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Lecture 12, 2 Nov.

Neural LMs, Recurrent networks, Sequence labeling
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Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information Extraction
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 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction
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Feed forward network

 An input layer

 An output layer: the predictions

 One or more hidden layers

 Connections from one layer to 

the next (from left to right)

 A weight at each connection
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The hidden nodes

 Each hidden node is like a small logistic 
regression:

 First sum of weighted inputs :

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 where 𝑥 = 1 and 𝑤0 = 𝑏, bias

 alternatively, z = σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 + 𝑏

 Then the result is run through an 
activation function, e.g. σ

 𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥

6

x1

x2

x3

1

Σ

w0 (=b in J&M)
w1

w2

w3

z y

It is the non-linearity of the activation 

function which makes it possible for MLP to 

predict non-linear decision boundaries



The output layer

Alternatives 

 Regression: 

 One node

 No activation function

 Binary classifier:

 One node

 Logistic activation function

 Multinomial classifier

 Several nodes

 Softmax

 + more alternatives
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Forward

 Applying the network:

 Start with the input vector

 Run it step-by-step through the

network
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Forward

 Each layer can be considered a vector

 The connections between the layers: 
a matrix

 Running it through the connections: 
matrix multiplication

Example network:

 𝒉 = 𝜎 𝑊𝒙 + 𝑏

 𝒛 = 𝑈𝒉

 𝒚 = softmax(𝒛)
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Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖
Marsland, and Goldberg (IN5550): 𝒉 = 𝜎 𝒙𝑊 + 𝑏 , where 𝒙 is a row vector
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Learning in neural networks

 Introduce a loss function: 𝐿 ෝ𝒚 , 𝒚

 tells something about the difference between ෝ𝒚 and𝒚

 Update 𝑤𝑖 according to how much it contributes to the loss

𝑤𝑖: 𝑤𝑖 ← 𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚

 Calculate the partial derivatives using the chain rule
𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚

 "Follow the network backwards collecting partial derivaties along the path"
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Example: Logistic regression as a network

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 ො𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑧



𝜕

𝜕ෞ𝑤𝑖
𝐿𝐶𝐸 =

𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 ×

𝜕 ො𝑦

𝜕𝑧
×

𝜕𝑧

𝜕𝑤𝑖
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Learning in multi-layer networks
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 If N is the output layer, calculate the error 

terms 𝛿𝑗
𝑁 as before from the loss and the 

activation function at each node 𝑁𝑗
 If M is a hidden layer: Calculate the error 

term at the nodes combining

 A weighted sum of the error terms at layer N

 The derivative of the activation function

 𝛿𝑖
𝑀 = σ𝑗=1

𝑛 𝑤𝑖,𝑗𝛿𝑗
𝑁 𝑑𝑥𝑖

𝑑𝑧𝑖

 where 𝑥𝑖 = 𝜎(𝑧𝑖), where 𝑧𝑖 = σ(…)
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Learning in multi-layer networks
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 By repeating the process, we get error 

terms at all nodes in all the hidden layers.

 The update of the weights between the 

layers can be done as before:

 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝑥𝑖𝛿𝑗
𝑁

 where 𝑥𝑖 is the value going out of node 𝑀𝑖
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N4
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𝑤1,1

𝑤1,3

𝑤1,4

Beware: We have here used 𝑤𝑖,𝑗 for the weight

connecting node 𝑖 and node 𝑗, while Jurafsky and 

Martin uses 𝑤𝑗,𝑖 for this edge.
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Alternative activation functions

 There are alternative activation functions

 tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

 ReLU is the preferred method in hidden layers 
in deep networks

15



Footnote
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 Feedforward neural networks (partly recap)
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 Training
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 Neural Language Models

 Recurrent networks

 Information Extraction
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Computational graphs

 A convenient tool for describing composite functions

 And follow the partial derivatives backwards

 There are tools that let us specify the computations at an high-level as graphs

 In particular useful for "hiding" vectors, matrices, tensors
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From J&M, 

3.ed., 2019
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From J&M, 

3.ed., 2019
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How would you draw this if x has dim 100,000 and there are 

3 million parameters (weights)?

From J&M, 

3.ed., 2019

Unfortunately:

Many mistakes 

in the indices in 

the drawing



Using vector notation
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𝒙

𝑊[1] 𝑊[2]𝒃[1] 𝒃[2]

𝒖[1] =
𝑊[1]𝒙

𝒛[1] =
𝒖[1]+𝒃[1]

𝒙[2] =

𝑅𝑒𝑙𝑈(𝒛 1 )
𝒖[1] =
𝑊[1]𝒙

𝒛[1] =
𝒖[1]+𝒃[1]

𝒂[2] =

σ(𝒛 1 )
𝐿(𝒂 2 , 𝑦)



Or even simpler notation
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𝒙

𝑊[1] 𝑊[2]𝒃[1] 𝒃[2]

𝑑𝑜𝑡 + 𝑅𝑒𝑙𝑈 𝑑𝑜𝑡 + σ 𝐿(_ , 𝑦)



Details on training

 First round

 Start with random weights.

 Train the network.

 Test on dev data

 Repeat:

 You get a different result

 Why?

 Solution:

 Run several rounds

 Repeat 

 Report mean and st.dev.

 There are many hyper-
parameters that may be tuned

 Example: embeddings
 Context window size

 Dimensions

 "Drop-out"

 Drop-out

 A way of regularization

 Disregard som features during 
training

 Different features for each round 
of training
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Neural NLP

 (Multi-layered) neural networks

 Using embeddings as word 

representations

 Example: Neural language 

model (k-gram)

 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 Use embeddings for 

representing the 𝑤𝑖-s

 Use neural network for 

estimating 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

25
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Pretrained embeddings

 The last slide uses pretrained embeddings

 Trained with some method, SkipGram, CBOW, Glove, …

 On some specific corpus

 Can be downloaded from the web

 Pretrained embeddings can aslo be the input to other tasks, e.g. text 

classification

 The task of neural language modeling was also the basis for training 

the embeddings
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Or simpler notation
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𝒙2

E W 𝒃[1] 𝒃[2]

𝑑𝑜𝑡 𝑐𝑜𝑛𝑐𝑎𝑡 𝑅𝑒𝑙𝑈𝑑𝑜𝑡 + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝒙𝟑

𝒙𝟏

𝑑𝑜𝑡

𝑑𝑜𝑡

U

𝑑𝑜𝑡 +



Training the embeddings

 Alternatively we may start with one-hot representations of words and 

train the embeddings as the first layer in our models (=the way we 

trained the embeddings)

 If the goal is a task different from language modeling, this may result 

in embeddings better suited for the specific tasks.

 We may even use two set of embeddings for each word – one 

pretrained and one which is trained during the task.

29



Recurrent networks
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Today

 Feedforward neural networks 

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Information Extraction
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Recurrent  neural nets

 Model sequences/temporal phenomena

 A cell may send a signal back to itself – at the next moment in time

32

https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing 

during time



Forward

 Each U, V and W are edges 

with weights

 𝑥1, 𝑥2, … , 𝑥𝑛 is the input 

sequence

 Forward: 

1. Calculate ℎ1 from ℎ0 and .

2. Calvculate 𝑦1 from ℎ1.

3. Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖, 
and 𝑦𝑖 from 𝑖, for 𝑖 = 1,… , 𝑛
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From J&M, 3.ed., 2019



Forward

 𝒉𝑡 = 𝑔 𝑈𝒉𝑡−1 +𝑊𝒙𝑡
 𝒚𝑡 = 𝑓 𝑉𝒉𝑡
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Training

 At each output node:

 Calculate the loss and the

 𝛿-term

 Backpropagate the error, e.g.

 the 𝛿-term at ℎ2is calculated

 from the 𝛿-term at ℎ3 by U and 

 the 𝛿-term at 𝑦2 by V

 Update 

 V from the 𝛿-terms at the 𝑦𝑖-s and

 U and W from the 𝛿-terms at the 
ℎ𝑖-s
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Remark

 J&M, 3. ed., 2019, sec 9.1.2 

explain this at a high-level 

using vectors and matrices, OK

 The formulas, however, are not 

correct:

 Describing derivatives of 

matrices and vectors demand a 

little more care, e.g. one has to 

transpose matrices

 It is beyond this course to 

explain how this can be done in 

detail

 But you should be able to do 

the actual calculations if you 

stick to the entries of the 

vectors and matrices, as we did 

above (ch. 7).
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RNN Language model

 ො𝑦 = 𝑃 𝑤𝑛 𝑤1
𝑛−1 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

 In principle:

 unlimited history

 a word depends on all preceding 
words

 The word 𝑤𝑖 is represented by an 
embedding

 or a one-hot and the embedding is 
made by the LM

38
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Autoregressive generation

 Generated by 

probabilities:

 Choose word in 

accordance with 

prob.distribution

 Part of more complex 

models

 Encoder-decoder 

models

 Translation

39
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Neural sequence labeling: tagging
41
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Sequence labeling

 Actual models for sequence labeling, e.g. tagging, are more complex

 For example, that it may take words after the tag into consideration.
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Information extraction
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Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named entity recognition

 Next week: Relation extraction
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IE basics

 Bottom-Up approach

 Start with unrestricted texts, and do the best you can

 The approach was in particular developed by the Message Understanding 
Conferences (MUC) in the 1990s

 Select a particular domain and task

45

Information extraction (IE) is the task of 

automatically extracting structured information 

from unstructured and/or semi-structured 

machine-readable documents. (Wikipedia)



Steps
46

(Some appro-

aches do these 

steps in a 

different order 

– or 

simultaneously)
From NLTK



Some example systems
47

 Stanford core nlp: http://corenlp.run/

 SpaCy (Python): https://spacy.io/docs/api/

 OpenNLP (Java): https://opennlp.apache.org/docs/

 GATE (Java): https://gate.ac.uk/

 UDPipe: http://ufal.mff.cuni.cz/udpipe

 Online demo: http://lindat.mff.cuni.cz/services/udpipe/

http://corenlp.run/
https://spacy.io/docs/api/
https://opennlp.apache.org/docs/
https://gate.ac.uk/
http://ufal.mff.cuni.cz/udpipe
http://lindat.mff.cuni.cz/services/udpipe/
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 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named entity recognition

 Next week: Relation extraction
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Next steps

 Chunk together words to phrases
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NP-chunks

 Exactly what is an NP-chunk?

 It is an NP

 But not all NPs are chunks

 Flat structure: no NP-chunk is part 
of another NP chunk

 Maximally large

 Opposing restrictions

50

[ The/DT market/NN ] for/IN 

[ system-management/NN software/NN ] for/IN 

[ Digital/NNP ] 

[ 's/POS hardware/NN ] is/VBZ fragmented/JJ enough/RB that/IN 

[ a/DT giant/NN ] such/JJ as/IN 

[ Computer/NNP Associates/NNPS ] should/MD do/VB well/RB there/RB ./.



Regular Expression Chunker

 Input POS-tagged sentences

 Use a regular expression over POS to identify NP-chunks

 NLTK example:

 It inserts parentheses

51

grammar = r"""
NP: {<DT|PP\$>?<JJ>*<NN>}

{<NNP>+} 
"""

http://www.nltk.org/book/ch07.html


IOB-tags

 B-NP: First word in NP

 I-NP: Part of NP, not first word

 O: Not part of NP (phrase)

 Properties

 One tag per token

 Unambiguous

 Does not insert anything in the 

text itself
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Assigning IOB-tags

 The process can be considered a form for tagging

 POS-tagging: Word to POS-tag

 IOB-tagging: POS-tag to IOB-tag

 But one may in addition use additional features, e.g. words 

 Can use various types of classifiers

 NLTK uses a MaxEnt Classifier (=LogReg, but the implementation is slow)

 We can modify along the lines of mandatory assignment 2, using scikit-learn
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J&M, 3. ed.



Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("") 

 test_sents = conll ('test', 
chunks=['NP']) 

 IOB Accuracy: 43.4%

 Precision: 0.0% 

 Recall: 0.0% 

 F-Measure: 0.0%

 What do we evaluate?

 IOB-tags? or

 Whole chunks?

 Yields different results

 For IOB-tags:

 Baseline: 
 majority class O, 

 yields > 33%

 Whole chunks:

 Which chunks did we find?

 Harder

 Lower numbers

55



Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("") 

 test_sents = conll ('test', 

chunks=['NP']) 

 IOB Accuracy: 43.4%

 Precision: 0.0% 

 Recall: 0.0% 

 F-Measure: 0.0%

>> cp = nltk.RegexpParser(

r"NP: {<[CDJNP].*>+}")

 IOB Accuracy:  87.7%

 Precision:     70.6%

 Recall:        67.8%

 F-Measure:     69.2%
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Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named entity recognition

 Next week: Relation extraction, 5 different ways
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Named entities
58

 Named entity:

 Anything you can refer 
to by a proper name

 i.e. not all NP (chunks):

 high fuel prices

 Maybe longer NP than 
just chunk:

 Bank of America

 Find the phrases

 Classify them

Citing high fuel prices, [ORG United Airlines] 

said [TIME Friday] it has increased fares by 

[MONEY $6] per round trip on flights to 

some cities also served by lower-cost 

carriers. [ORG American Airlines], a unit of 

[ORG AMR Corp.], immediately matched the 

move, spokesman [PER Tim Wagner] said. 

[ORG United], a unit of [ORG UAL Corp.], 

said the increase took effect [TIME Thursday] 

and applies to most routes where it 

competes against discount carriers, such as 

[LOC Chicago] to [LOC Dallas] and [LOC

Denver] to [LOC San Francisco].



Types of NE

 The set of types vary between different systems

 Which classes are useful depend on application
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Ambiguities
60



Gazetteer

 Useful: List of names, 

e.g.

 Gazetteer: list of 

geographical names

 But does not remove all 

ambiguities

 cf. example
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Representation (IOB)
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Feature-based NER

 Similar to tagging and chunking

 You will need features from several layers

 Features may include

 Words, POS-tags, Chunk-tags, Graphical prop.

 and more (See J&M, 3.ed)
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Neural sequence labeling: NER

 We can use IOB-tags

 RNN

 Similarly to POS-

tagging

64

From J&M, 3.ed., 2019



Evaluation

 Have we found the correct NERs?

 Evaluate precision and recall as for chunking

 For the correctly identified NERs, have we labelled them correctly? 
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To be continued
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