{i, j}-x_{i} \delta_{j}^{N}$
\square where x_{i} is the value going out of node M_{i}

Beware: We have here used $w_{i, j}$ for the weight connecting node i and node j, while Jurafsky and Martin uses $w_{j, i}$ for this edge.

Alternative activation functions

Footnote

Equation (5.35) is wrong. It should have been something like

$$
\frac{\partial L_{C E}}{\partial w_{k, i}}=-\left(1\{y=k\}-\frac{e^{W_{[k, j} \cdot \mathbf{x}+b_{k}}}{\sum_{j=1}^{K} e^{W_{[j,]} \cdot \mathbf{x}+b_{j}}}\right) x_{i}
$$

where $w_{k, i}$ is the weight on the edge from input node i to output node k, and $W_{[k, \cdot]}$ is row k in the weight matrix (written in numpy style, there might be better notations). We are assuming a similar representation as in chapter 9 , where vectors are represented as column matrices and the result of sending X through the weights are written $W X$.

The same equation also appears in chapter 7 as (7.17)

Today

\square Feedforward neural networks (partly recap)
\square Model
\square Training

- Computational graphs
\square Neural Language Models
\square Recurrent networks
- Information Extraction

Computational graphs

From J\&M,

3.ed., 2019

Figure 7.9 Computation graph for the function $L(a, b, c)=c(a+2 b)$, with values for input nodes $a=3, b=1, c=-2$, showing the forward pass computation of L.
\square A convenient tool for describing composite functions
\square And follow the partial derivatives backwards
\square There are tools that let us specify the computations at an high-level as graphs
\square In particular useful for "hiding" vectors, matrices, tensors

From J\&M,
3.ed., 2019

Figure 7.10 Computation graph for the function $L(a, b, c)=c(a+2 b)$, showing the backward pass computation of $\frac{\partial L}{\partial a}, \frac{\partial L}{\partial b}$, and $\frac{\partial L}{\partial c}$.

From J\&M, 3.ed., 2019

Unfortunately: Many mistakes in the indices in the drawing

Figure 7.11 Sample computation graph for a simple 2-layer neural net (= 1 hidden layer) with two input dimensions and 2 hidden dimensions.

How would you draw this if x has dim 100,000 and there are 3 million parameters (weights)?

Using vector notation

with two input dimensions and 2 hidden dimensions.

Or even simpler notation

with two input dimensions and 2 hidden dimensions.

Details on training

\square First round
\square Start with random weights.
Train the network.

- Test on dev data
\square Repeat:
\square You get a different result
\square Why?
\square Solution:
\square Run several rounds
- Repeat
\square Report mean and st.dev.
\square There are many hyperparameters that may be tuned
\square Example: embeddings
- Context window size
- Dimensions
- "Drop-out"
\square Drop-out
\square A way of regularization
\square Disregard som features during training
\square Different features for each round of training

Today

\square Feedforward neural networks (partly recap)
\square Model
\square Training

- Computational graphs
\square Neural Language Models
\square Recurrent networks
- Information Extraction

Neural NLP

\square (Multi-layered) neural networks
\square Using embeddings as word representations

Example: Neural language model (k-gram)
$\square P\left(w_{i} \mid w_{i-k}^{i-1}\right)$
\square Use embeddings for representing the $w_{i}-s$
\square Use neural network for estimating $P\left(w_{i} \mid w_{i-k}^{i-1}\right)$

Pretrained embeddings

\square The last slide uses pretrained embeddings
\square Trained with some method, SkipGram, CBOW, Glove, ...
\square On some specific corpus

- Can be downloaded from the web
\square Pretrained embeddings can aslo be the input to other tasks, e.g. text classification
\square The task of neural language modeling was also the basis for training the embeddings

Or simpler notation

Training the embeddings

\square Alternatively we may start with one-hot representations of words and train the embeddings as the first layer in our models (=the way we trained the embeddings)
\square If the goal is a task different from language modeling, this may result in embeddings better suited for the specific tasks.
\square We may even use two set of embeddings for each word - one pretrained and one which is trained during the task.

Today

\square Feedforward neural networks
\square Recurrent networks
\square Model
\square Language Model
\square Sequence Labeling
\square Information Extraction

Recurrent neural nets

\square Model sequences/temporal phenomena
\square A cell may send a signal back to itself - at the next moment in time

Forward

\square Each U, V and W are edges with weights
$\square x_{1}, x_{2}, \ldots, x_{n}$ is the input sequence
\square Forward:

1. Calculate h_{1} from h_{0} and
2. Calvculate y_{1} from h_{1}.
3. Calculate h_{i} from h_{i-1} and x_{i}, and y_{i} from i, for $i=1, \ldots, n$

Forward

$\square \boldsymbol{h}_{t}=g\left(U \boldsymbol{h}_{t-1}+W \boldsymbol{x}_{t}\right)$
$\square \boldsymbol{y}_{t}=f\left(V \boldsymbol{h}_{t}\right)$

Training

\square At each output node:
\square Calculate the loss and the

- δ-term
\square Backpropagate the error, e.g.
\square the δ-term at h_{2} is calculated
- from the δ-term at h_{3} by U and
\square the δ-term at y_{2} by V
\square Update
$\square \mathrm{V}$ from the δ-terms at the y_{i}-s and
$\square \mathrm{U}$ and W from the δ-terms at the h_{i}-s

Remark

\square J\&M, 3. ed., 2019, sec 9.1.2 explain this at a high-level using vectors and matrices, OK
\square The formulas, however, are not correct:
\square Describing derivatives of matrices and vectors demand a little more care, e.g. one has to transpose matrices
$\square \mathrm{It}$ is beyond this course to explain how this can be done in detail
\square But you should be able to do the actual calculations if you stick to the entries of the vectors and matrices, as we did above (ch. 7).

Today

\square Feedforward neural networks
\square Recurrent networks
\square Model

- Language Model
\square Sequence Labeling
\square Information Extraction

RNN Language model

$\square \hat{y}=P\left(w_{n} \mid w_{1}^{n-1}\right)=$ $\operatorname{softmax}\left(V \boldsymbol{h}_{n}\right)$
\square In principle:
\square unlimited history
\square a word depends on all preceding words
\square The word w_{i} is represented by an embedding
\square or a one-hot and the embedding is made by the LM

Autoregressive generation

\square Generated by probabilities:
\square Choose word in accordance with prob.distribution
Part of more complex models
\square Encoder-decoder models

- Translation

Today

\square Feedforward neural networks
\square Recurrent networks
\square Model
\square Language Model
\square Sequence Labeling

- Information Extraction

Neural sequence labeling: tagging

FIgure 98 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained word embeddings serve as inputs and a softmax layer prowides a probability distribution over the part-of-speech tags as output at each time step.

Sequence labeling

\square Actual models for sequence labeling, e.g. tagging, are more complex
\square For example, that it may take words after the tag into consideration.

Today

\square Feedforward neural networks (partly recap)
\square Recurrent networks
\square Information extraction, IE
\square Chunking
\square Named entity recognition
\square Next week: Relation extraction

IE basics

Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents. (Wikipedia)
\square Bottom-Up approach
\square Start with unrestricted texts, and do the best you can
\square The approach was in particular developed by the Message Understanding Conferences (MUC) in the 1990s
\square Select a particular domain and task

Steps

From NLTK

Some example systems

\square Stanford core nlp: http:/ /corenlp.run/
\square SpaCy (Python): https://spacy.io/docs/api/
\square OpenNLP (Java): https://opennlp.apache.org/docs/
\square GATE (Java): https://gate.ac.uk/
\square UDPipe: http:/ /ufal.mff.cuni.cz/udpipe
\square Online demo: http://lindat.mff.cuni.cz/services/udpipe/

Today

\square Feedforward neural networks (partly recap)
\square Recurrent networks
\square Information extraction, IE

- Chunking
\square Named entity recognition
\square Next week: Relation extraction

Next steps

\square Chunk together words to phrases

NP-chunks

```
[ The/DT market/NN ] for/IN
[ system-management/NN software/NN ] for/IN
[ Digital/NNP ]
[ 's/POS hardware/NN ] is/VBZ fragmented/JJ enough/RB that/IN
[ a/DT giant/NN ] such/JJ as/IN
[ Computer/NNP Associates/NNPS ] should/MD do/VB well/RB there/RB ./.
```

\square Exactly what is an NP-chunk?
\square It is an NP
\square But not all NPs are chunks
\square Flat structure: no NP-chunk is part of another NP chunk
\square Maximally large
\square Opposing restrictions

Regular Expression Chunker

\square Input POS-tagged sentences
\square Use a regular expression over POS to identify NP-chunks
\square NLTK example:
\square It inserts parentheses

```
grammar = r""|
    NP: {<DT|PP\$>?<JJ>*<NN>}
    {<NNP>+}
```


IOB-tags

W e	S	a	w		h	e	y	e	1	l	0	W	d	0	g
PRP	$\begin{gathered} \text { VBD } \\ 0 \end{gathered}$			$\begin{gathered} \text { DT } \\ \text { B-NP } \end{gathered}$			$\begin{gathered} \mathrm{JJ} \\ \mathrm{I}-\mathrm{NP} \end{gathered}$						$\begin{gathered} \mathrm{NN} \\ \mathrm{I}-\mathrm{NP} \end{gathered}$		
B-NP															

\square B-NP: First word in NP
\square I-NP: Part of NP, not first word
\square O: Not part of NP (phrase)
\square Properties
\square One tag per token
\square Unambiguous
\square Does not insert anything in the text itself

Assigning IOB-tags

W e	s a w	t h e				
PRP	VBD	DT				
B-NP	0	B-NP				

\square The process can be considered a form for tagging
\square POS-tagging: Word to POS-tag

- IOB-tagging: POS-tag to IOB-tag
\square But one may in addition use additional features, e.g. words
\square Can use various types of classifiers
\square NLTK uses a MaxEnt Classifier (=LogReg, but the implementation is slow)
\square We can modify along the lines of mandatory assignment 2, using scikit-learn

Figure 11.8 A sequence model for chunking. The chunker slides a context window over the sentence, classifying words as it proceeds. At this point, the classifier is attempting to label flight, using features like words, embeddings, part-of-speech tags and previously assigned chunk tags.

Evaluating (IOB-)chunkers

$\mathrm{cp}=$ nltk.RegexpParser("")
test_sents = conll ('test', chunks=['NP'])
\square IOB Accuracy: 43.4\%
\square Precision: 0.0\%
\square Recall: 0.0\%
\square F-Measure: 0.0\%
\square What do we evaluate?
\square IOB-tags? or

- Whole chunks?
- Yields different results
\square For IOB-tags:
\square Baseline:
- majority class O ,
- yields > 33\%
\square Whole chunks:
\square Which chunks did we find?
\square Harder
Lower numbers

Evaluating (IOB-)chunkers

cp = nltk.RegexpParser("")
test_sents = conll ('test', chunks $=\left[\right.$ ' $\left.N P^{\prime}\right]$)

IOB Accuracy: 43.4\%
\square Precision: 0.0\%
\square Recall: 0.0\%
\square F-Measure: 0.0\%
>> cp = nltk.RegexpParser(
r"NP: $\{<[C D J N P] . *>+\} ")$
\square IOB Accuracy: 87.7\%
\square Precision: 70.6\%
\square Recall: 67.8\%
\square F-Measure: 69.2\%

Today

\square Feedforward neural networks (partly recap)
\square Recurrent networks
\square Information extraction, IE
\square Chunking
\square Named entity recognition
\square Next week: Relation extraction, 5 different ways

Named entities

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [Chicago] to [Dallas] and [Denver] to [San Francisco].
\square Named entity:
\square Anything you can refer to by a proper name
\square i.e. not all NP (chunks): - high fuel prices
\square Maybe longer NP than just chunk:

- Bank of America

Find the phrases
\square Classify them

Types of NE

Type	Tag	Sample Categories
People	PER	Individuals, fictional characters, small groups
Organization	ORG	Companies, agencies, political parties, religious groups, sports teams
Location	LOC	Physical extents, mountains, lakes, seas
Geo-Political Entity	GPE	Countries, states, provinces, counties
Facility	FAC	Bridges, buildings, airports
Vehicles	VEH	Planes, trains, and automobiles

\square The set of types vary between different systems
\square Which classes are useful depend on application

Ambiguities

Name	Possible Categories
Washington	Person, Location, Political Entity, Organization, Facility
Downing St.	Location, Organization
IRA	Person, Organization, Monetary Instrument
Louis Vuitton	Person, Organization, Commercial Product

[PERS Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law. The [FAC Washington] had proved to be a leaky ship, every passage I made...

Gazetteer

\square Useful: List of names, e.g.
\square Gazetteer: list of geographical names
\square But does not remove all ambiguities
\square cf. example

Representation (IOB)

Words	IOB Label	IO Label
American	B-ORG	I-ORG
Airlines	I-ORG	I-ORG
,	0	0
a	0	0
unit	0	0
of	0	0
AMR	B-ORG	I-ORG
Corp.	I-ORG	I-ORG
,	0	0
immediately	0	0
matched	0	0
the	0	0
move	0	0
,	0	0
spokesman	0	0
Tim	B-PER	I-PER
Wagner	I-PER	I-PER
said	0	0
.	0	0

Figure 17.4 Named entity tagging as a sequence model, showing IOB and IO encodings.

Feature-based NER

\square Similar to tagging and chunking
\square You will need features from several layers
\square Features may include

- Words, POS-tags, Chunk-tags, Graphical prop.
- and more (See J\&M, 3.ed)

Neural sequence labeling: NER

Figure 988 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained word embeddings serve as inputs and a softmax layer provides a probability distribution over the part-of-speech tags as output ateach time step.
\square We can use lOB-tags
\square RNN
\square Similarly to POStagging

Evaluation

\square Have we found the correct NERs?
\square Evaluate precision and recall as for chunking
\square For the correctly identified NERs, have we labelled them correctly?

