
IN4080 – 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 12, 2 Nov.

Neural LMs, Recurrent networks, Sequence labeling

2

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information Extraction

3

Today

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

4

Feed forward network

 An input layer

 An output layer: the predictions

 One or more hidden layers

 Connections from one layer to

the next (from left to right)

 A weight at each connection

5

1 1

The hidden nodes

 Each hidden node is like a small logistic
regression:

 First sum of weighted inputs :

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 where 𝑥 = 1 and 𝑤0 = 𝑏, bias

 alternatively, z = σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 + 𝑏

 Then the result is run through an
activation function, e.g. σ

 𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥

6

x1

x2

x3

1

Σ

w0 (=b in J&M)
w1

w2

w3

z y

It is the non-linearity of the activation

function which makes it possible for MLP to

predict non-linear decision boundaries

The output layer

Alternatives

 Regression:

 One node

 No activation function

 Binary classifier:

 One node

 Logistic activation function

 Multinomial classifier

 Several nodes

 Softmax

 + more alternatives

7

1 1

Forward

 Applying the network:

 Start with the input vector

 Run it step-by-step through the

network

8

1 1

Forward

 Each layer can be considered a vector

 The connections between the layers:
a matrix

 Running it through the connections:
matrix multiplication

Example network:

 𝒉 = 𝜎 𝑊𝒙 + 𝑏

 𝒛 = 𝑈𝒉

 𝒚 = softmax(𝒛)

9

1

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖
Marsland, and Goldberg (IN5550): 𝒉 = 𝜎 𝒙𝑊 + 𝑏 , where 𝒙 is a row vector

1 1

W Ux
Soft

max

Today

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

10

Learning in neural networks

 Introduce a loss function: 𝐿 ෝ𝒚 , 𝒚

 tells something about the difference between ෝ𝒚 and𝒚

 Update 𝑤𝑖 according to how much it contributes to the loss

𝑤𝑖: 𝑤𝑖 ← 𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚

 Calculate the partial derivatives using the chain rule
𝜕

𝜕𝑤𝑖
𝐿 ෝ𝒚 , 𝒚

 "Follow the network backwards collecting partial derivaties along the path"

11

Example: Logistic regression as a network

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 ො𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑧



𝜕

𝜕ෞ𝑤𝑖
𝐿𝐶𝐸 =

𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 ×

𝜕 ො𝑦

𝜕𝑧
×

𝜕𝑧

𝜕𝑤𝑖

12

x1

x2

x3

1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦

𝐿(ො𝑦, 𝑦)

Learning in multi-layer networks
13

 If N is the output layer, calculate the error

terms 𝛿𝑗
𝑁 as before from the loss and the

activation function at each node 𝑁𝑗
 If M is a hidden layer: Calculate the error

term at the nodes combining

 A weighted sum of the error terms at layer N

 The derivative of the activation function

 𝛿𝑖
𝑀 = σ𝑗=1

𝑛 𝑤𝑖,𝑗𝛿𝑗
𝑁 𝑑𝑥𝑖

𝑑𝑧𝑖

 where 𝑥𝑖 = 𝜎(𝑧𝑖), where 𝑧𝑖 = σ(…)

M2

M3

M0

N3

N1

N2

N4

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

𝛿1
𝑀

𝛿1
𝑁

𝛿2
𝑁

𝛿3
𝑁

𝛿4
𝑁

𝑥1𝑧1 M1

Learning in multi-layer networks
14

 By repeating the process, we get error

terms at all nodes in all the hidden layers.

 The update of the weights between the

layers can be done as before:

 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝑥𝑖𝛿𝑗
𝑁

 where 𝑥𝑖 is the value going out of node 𝑀𝑖

M1

M2

M3

M0

N3

N1

N2

N4

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

Beware: We have here used 𝑤𝑖,𝑗 for the weight

connecting node 𝑖 and node 𝑗, while Jurafsky and

Martin uses 𝑤𝑗,𝑖 for this edge.

𝛿2
𝑁

𝑥1

Alternative activation functions

 There are alternative activation functions

 tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

 ReLU is the preferred method in hidden layers
in deep networks

15

Footnote
16

JTL 2020

Today

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

17

Computational graphs

 A convenient tool for describing composite functions

 And follow the partial derivatives backwards

 There are tools that let us specify the computations at an high-level as graphs

 In particular useful for "hiding" vectors, matrices, tensors

18

From J&M,

3.ed., 2019

19

From J&M,

3.ed., 2019

20

How would you draw this if x has dim 100,000 and there are

3 million parameters (weights)?

From J&M,

3.ed., 2019

Unfortunately:

Many mistakes

in the indices in

the drawing

Using vector notation
21

𝒙

𝑊[1] 𝑊[2]𝒃[1] 𝒃[2]

𝒖[1] =
𝑊[1]𝒙

𝒛[1] =
𝒖[1]+𝒃[1]

𝒙[2] =

𝑅𝑒𝑙𝑈(𝒛 1)
𝒖[1] =
𝑊[1]𝒙

𝒛[1] =
𝒖[1]+𝒃[1]

𝒂[2] =

σ(𝒛 1)
𝐿(𝒂 2 , 𝑦)

Or even simpler notation
22

𝒙

𝑊[1] 𝑊[2]𝒃[1] 𝒃[2]

𝑑𝑜𝑡 + 𝑅𝑒𝑙𝑈 𝑑𝑜𝑡 + σ 𝐿(_ , 𝑦)

Details on training

 First round

 Start with random weights.

 Train the network.

 Test on dev data

 Repeat:

 You get a different result

 Why?

 Solution:

 Run several rounds

 Repeat

 Report mean and st.dev.

 There are many hyper-
parameters that may be tuned

 Example: embeddings
 Context window size

 Dimensions

 "Drop-out"

 Drop-out

 A way of regularization

 Disregard som features during
training

 Different features for each round
of training

23

Today

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

24

Neural NLP

 (Multi-layered) neural networks

 Using embeddings as word

representations

 Example: Neural language

model (k-gram)

 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 Use embeddings for

representing the 𝑤𝑖-s

 Use neural network for

estimating 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

25

26

From J&M,

3.ed., 2019

Pretrained embeddings

 The last slide uses pretrained embeddings

 Trained with some method, SkipGram, CBOW, Glove, …

 On some specific corpus

 Can be downloaded from the web

 Pretrained embeddings can aslo be the input to other tasks, e.g. text

classification

 The task of neural language modeling was also the basis for training

the embeddings

27

Or simpler notation
28

𝒙2

E W 𝒃[1] 𝒃[2]

𝑑𝑜𝑡 𝑐𝑜𝑛𝑐𝑎𝑡 𝑅𝑒𝑙𝑈𝑑𝑜𝑡 + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝒙𝟑

𝒙𝟏

𝑑𝑜𝑡

𝑑𝑜𝑡

U

𝑑𝑜𝑡 +

Training the embeddings

 Alternatively we may start with one-hot representations of words and

train the embeddings as the first layer in our models (=the way we

trained the embeddings)

 If the goal is a task different from language modeling, this may result

in embeddings better suited for the specific tasks.

 We may even use two set of embeddings for each word – one

pretrained and one which is trained during the task.

29

Recurrent networks

30

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Information Extraction

31

Recurrent neural nets

 Model sequences/temporal phenomena

 A cell may send a signal back to itself – at the next moment in time

32

https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing

during time

Forward

 Each U, V and W are edges

with weights

 𝑥1, 𝑥2, … , 𝑥𝑛 is the input

sequence

 Forward:

1. Calculate ℎ1 from ℎ0 and .

2. Calvculate 𝑦1 from ℎ1.

3. Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖,
and 𝑦𝑖 from 𝑖, for 𝑖 = 1,… , 𝑛

33

From J&M, 3.ed., 2019

Forward

 𝒉𝑡 = 𝑔 𝑈𝒉𝑡−1 +𝑊𝒙𝑡
 𝒚𝑡 = 𝑓 𝑉𝒉𝑡

34

From J&M, 3.ed., 2019

Training

 At each output node:

 Calculate the loss and the

 𝛿-term

 Backpropagate the error, e.g.

 the 𝛿-term at ℎ2is calculated

 from the 𝛿-term at ℎ3 by U and

 the 𝛿-term at 𝑦2 by V

 Update

 V from the 𝛿-terms at the 𝑦𝑖-s and

 U and W from the 𝛿-terms at the
ℎ𝑖-s

35

From J&M, 3.ed., 2019

Remark

 J&M, 3. ed., 2019, sec 9.1.2

explain this at a high-level

using vectors and matrices, OK

 The formulas, however, are not

correct:

 Describing derivatives of

matrices and vectors demand a

little more care, e.g. one has to

transpose matrices

 It is beyond this course to

explain how this can be done in

detail

 But you should be able to do

the actual calculations if you

stick to the entries of the

vectors and matrices, as we did

above (ch. 7).

36

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Information Extraction

37

RNN Language model

 ො𝑦 = 𝑃 𝑤𝑛 𝑤1
𝑛−1 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

 In principle:

 unlimited history

 a word depends on all preceding
words

 The word 𝑤𝑖 is represented by an
embedding

 or a one-hot and the embedding is
made by the LM

38

<s>

w1

w2

Autoregressive generation

 Generated by

probabilities:

 Choose word in

accordance with

prob.distribution

 Part of more complex

models

 Encoder-decoder

models

 Translation

39

From J&M, 3.ed., 2019

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Information Extraction

40

Neural sequence labeling: tagging
41

From J&M, 3.ed., 2019

Sequence labeling

 Actual models for sequence labeling, e.g. tagging, are more complex

 For example, that it may take words after the tag into consideration.

42

Information extraction

43

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named entity recognition

 Next week: Relation extraction

44

IE basics

 Bottom-Up approach

 Start with unrestricted texts, and do the best you can

 The approach was in particular developed by the Message Understanding
Conferences (MUC) in the 1990s

 Select a particular domain and task

45

Information extraction (IE) is the task of

automatically extracting structured information

from unstructured and/or semi-structured

machine-readable documents. (Wikipedia)

Steps
46

(Some appro-

aches do these

steps in a

different order

– or

simultaneously)
From NLTK

Some example systems
47

 Stanford core nlp: http://corenlp.run/

 SpaCy (Python): https://spacy.io/docs/api/

 OpenNLP (Java): https://opennlp.apache.org/docs/

 GATE (Java): https://gate.ac.uk/

 UDPipe: http://ufal.mff.cuni.cz/udpipe

 Online demo: http://lindat.mff.cuni.cz/services/udpipe/

http://corenlp.run/
https://spacy.io/docs/api/
https://opennlp.apache.org/docs/
https://gate.ac.uk/
http://ufal.mff.cuni.cz/udpipe
http://lindat.mff.cuni.cz/services/udpipe/

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named entity recognition

 Next week: Relation extraction

48

Next steps

 Chunk together words to phrases

49

NP-chunks

 Exactly what is an NP-chunk?

 It is an NP

 But not all NPs are chunks

 Flat structure: no NP-chunk is part
of another NP chunk

 Maximally large

 Opposing restrictions

50

[The/DT market/NN] for/IN

[system-management/NN software/NN] for/IN

[Digital/NNP]

['s/POS hardware/NN] is/VBZ fragmented/JJ enough/RB that/IN

[a/DT giant/NN] such/JJ as/IN

[Computer/NNP Associates/NNPS] should/MD do/VB well/RB there/RB ./.

Regular Expression Chunker

 Input POS-tagged sentences

 Use a regular expression over POS to identify NP-chunks

 NLTK example:

 It inserts parentheses

51

grammar = r"""
NP: {<DT|PP\$>?<JJ>*<NN>}

{<NNP>+}
"""

http://www.nltk.org/book/ch07.html

IOB-tags

 B-NP: First word in NP

 I-NP: Part of NP, not first word

 O: Not part of NP (phrase)

 Properties

 One tag per token

 Unambiguous

 Does not insert anything in the

text itself

52

Assigning IOB-tags

 The process can be considered a form for tagging

 POS-tagging: Word to POS-tag

 IOB-tagging: POS-tag to IOB-tag

 But one may in addition use additional features, e.g. words

 Can use various types of classifiers

 NLTK uses a MaxEnt Classifier (=LogReg, but the implementation is slow)

 We can modify along the lines of mandatory assignment 2, using scikit-learn

53

54

J&M, 3. ed.

Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("")

 test_sents = conll ('test',
chunks=['NP'])

 IOB Accuracy: 43.4%

 Precision: 0.0%

 Recall: 0.0%

 F-Measure: 0.0%

 What do we evaluate?

 IOB-tags? or

 Whole chunks?

 Yields different results

 For IOB-tags:

 Baseline:
 majority class O,

 yields > 33%

 Whole chunks:

 Which chunks did we find?

 Harder

 Lower numbers

55

Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("")

 test_sents = conll ('test',

chunks=['NP'])

 IOB Accuracy: 43.4%

 Precision: 0.0%

 Recall: 0.0%

 F-Measure: 0.0%

>> cp = nltk.RegexpParser(

r"NP: {<[CDJNP].*>+}")

 IOB Accuracy: 87.7%

 Precision: 70.6%

 Recall: 67.8%

 F-Measure: 69.2%

56

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named entity recognition

 Next week: Relation extraction, 5 different ways

57

Named entities
58

 Named entity:

 Anything you can refer
to by a proper name

 i.e. not all NP (chunks):

 high fuel prices

 Maybe longer NP than
just chunk:

 Bank of America

 Find the phrases

 Classify them

Citing high fuel prices, [ORG United Airlines]

said [TIME Friday] it has increased fares by

[MONEY $6] per round trip on flights to

some cities also served by lower-cost

carriers. [ORG American Airlines], a unit of

[ORG AMR Corp.], immediately matched the

move, spokesman [PER Tim Wagner] said.

[ORG United], a unit of [ORG UAL Corp.],

said the increase took effect [TIME Thursday]

and applies to most routes where it

competes against discount carriers, such as

[LOC Chicago] to [LOC Dallas] and [LOC

Denver] to [LOC San Francisco].

Types of NE

 The set of types vary between different systems

 Which classes are useful depend on application

59

Ambiguities
60

Gazetteer

 Useful: List of names,

e.g.

 Gazetteer: list of

geographical names

 But does not remove all

ambiguities

 cf. example

61

Representation (IOB)
62

Feature-based NER

 Similar to tagging and chunking

 You will need features from several layers

 Features may include

 Words, POS-tags, Chunk-tags, Graphical prop.

 and more (See J&M, 3.ed)

63

Neural sequence labeling: NER

 We can use IOB-tags

 RNN

 Similarly to POS-

tagging

64

From J&M, 3.ed., 2019

Evaluation

 Have we found the correct NERs?

 Evaluate precision and recall as for chunking

 For the correctly identified NERs, have we labelled them correctly?

65

To be continued

66

