
IN4080 – 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 13, 9 Nov.

Neural LMs, Recurrent networks, Sequence labeling,

Information Extraction, Named-Entity Recognition, Evaluation

2

Today

 Feedforward neural networks

 Neural Language Models

 Recurrent networks

 Information Extraction

 Named Entity Recognition

 Evaluation

3

Last week

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

4

Neural NLP

 (Multi-layered) neural networks

 Using embeddings as word

representations

 Example: Neural language

model (k-gram)

 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 Use embeddings for

representing the 𝑤𝑖-s

 Use neural network for

estimating 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

5

6

From J&M,

3.ed., 2019

Pretrained embeddings

 The last slide uses pretrained embeddings

 Trained with some method, SkipGram, CBOW, Glove, …

 On some specific corpus

 Can be downloaded from the web

 Pretrained embeddings can aslo be the input to other tasks, e.g. text

classification

 The task of neural language modeling was also the basis for training

the embeddings

7

Training the embeddings

 Alternatively we may start with one-hot representations of words and

train the embeddings as the first layer in our models (=the way we

trained the embeddings)

 If the goal is a task different from language modeling, this may result

in embeddings better suited for the specific tasks.

 We may even use two set of embeddings for each word – one

pretrained and one which is trained during the task.

8

Computational graph
10

𝒙2

E
W 𝒃[1] 𝒃[2]

𝒖 = 𝑐𝑜𝑛𝑐𝑎𝑡(

𝒖1
[1]

, 𝒖1
[1]

, 𝒖1
[1]

)

𝑎 =
𝑅𝑈(𝒛)

𝒗 =
𝑊𝒖

𝒛 =
𝒗 + 𝒃[1]

ෝ𝒚 = 𝑠𝑜𝑓𝑡−
𝑚𝑎𝑥(𝒛𝟐)

𝒙𝟑

𝒙𝟏

U

𝒘
= 𝑈𝒂

𝒖1
[1]
=𝐸𝒙𝟏

𝒖2
[1]
=𝐸𝒙𝟐

𝒖3
[1]
=𝐸𝒙𝟑

𝒛𝟐 =
𝒘+ 𝒃[2]

This picture is if we train the

embeddings E

With pretrained embeddings,

we look up 𝒖1
[1]

in a table for

each word

Recurrent networks

11

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation

12

Recurrent neural nets

 Model sequences/temporal phenomena

 A cell may send a signal back to itself – at the next moment in time

13

https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing

during time

Forward

 Each U, V and W are edges

with weights (matrices)

 𝑥1, 𝑥2, … , 𝑥𝑛 is the input

sequence

 Forward:

1. Calculate ℎ1 from ℎ0 and 𝑥1.

2. Calculate 𝑦1 from ℎ1.

3. Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖,
and 𝑦𝑖 from 𝑖, for 𝑖 = 1,… , 𝑛

14

From J&M, 3.ed., 2019

Forward

 𝒉𝑡 = 𝑔 𝑈𝒉𝑡−1 +𝑊𝒙𝑡
 𝒚𝑡 = 𝑓 𝑉𝒉𝑡
 𝑔 and are activation functions

 (There are also bias which we

didn't include in the formulas)

15

From J&M, 3.ed., 2019

Training

 At each output node:

 Calculate the loss and the

 𝛿-term

 Backpropagate the error, e.g.

 the 𝛿-term at ℎ2is calculated

 from the 𝛿-term at ℎ3 by U and

 the 𝛿-term at 𝑦2 by V

 Update

 V from the 𝛿-terms at the 𝑦𝑖-s and

 U and W from the 𝛿-terms at the
ℎ𝑖-s

16

From J&M, 3.ed., 2019

Remark

 J&M, 3. ed., 2019, sec 9.1.2

explain this at a high-level

using vectors and matrices, OK

 The formulas, however, are not

correct:

 Describing derivatives of

matrices and vectors demand a

little more care, e.g. one has to

transpose matrices

 It is beyond this course to

explain how this can be done in

detail

 But you should be able to do

the actual calculations if you

stick to the entries of the

vectors and matrices, as we did

above (ch. 7).

17

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation

18

RNN Language model

 ො𝑦 = 𝑃 𝑤𝑛 𝑤1
𝑛−1 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

 In principle:

 unlimited history

 a word depends on all preceding
words

 The word 𝑤𝑖 is represented by an
embedding

 or a one-hot and the embedding is
made by the LM

19

<s>

w1

w2

From J&M, 3.ed., 2019

Autoregressive generation

 Generated by

probabilities:

 Choose word in

accordance with

prob.distribution

 Part of more complex

models

 Encoder-decoder

models

 Translation

20

From J&M, 3.ed., 2019

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation

21

Neural sequence labeling: tagging

 ො𝑦 = 𝑃 𝑡𝑛 𝑤1
𝑛 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

22

From J&M, 3.ed., 2019

Sequence labeling

 Actual models for sequence labeling, e.g. tagging, are more complex

 For example, that it may take words after the tag into consideration.

23

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation

24

Stacked RNN

 Can yield better

results than single-

layers

 Reason?

 Higher-layers of

abstraction

 similar to image

processing

(convolutional nets)

25

From J&M, 3.ed., 2019

Bidirectional RNN

 Example: Tagger

 Considers both

preceding and

following words

26

From J&M, 3.ed., 2019

LSTM

 Problems for RNN

 Keep track of distant information

 Vanishing gradient

 During backpropagation going

backwards through several layers,

the gradient approaches 0

 Long Short-Term Memory

 An advanced architecture with

additional layers and weights

 Not consider the details here

 Bi-LSTM (Binary LSTM)

 Popular standard architecture in

NLP

27

Information extraction

28

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named Entity Recognition

 Evaluation

29

IE basics

 Bottom-Up approach

 Start with unrestricted texts, and do the best you can

 The approach was in particular developed by the Message Understanding
Conferences (MUC) in the 1990s

 Select a particular domain and task

30

Information extraction (IE) is the task of

automatically extracting structured information

from unstructured and/or semi-structured

machine-readable documents. (Wikipedia)

A typical pipeline
31

From NLTK

Some example systems
32

 Stanford core nlp: http://corenlp.run/

 SpaCy (Python): https://spacy.io/docs/api/

 OpenNLP (Java): https://opennlp.apache.org/docs/

 GATE (Java): https://gate.ac.uk/

 https://cloud.gate.ac.uk/shopfront

 UDPipe: http://ufal.mff.cuni.cz/udpipe

 Online demo: http://lindat.mff.cuni.cz/services/udpipe/

 Collection of tools for NER:

 https://www.clarin.eu/resource-families/tools-named-entity-recognition

http://corenlp.run/
https://spacy.io/docs/api/
https://opennlp.apache.org/docs/
https://gate.ac.uk/
https://cloud.gate.ac.uk/shopfront
http://ufal.mff.cuni.cz/udpipe
http://lindat.mff.cuni.cz/services/udpipe/
https://www.clarin.eu/resource-families/tools-named-entity-recognition

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named Entity Recognition

 Evaluation

33

Next steps

 Chunk together words to phrases

34

NP-chunks

 Exactly what is an NP-chunk?

 It is an NP

 But not all NPs are chunks

 Flat structure: no NP-chunk is part
of another NP chunk

 Maximally large

 Opposing restrictions

35

[The/DT market/NN] for/IN

[system-management/NN software/NN] for/IN

[Digital/NNP]

['s/POS hardware/NN] is/VBZ fragmented/JJ enough/RB that/IN

[a/DT giant/NN] such/JJ as/IN

[Computer/NNP Associates/NNPS] should/MD do/VB well/RB there/RB ./.

Chunking methods

 Hand-written rules

 Regular expressions

 Supervised machine learning

36

Regular Expression Chunker

 Input POS-tagged sentences

 Use a regular expression over POS to identify NP-chunks

 NLTK example:

 It inserts parentheses

37

grammar = r"""
NP: {<DT|PP\$>?<JJ>*<NN>}

{<NNP>+}
"""

http://www.nltk.org/book/ch07.html

IOB-tags

 B-NP: First word in NP

 I-NP: Part of NP, not first word

 O: Not part of NP (phrase)

 Properties

 One tag per token

 Unambiguous

 Does not insert anything in the

text itself

38

Assigning IOB-tags

 The process can be considered a form for tagging

 POS-tagging: Word to POS-tag

 IOB-tagging: POS-tag to IOB-tag

 But one may in addition use additional features, e.g. words

 Can use various types of classifiers

 NLTK uses a MaxEnt Classifier (=LogReg, but the implementation is slow)

 We can modify along the lines of mandatory assignment 2, using scikit-learn

39

40

J&M, 3. ed.

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named Entity Recognition

 Evaluation

41

Named entities
42

 Named entity:

 Anything you can refer
to by a proper name

 i.e. not all NP (chunks):

 high fuel prices

 Maybe longer NP than
just chunk:

 Bank of America

 Find the phrases

 Classify them

Citing high fuel prices, [ORG United Airlines]

said [TIME Friday] it has increased fares by

[MONEY $6] per round trip on flights to

some cities also served by lower-cost

carriers. [ORG American Airlines], a unit of

[ORG AMR Corp.], immediately matched the

move, spokesman [PER Tim Wagner] said.

[ORG United], a unit of [ORG UAL Corp.],

said the increase took effect [TIME Thursday]

and applies to most routes where it

competes against discount carriers, such as

[LOC Chicago] to [LOC Dallas] and [LOC

Denver] to [LOC San Francisco].

Types of NE

 The set of types vary between different systems

 Which classes are useful depend on application

43

Ambiguities
44

Gazetteer

 Useful: List of names,

e.g.

 Gazetteer: list of

geographical names

 But does not remove all

ambiguities

 cf. example

45

Representation (IOB)
46

Feature-based NER

 Similar to tagging and chunking

 You will need features from several layers

 Features may include

 Words, POS-tags, Chunk-tags, Graphical prop.

 and more (See J&M, 3.ed)

47

Neural sequence labeling: NER

 We can use IOB-tags

 IOB-tagged training

data

 RNN

 Similarly to POS-

tagging

48

From J&M, 3.ed., 2019

A more advanced model

 Bi-LSTM

 CRF top-layer

 Optimize the sequence

of tags

 In contrast to

optimizing individual

tags (as we did it in

mandatory 2)

49

From J&M, 3.ed., 2019

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Named Entity Recognition

 Evaluation

 in general

 chunkers and NER

50

Evaluation measure: Accuracy
51

 What does accuracy 0.81 tell us?

 Given a test set of 500 documents:

 The classifier will classify 405 correctly

 And 95 incorrectly

 A good measure given:

 The 2 classes are equally important

 The 2 classes are roughly equally sized

 Example:

 Woman/man

 Movie reviews: pos/neg

But
52

 For some tasks, the classes aren't equally important

 Worse to loose an important mail than to receive yet another spam mail

 For some tasks the different classes have different sizes.

Information retrieval (IR)
53

 Traditional IR, e.g. a library

 Goal: Find all the documents on a particular topic out of 100 000 documents,

 Say there are 5

 The system delivers 10 documents: all irrelevant

 What is the accuracy?

 For these tasks, focus on

 The relevant documents

 The documents returned by the system

 Forget the

 Irrelevant documents which are not returned

IR - evaluation
54

Confusion matrix

 Beware what the rows

and columns are:

 NLTKs

ConfusionMatrix

swaps them

compared to this

table

55

Evaluation measures

 Accuracy: (tp+tn)/N

 Precision:tp/(tp+fp)

 Recall: tp/(tp+fn)

 F-score combines P and R

 𝐹1 =
2𝑃𝑅

𝑃+𝑅
=

1
1
𝑅+

1
𝑃

2

 F1 called ‘’harmonic mean’’

 General form

 𝐹 =
1

𝛼
1

𝑃
+(1−𝛼)

1

𝑅

 for some 0 < 𝛼 < 1

56

Is in C

Yes NO

Class

ifier

Yes tp fp

No fn tn

Confusion matrix

 Precision, recall and

f-score can be

calculated for each

class against the rest

57

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Named Entity Recognition

 Evaluation

 in general

 chunkers and NER

58

Evaluation

 Have we found the correct NERs?

 Evaluate precision and recall as for chunking

 For the correctly identified NERs, have we labelled them correctly?

59

Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("")

 test_sents = conll ('test',
chunks=['NP'])

 IOB Accuracy: 43.4%

 Precision: 0.0%

 Recall: 0.0%

 F-Measure: 0.0%

 What do we evaluate?

 IOB-tags? or

 Whole chunks?

 Yields different results

 For IOB-tags:

 Baseline:
 majority class O,

 yields > 33%

 Whole chunks:

 Which chunks did we find?

 Harder

 Lower numbers

60

Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("")

 test_sents = conll ('test',

chunks=['NP'])

 IOB Accuracy: 43.4%

 Precision: 0.0%

 Recall: 0.0%

 F-Measure: 0.0%

>> cp = nltk.RegexpParser(

r"NP: {<[CDJNP].*>+}")

 IOB Accuracy: 87.7%

 Precision: 70.6%

 Recall: 67.8%

 F-Measure: 69.2%

61

62

Next week

 Relation extraction (sec. 17.2)

 Encoder-Decoder Models (sec. 10.1-10.2)

63

