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Lecture 13, 9 Nov.

Neural LMs, Recurrent networks, Sequence labeling, 

Information Extraction, Named-Entity Recognition, Evaluation
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Today

 Feedforward neural networks

 Neural Language Models

 Recurrent networks

 Information Extraction

 Named Entity Recognition

 Evaluation
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Last week

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction
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Neural NLP

 (Multi-layered) neural networks

 Using embeddings as word 

representations

 Example: Neural language 

model (k-gram)

 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 Use embeddings for 

representing the 𝑤𝑖-s

 Use neural network for 

estimating 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1
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From J&M, 

3.ed., 2019



Pretrained embeddings

 The last slide uses pretrained embeddings

 Trained with some method, SkipGram, CBOW, Glove, …

 On some specific corpus

 Can be downloaded from the web

 Pretrained embeddings can aslo be the input to other tasks, e.g. text 

classification

 The task of neural language modeling was also the basis for training 

the embeddings
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Training the embeddings

 Alternatively we may start with one-hot representations of words and 

train the embeddings as the first layer in our models (=the way we 

trained the embeddings)

 If the goal is a task different from language modeling, this may result 

in embeddings better suited for the specific tasks.

 We may even use two set of embeddings for each word – one 

pretrained and one which is trained during the task.
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Computational graph
10

𝒙2
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in a table for 

each word



Recurrent networks
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Today

 Feedforward neural networks 

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation
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Recurrent  neural nets

 Model sequences/temporal phenomena

 A cell may send a signal back to itself – at the next moment in time
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https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing 

during time



Forward

 Each U, V and W are edges 

with weights (matrices)

 𝑥1, 𝑥2, … , 𝑥𝑛 is the input 

sequence

 Forward: 

1. Calculate ℎ1 from ℎ0 and 𝑥1.

2. Calculate 𝑦1 from ℎ1.

3. Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖, 
and 𝑦𝑖 from 𝑖, for 𝑖 = 1,… , 𝑛
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From J&M, 3.ed., 2019



Forward

 𝒉𝑡 = 𝑔 𝑈𝒉𝑡−1 +𝑊𝒙𝑡
 𝒚𝑡 = 𝑓 𝑉𝒉𝑡
 𝑔 and are activation functions

 (There are also bias which we

didn't include in the formulas)
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Training

 At each output node:

 Calculate the loss and the

 𝛿-term

 Backpropagate the error, e.g.

 the 𝛿-term at ℎ2is calculated

 from the 𝛿-term at ℎ3 by U and 

 the 𝛿-term at 𝑦2 by V

 Update 

 V from the 𝛿-terms at the 𝑦𝑖-s and

 U and W from the 𝛿-terms at the 
ℎ𝑖-s
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From J&M, 3.ed., 2019



Remark

 J&M, 3. ed., 2019, sec 9.1.2 

explain this at a high-level 

using vectors and matrices, OK

 The formulas, however, are not 

correct:

 Describing derivatives of 

matrices and vectors demand a 

little more care, e.g. one has to 

transpose matrices

 It is beyond this course to 

explain how this can be done in 

detail

 But you should be able to do 

the actual calculations if you 

stick to the entries of the 

vectors and matrices, as we did 

above (ch. 7).
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Today

 Feedforward neural networks 

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation
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RNN Language model

 ො𝑦 = 𝑃 𝑤𝑛 𝑤1
𝑛−1 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

 In principle:

 unlimited history

 a word depends on all preceding 
words

 The word 𝑤𝑖 is represented by an 
embedding

 or a one-hot and the embedding is 
made by the LM
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<s>

w1

w2

From J&M, 3.ed., 2019



Autoregressive generation

 Generated by 

probabilities:

 Choose word in 

accordance with 

prob.distribution

 Part of more complex 

models

 Encoder-decoder 

models

 Translation
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From J&M, 3.ed., 2019



Today

 Feedforward neural networks 

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation
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Neural sequence labeling: tagging

 ො𝑦 = 𝑃 𝑡𝑛 𝑤1
𝑛 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)
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From J&M, 3.ed., 2019



Sequence labeling

 Actual models for sequence labeling, e.g. tagging, are more complex

 For example, that it may take words after the tag into consideration.
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Today

 Feedforward neural networks 

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation
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Stacked RNN

 Can yield better 

results than single-

layers

 Reason?

 Higher-layers of 

abstraction

 similar to image 

processing 

(convolutional nets)
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From J&M, 3.ed., 2019



Bidirectional RNN

 Example: Tagger

 Considers both 

preceding and 

following words
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From J&M, 3.ed., 2019



LSTM

 Problems for RNN

 Keep track of distant information

 Vanishing gradient

 During backpropagation going 

backwards through several layers, 

the gradient approaches 0

 Long Short-Term Memory

 An advanced architecture with 

additional layers and weights

 Not consider the details here

 Bi-LSTM (Binary LSTM)

 Popular standard architecture in 

NLP
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Information extraction
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Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named Entity Recognition

 Evaluation
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IE basics

 Bottom-Up approach

 Start with unrestricted texts, and do the best you can

 The approach was in particular developed by the Message Understanding 
Conferences (MUC) in the 1990s

 Select a particular domain and task

30

Information extraction (IE) is the task of 

automatically extracting structured information 

from unstructured and/or semi-structured 

machine-readable documents. (Wikipedia)



A typical pipeline
31

From NLTK



Some example systems
32

 Stanford core nlp: http://corenlp.run/

 SpaCy (Python): https://spacy.io/docs/api/

 OpenNLP (Java): https://opennlp.apache.org/docs/

 GATE (Java): https://gate.ac.uk/

 https://cloud.gate.ac.uk/shopfront

 UDPipe: http://ufal.mff.cuni.cz/udpipe

 Online demo: http://lindat.mff.cuni.cz/services/udpipe/

 Collection of tools for NER:

 https://www.clarin.eu/resource-families/tools-named-entity-recognition

http://corenlp.run/
https://spacy.io/docs/api/
https://opennlp.apache.org/docs/
https://gate.ac.uk/
https://cloud.gate.ac.uk/shopfront
http://ufal.mff.cuni.cz/udpipe
http://lindat.mff.cuni.cz/services/udpipe/
https://www.clarin.eu/resource-families/tools-named-entity-recognition


Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named Entity Recognition

 Evaluation
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Next steps

 Chunk together words to phrases
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NP-chunks

 Exactly what is an NP-chunk?

 It is an NP

 But not all NPs are chunks

 Flat structure: no NP-chunk is part 
of another NP chunk

 Maximally large

 Opposing restrictions
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[ The/DT market/NN ] for/IN 

[ system-management/NN software/NN ] for/IN 

[ Digital/NNP ] 

[ 's/POS hardware/NN ] is/VBZ fragmented/JJ enough/RB that/IN 

[ a/DT giant/NN ] such/JJ as/IN 

[ Computer/NNP Associates/NNPS ] should/MD do/VB well/RB there/RB ./.



Chunking methods

 Hand-written rules

 Regular expressions

 Supervised machine learning
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Regular Expression Chunker

 Input POS-tagged sentences

 Use a regular expression over POS to identify NP-chunks

 NLTK example:

 It inserts parentheses
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grammar = r"""
NP: {<DT|PP\$>?<JJ>*<NN>}

{<NNP>+} 
"""

http://www.nltk.org/book/ch07.html


IOB-tags

 B-NP: First word in NP

 I-NP: Part of NP, not first word

 O: Not part of NP (phrase)

 Properties

 One tag per token

 Unambiguous

 Does not insert anything in the 

text itself
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Assigning IOB-tags

 The process can be considered a form for tagging

 POS-tagging: Word to POS-tag

 IOB-tagging: POS-tag to IOB-tag

 But one may in addition use additional features, e.g. words 

 Can use various types of classifiers

 NLTK uses a MaxEnt Classifier (=LogReg, but the implementation is slow)

 We can modify along the lines of mandatory assignment 2, using scikit-learn
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J&M, 3. ed.



Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named Entity Recognition

 Evaluation
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Named entities
42

 Named entity:

 Anything you can refer 
to by a proper name

 i.e. not all NP (chunks):

 high fuel prices

 Maybe longer NP than 
just chunk:

 Bank of America

 Find the phrases

 Classify them

Citing high fuel prices, [ORG United Airlines] 

said [TIME Friday] it has increased fares by 

[MONEY $6] per round trip on flights to 

some cities also served by lower-cost 

carriers. [ORG American Airlines], a unit of 

[ORG AMR Corp.], immediately matched the 

move, spokesman [PER Tim Wagner] said. 

[ORG United], a unit of [ORG UAL Corp.], 

said the increase took effect [TIME Thursday] 

and applies to most routes where it 

competes against discount carriers, such as 

[LOC Chicago] to [LOC Dallas] and [LOC

Denver] to [LOC San Francisco].



Types of NE

 The set of types vary between different systems

 Which classes are useful depend on application

43



Ambiguities
44



Gazetteer

 Useful: List of names, 

e.g.

 Gazetteer: list of 

geographical names

 But does not remove all 

ambiguities

 cf. example
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Representation (IOB)
46



Feature-based NER

 Similar to tagging and chunking

 You will need features from several layers

 Features may include

 Words, POS-tags, Chunk-tags, Graphical prop.

 and more (See J&M, 3.ed)
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Neural sequence labeling: NER

 We can use IOB-tags

 IOB-tagged training 

data

 RNN

 Similarly to POS-

tagging

48

From J&M, 3.ed., 2019



A more advanced model

 Bi-LSTM

 CRF top-layer

 Optimize the sequence 

of tags

 In contrast to 

optimizing individual 

tags (as we did it in 

mandatory 2)
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From J&M, 3.ed., 2019



Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Named Entity Recognition

 Evaluation

 in general

 chunkers and NER
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Evaluation measure: Accuracy
51

 What does accuracy 0.81 tell us?

 Given a test set of 500 documents:

 The classifier will classify 405 correctly

 And 95 incorrectly

 A good measure given:

 The 2 classes are equally important

 The 2 classes are roughly equally sized

 Example:

 Woman/man

 Movie reviews: pos/neg



But
52

 For some tasks, the classes aren't equally important

 Worse to loose an important mail than to receive yet another spam mail

 For some tasks the different classes have different sizes.



Information retrieval (IR)
53

 Traditional IR, e.g. a library

 Goal: Find all the documents on a particular topic out of 100 000 documents,

 Say there are 5

 The system delivers 10 documents: all irrelevant

 What is the accuracy?

 For these tasks, focus on

 The relevant documents

 The documents returned by the system

 Forget the

 Irrelevant documents which are not returned



IR - evaluation
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Confusion matrix

 Beware what the rows 

and columns are:

 NLTKs 

ConfusionMatrix

swaps them 

compared to this 

table
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Evaluation measures

 Accuracy: (tp+tn)/N

 Precision:tp/(tp+fp)

 Recall: tp/(tp+fn)

 F-score combines P and R

 𝐹1 =
2𝑃𝑅

𝑃+𝑅
=

1
1
𝑅+

1
𝑃

2

 F1 called ‘’harmonic mean’’

 General form

 𝐹 =
1

𝛼
1

𝑃
+(1−𝛼)

1

𝑅

 for some  0 < 𝛼 < 1

56

Is in C

Yes NO

Class

ifier 

Yes tp fp

No fn tn



Confusion matrix

 Precision, recall and 

f-score can be 

calculated for each 

class against the rest
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Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Named Entity Recognition

 Evaluation

 in general

 chunkers and NER

58



Evaluation

 Have we found the correct NERs?

 Evaluate precision and recall as for chunking

 For the correctly identified NERs, have we labelled them correctly? 
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Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("") 

 test_sents = conll ('test', 
chunks=['NP']) 

 IOB Accuracy: 43.4%

 Precision: 0.0% 

 Recall: 0.0% 

 F-Measure: 0.0%

 What do we evaluate?

 IOB-tags? or

 Whole chunks?

 Yields different results

 For IOB-tags:

 Baseline: 
 majority class O, 

 yields > 33%

 Whole chunks:

 Which chunks did we find?

 Harder

 Lower numbers
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Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("") 

 test_sents = conll ('test', 

chunks=['NP']) 

 IOB Accuracy: 43.4%

 Precision: 0.0% 

 Recall: 0.0% 

 F-Measure: 0.0%

>> cp = nltk.RegexpParser(

r"NP: {<[CDJNP].*>+}")

 IOB Accuracy:  87.7%

 Precision:     70.6%

 Recall:        67.8%

 F-Measure:     69.2%
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Next week

 Relation extraction (sec. 17.2)

 Encoder-Decoder Models (sec. 10.1-10.2)
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