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Today

Feedforward neural networks

Neural Language Models
Recurrent networks
Information Extraction
Named Entity Recognition

Evaluation



Last week

Feedforward neural networks (partly recap)
Model
Training
Computational graphs

Neural Language Models



Neural NLP

(Multi-layered) neural networks

Using embeddings as word
representations

Example: Neural language
model (k-gram)
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Pretrained embeddings

The last slide uses pretrained embeddings
Trained with some method, SkipGram, CBOW, Glove, ...

On some specific corpus

Can be downloaded from the web
Pretrained embeddings can aslo be the input to other tasks, e.g. text
classification
The task of neural language modeling was also the basis for training

the embeddings



Training the embeddings

Alternatively we may start with one-hot representations of words and

train the embeddings as the first layer in our models (=the way we
trained the embeddings)

If the goal is a task different from language modeling, this may result
in embeddings better suited for the specific tasks.

We may even use two set of embeddings for each word — one
pretrained and one which is trained during the task.



Computational graph
o
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- Recurrent networks



Today

Recurrent networks
Model
Language Model
Sequence Labeling

Advanced architecture



Recurrent neural nets
T

-1 Model sequences/temporal phenomena

7 A cell may send a signal back to itself — at the next moment in time

I Unfold l I I
v C

U fu
.

The processing
. . . during time

https:/ /en.wikipedia.org /wiki/Recurrent_neural_network




Forward

Each U, V and W are edges
with weights (matrices)
X1,X3, ..., Xy is the input
sequence
Forward:
Calculate hy from hy and x;.
Calculate y; from h;.

Calculate h; from h;_; and x;,
and y; from i, fori =1, ...,n



Forward
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From J&M, 3.ed., 2019

o hy = g(Uhi_y + Wxy)
0 ye =f(Vhy)
-1 g and are activation functions

71 (There are also bias which we
didn't include in the formulas)



Training

At each output node:
Calculate the loss and the

C—ml O-term

S— — 'y Backpropagate the error, e.g.

the 0-term at h,is calculated
) from the §-term at h3 by U and
the 6-term at y, by V

Update
V from the §-terms at the y;-s and

U and W from the §-terms at the
hi-S




Remark

J&M, 3. ed., 2019, sec 92.1.2
explain this at a high-level
using vectors and matrices, OK

The formulas, however, are not
correct:

Describing derivatives of
matrices and vectors demand a
little more care, e.g. one has to
transpose matrices

It is beyond this course to
explain how this can be done in
detail

But you should be able to do
the actual calculations if you
stick to the entries of the
vectors and matrices, as we did

above (ch. 7).



Today

Recurrent networks
Model
Language Model
Sequence Labeling

Advanced architecture



RNN Language model
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Autoregressive generation
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Today

Recurrent networks
Model
Language Model
Sequence Labeling
Sequence Labeling

Advanced architecture



Neural sequence labeling: tagging
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Part-of-spesch tagging as sequence labeling with a simple RNN. Pr-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over

the part-of-speech tags as cutput at each time step.

From J&M, 3.ed., 2019



Sequence labeling

Actual models for sequence labeling, e.g. tagging, are more complex

For example, that it may take words after the tag into consideration.



Today

Recurrent networks
Model
Language Model
Sequence Labeling

Advanced architecture



Stacked RNN

Can yield better
results than single-

e layers

Reason?

RNN 2

Higher-layers of
abstraction

RNN 1

similar to image

processing

Xq IR D ¢ X3 )

Ty

X ) (convolutional nets)

10T Rl  Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.




Bidirectional RNN
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10T CRMEE A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

From J&M, 3.ed., 2019

1 Example: Tagger

11 Considers both
preceding and
following words



LSTM

Problems for RNN

Keep track of distant information

Vanishing gradient

During backpropagation going
backwards through several layers,
the gradient approaches O

Long Short-Term Memory

An advanced architecture with
additional layers and weights

Not consider the details here
Bi-LSTM (Binary LSTM)

Popular standard architecture in
NLP



- Information extraction



Today

I I,
0 Feedforward neural networks (partly recap)
0 Recurrent networks

0 Information extraction, |E
= Chunking

O Named Entity Recognition

O Evaluation



IE basics
T

Information extraction (IE) is the task of
automatically extracting structured information

from unstructured and/or semi-structured

machine-readable documents. (Wikipedia)

11 Bottom-Up approach
0 Start with unrestricted texts, and do the best you can

o1 The approach was in particular developed by the Message Understanding

Conferences (MUC) in the 1990s

11 Select a particular domain and task



A typical pipeline

raw text
(string)

sentence
segmentation

sentences
(list of strings)

tokenization

tokenized sentences
(list of lists of strings)

part of speech
tagging

pos-tagged sentences
(list of lists of tuples)

entity

detection

chunked sentences
(list of trees)

relation
detection

relations
(list of tuples)

From NLTK




Some example systems

32—
o Stanford core nlp: hitp:/ /corenlp.run/

0 SpaCy (Python): hitps:/ /spacy.io/docs /api/
o OpenNLP (Java): hitps:/ /opennlp.apache.org /docs/

0 GATE (Java): htips:/ /gate.cculk/
O https: / /cloud.gate.ac.uk /shopfront

o UDPipe: hitp:/ /utal.mif.cunicz /udpipe
01 Online demo: hitp:/ /lindat.mit.cunicz /services /udpipe/

1 Collection of tools for NER:

O https: / /www.clarin.eu/resource-families /tools-named-entity-recognition



http://corenlp.run/
https://spacy.io/docs/api/
https://opennlp.apache.org/docs/
https://gate.ac.uk/
https://cloud.gate.ac.uk/shopfront
http://ufal.mff.cuni.cz/udpipe
http://lindat.mff.cuni.cz/services/udpipe/
https://www.clarin.eu/resource-families/tools-named-entity-recognition

Today

I
0 Feedforward neural networks (partly recap)
0 Recurrent networks

o Information extraction, |E
o Chunking

O Named Entity Recognition

O Evaluation



Next steps

W e S a'w t h e y el 1 o w d ol|g
PRP VBD DT J] NN
NP NP

Chunk together words to phrases




NP-chunks

' The /DT market/NN ] for/IN

| system-management /NN software /NN ] for /IN

 Digital /NNP ]

's/POS hardware /NN ] is/VBZ fragmented /JJ enough/RB that/IN

' a/DT giant/NN ] such/JJ as/IN

. Computer /NNP Associates/NNPS ] should/MD do/VB well/RB there /RB ./.

Exactly what is an NP-chunk? Flat structure: no NP-chunk is part
It is an NP of another NP chunk

But not all NPs are chunks Maximally large

Opposing restrictions



Chunking methods
B

1 Hand-written rules
-1 Regular expressions

11 Supervised machine learning



Regular Expression Chunker

A I —————=
0 Input POS-tagged sentences
1 Use a regular expression over POS to identify NP-chunks

0 NLTK example:

01 It inserts parentheses

grammar = r
NP: {<DT|PP\$>?<JJ>*<NN>}

{<NNP>+}



http://www.nltk.org/book/ch07.html

IOB-tags

W e S a w t hle y e 1|/l ow d o|g
PRP VBD DT JJ NN
B-NP 0 B-NP I-NP I-NP
B-NP: First word in NP Properties
|-NP: Part of NP, not first word One tag per token
O: Not part of NP (phrase) Unambiguous

Does not insert anything in the
text itself



Assigning |OB-tags

W e s aw the[yellow]dog

PRP VBD DT JJ NN
B-NP 0 B-NP I-NP I-NP

The process can be considered a form for tagging
POS-tagging: Word to POS-tag
|OB-tagging: POS-tag to |OB-tag
But one may in addition use additional features, e.g. words
Can use various types of classifiers

NLTK uses a MaxEnt Classifier (=LogReg, but the implementation is slow)

We can modify along the lines of mandatory assignment 2, using scikit-learn



E B _NP| | _NP 5
|
|
]
i Classifier
P vt is.
| 1\
/T } /
DT}I NN / NN IN/ NNF/
3 The |moming| flight | from |Denver|| has [ armived 5
Cormesponding feature representation Label
—— H"'-—_
/ ™
The, DT, B NP, morning, NN, I NP, flight, WN, from, IN, Denver, WNP I_KFP

I0fuiicBUR] A sequence model for chunking. The chunker slides a context window over the sentence, clas-
sifying words as it proceeds. At this point, the classifier is attempting to label flight, using features like words,
embeddings, part-of-speech tags and previously assigned chunk tags.

40




Today

I
0 Feedforward neural networks (partly recap)
0 Recurrent networks

O Information extraction, |E

O Chunking
1 Named Entity Recognition

O Evaluation



Named entities

Citing high fuel prices, [ORG United Airlines] Named entity:

said [TIME Friday] it has increased fares by Anything you can refer
[MONEY $6] per round trip on flights to to by a proper name
some cities also served by lower-cost
carriers. [ORG American Airlines], a unit of
[ORG AMR Corp.], immediately matched the
move, spokesman [PER Tim Wagner] said.
[ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday]
and applies to most routes where it Find the phrases
competes against discount carriers, such as Clqssify them

[ Chicago] to | Dallas] and |

Denver] to [ San Francisco].

i.e. not all NP (chunks):
high fuel prices

Maybe longer NP than
just chunk:

Bank of America



Types of NE

Type Tag Sample Categories

People PER Individuals, fictional characters, small groups

Organization ORG Companies, agencies, political parties, religious groups, sports teams
Location LOC Physical extents, mountains, lakes, seas

Geo-Political Entity GPE Countries, states, provinces, counties

Facility FAC Bridges, buildings, airports

Vehicles VEH Planes, trains, and automobiles

The set of types vary between different systems

Which classes are useful depend on application



Ambiguities

Name Possible Categories

Washington Person, Location, Political Entity, Organization, Facility
Downing St. Location, Organization

IRA Person, Organization, Monetary Instrument

Louis Viitton

Person, Organization, Commercial Product

[PERs Washington] was born into slavery on the farm of James Burroughs.
l[orG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [7 oc Washington] for what may well be his last state visit.

In June, [gpg Washington] passed a primary seatbelt law.
The [gac Washington] had proved to be a leaky ship, every passage I made...




Gazetteer

0 Useful: List of names,
e.g.

Gazetteer: list of
geographical names

1 But does not remove all
ambiguities

cf. example

KEEP UP. YOUR | READING | WITH AUDIO( BOOKS |

Vietnam Louisiana, USA
Audio books are highly popular with Iibrary patrons in the
Louisiana, USA S.Carolina, USA  Pennsylvania, USA Mass., USA
lof | l Springfield, | l Greene | County, "People are
Turkey  Virginia, USA Maine, USA Norway Alabama, USA
and busier, and audio | books | fit into that lifestyle" says | Gary
Louisiana, USA Indiana, USA

| Sanchez, lwho oversees the $2 budget...

Dominican Republic Pennsylvania, USA  Kentucky, USA



Representation (IOB)

Words

American
Airlines
)

a

unit

of

AMR
Corp.
immediately
matched
the

move
spokesman
Tim
Wagner
said

I0B Label

B-ORG
I-ORG

0] Named entity tagging as a sequence model, showing [OB and 10 encodings.



Feature-based NER

% | e 0 B_ORG ?

" Classifier

lower upper cap_punc lower

2. | a | unit of AMR Corp.

immediately [ matched |..{

o Similar to tagging and chunking
7 You will need features from several layers

1 Features may include
o Words, POS-tags, Chunk-tags, Graphical prop.
o and more (See J&M, 3.ed)



Neural sequence labeling: NER
s

1 We can use |IOB-tags

[ [ ][ :Jl%Lm ][ Al ” &%IL: dﬂ,%zm ] - |IOB-tagged training

F

x data
. o RNN
Similarly to POS-
I I I I tagging
(_Jamet ) will 3 back ) the 3 bl )

QPR  Pari-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as cutput at each time step.

From J&M, 3.ed., 2019



A more advanced model

49 |
o €3G (D—ED
Concatenation [Irli[l-li [Irli 80 [ T FIIIIII-I
Right-to-left LSTM LSTM2 |[# — 1 {LSTM2 [« — 1 {LSTM2 |+ — 1 {LSTM2

Left-to-right LSTM LSTM1 - - #|LSTM1 [

LSTMA

i &

Char+GloVe
Embeddings
GloVe GloVe

F )
FloWe

Char L5TM

Char LSTM ‘ Char LSTM

‘ Char LSTM

t\_,Mark Watney t»vis 1ts Mars

19T W] Putting it all together: character embeddings and words together a bi-LSTM

sequence model. After Lample et al. (2016).

From J&M, 3.ed., 2019

1 Bi-LSTM
-1 CRF top-layer

Optimize the sequence
of tags

In contrast to
optimizing individual
tags (as we did it in
mandatory 2)



Today
s 4
0 Feedforward neural networks (partly recap)
0 Recurrent networks
O Information extraction, |E
0 Named Entity Recognition

1 Evaluation

o in general
= chunkers and NER



Evaluation measure: Accuracy

What does accuracy 0.81 tell us?

Given a test set of 500 documents:
The classifier will classify 405 correctly
And 95 incorrectly

A good measure given:
The 2 classes are equally important
The 2 classes are roughly equally sized
Example:

Woman /man
Movie reviews: pos/neg



But

For some tasks, the classes aren't equally important

Worse to loose an important mail than to receive yet another spam mail

For some tasks the different classes have different sizes.



Information retrieval (IR)

Traditional IR, e.g. a library

Goal: Find all the documents on a particular topic out of 100 000 documents,
Say there are 5

The system delivers 10 documents: all irrelevant
What is the accuracy?

For these tasks, focus on

The relevant documents

The documents returned by the system
Forget the

Irrelevant documents which are not returned



IR - evaluation

- A
[‘
-~ ™
system output: 4 X
. \
retrieved documents —~— true false
positive positive

\_ relevant, retrieved | irrelevant, retrieved ,

information need: — 7| false v
relevant documents negative N
negative
\_relevant, not retrieved )

\ irrelevant, not retrieved /

Document Collection



Confusion matrix

systgm  SYSiEm
' ositrve
output P
labels ~ SYSIEI
negative

gold standard labels

gold positive  gold negative

true positive | false positive | precision = tmefp
false negative | true negative
i tp | ! fp+in
I = . | ACCUTACY =
:191:.1“ vy i ' pHpHnt

T ™! Contingency table

Beware what the rows
and columns are:

NLTKSs
ConfusionMatrix
swaps them
compared to this
table



Evaluation measures
T

Yes NO
GEL Yes |tp fp
ifier L\ n tn
o Accuracy: (tp+tn)/N

o Precision:tp/ (tp+fp)
7 Recall: tp/ (tp+fn)

1 F-score combines P and R

2PR 1
0k = — T 1

2

J

o F, called "harmonic mean’
o General form
F=—

1 1
a5+(1—a)§

forsome O0<a<1



Confusion matrix

Eﬂfdiﬂfji? Precision, recall and
wgent normmal  spam
2 110 | 1 | srecsione & f-score can be
urgent precisions ———
| R 1 o calculated for each
sy stem T
ouput Dozl | 3 60 | -0 L class against the rest
30
spam | 3 30 | 200 | precisions= ——
 recalln = recallnsrecall:< |
|2 1 60 1 200
' oges+3 10+60+30'1+50+200

iy &) Confusion matrix for a three-class caiegonzation task, showing for each pair of
classes (cy,c7 ), how many documents from oy were (in)cormectly assigned to o



Today
s 4
0 Feedforward neural networks (partly recap)
0 Recurrent networks
O Information extraction, |E
0 Named Entity Recognition

1 Evaluation

= in general
o1 chunkers and NER



Evaluation

Have we found the correct NERs?

Evaluate precision and recall as for chunking

For the correctly identified NERs, have we labelled them correctly?



Evaluating (IOB-)chunkers

cp = nltk.RegexpParser("")
test_sents = conll ('test’,

What do we evaluate?
|OB-tags? or

chunks=['NP"]) Whole chunks?

IOB Accuracy: 43.4% Yields different results
Precision: 0.0% For IOB-tags:

Recall: 0.0% Baseline:

F-Measure: 0.0% majority class O,

yields > 33%
Whole chunks:

Which chunks did we find?
Harder

Lower numbers



Evaluating (IOB-)chunkers

cp = nltk.RegexpParser("") >> cp = nltk.RegexpParser(
test_sents = conll ('test’, r'NP: {<[CDJNP].*>+}")
chunks=['NP") IOB Accuracy: 87.7%
IOB Accuracy: 43.4% Precision: 70.6%
Precision: 0.0% Recall: 67.8%
Recall: 0.0% F-Measure:  69.2%

F-Measure: 0.0%



In

addition

to

his

previous
real-estate
investment

and
asset-management
duties

Mr.

Meador

takes
responsibility
for
development
and

property
management

IN
NN
TO
PRP$
JJ
NN
NN
CC
NN
NNS

NNP
NNP
VBZ
NN
IN
NN
CC
NN
NN




Next week
S 15

-1 Relation extraction (sec. 17.2)
71 Encoder-Decoder Models (sec. 10.1-10.2)



