
IN4080 – 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 13, 9 Nov.

Neural LMs, Recurrent networks, Sequence labeling,

Information Extraction, Named-Entity Recognition, Evaluation

2

Today

 Feedforward neural networks

 Neural Language Models

 Recurrent networks

 Information Extraction

 Named Entity Recognition

 Evaluation

3

Last week

 Feedforward neural networks (partly recap)

 Model

 Training

 Computational graphs

 Neural Language Models

 Recurrent networks

 Information Extraction

4

Neural NLP

 (Multi-layered) neural networks

 Using embeddings as word

representations

 Example: Neural language

model (k-gram)

 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 Use embeddings for

representing the 𝑤𝑖-s

 Use neural network for

estimating 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

5

6

From J&M,

3.ed., 2019

Pretrained embeddings

 The last slide uses pretrained embeddings

 Trained with some method, SkipGram, CBOW, Glove, …

 On some specific corpus

 Can be downloaded from the web

 Pretrained embeddings can aslo be the input to other tasks, e.g. text

classification

 The task of neural language modeling was also the basis for training

the embeddings

7

Training the embeddings

 Alternatively we may start with one-hot representations of words and

train the embeddings as the first layer in our models (=the way we

trained the embeddings)

 If the goal is a task different from language modeling, this may result

in embeddings better suited for the specific tasks.

 We may even use two set of embeddings for each word – one

pretrained and one which is trained during the task.

8

Computational graph
10

𝒙2

E
W 𝒃[1] 𝒃[2]

𝒖 = 𝑐𝑜𝑛𝑐𝑎𝑡(

𝒖1
[1]

, 𝒖1
[1]

, 𝒖1
[1]

)

𝑎 =
𝑅𝑈(𝒛)

𝒗 =
𝑊𝒖

𝒛 =
𝒗 + 𝒃[1]

ෝ𝒚 = 𝑠𝑜𝑓𝑡−
𝑚𝑎𝑥(𝒛𝟐)

𝒙𝟑

𝒙𝟏

U

𝒘
= 𝑈𝒂

𝒖1
[1]
=𝐸𝒙𝟏

𝒖2
[1]
=𝐸𝒙𝟐

𝒖3
[1]
=𝐸𝒙𝟑

𝒛𝟐 =
𝒘+ 𝒃[2]

This picture is if we train the

embeddings E

With pretrained embeddings,

we look up 𝒖1
[1]

in a table for

each word

Recurrent networks

11

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation

12

Recurrent neural nets

 Model sequences/temporal phenomena

 A cell may send a signal back to itself – at the next moment in time

13

https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing

during time

Forward

 Each U, V and W are edges

with weights (matrices)

 𝑥1, 𝑥2, … , 𝑥𝑛 is the input

sequence

 Forward:

1. Calculate ℎ1 from ℎ0 and 𝑥1.

2. Calculate 𝑦1 from ℎ1.

3. Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖,
and 𝑦𝑖 from 𝑖, for 𝑖 = 1,… , 𝑛

14

From J&M, 3.ed., 2019

Forward

 𝒉𝑡 = 𝑔 𝑈𝒉𝑡−1 +𝑊𝒙𝑡
 𝒚𝑡 = 𝑓 𝑉𝒉𝑡
 𝑔 and are activation functions

 (There are also bias which we

didn't include in the formulas)

15

From J&M, 3.ed., 2019

Training

 At each output node:

 Calculate the loss and the

 𝛿-term

 Backpropagate the error, e.g.

 the 𝛿-term at ℎ2is calculated

 from the 𝛿-term at ℎ3 by U and

 the 𝛿-term at 𝑦2 by V

 Update

 V from the 𝛿-terms at the 𝑦𝑖-s and

 U and W from the 𝛿-terms at the
ℎ𝑖-s

16

From J&M, 3.ed., 2019

Remark

 J&M, 3. ed., 2019, sec 9.1.2

explain this at a high-level

using vectors and matrices, OK

 The formulas, however, are not

correct:

 Describing derivatives of

matrices and vectors demand a

little more care, e.g. one has to

transpose matrices

 It is beyond this course to

explain how this can be done in

detail

 But you should be able to do

the actual calculations if you

stick to the entries of the

vectors and matrices, as we did

above (ch. 7).

17

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation

18

RNN Language model

 ො𝑦 = 𝑃 𝑤𝑛 𝑤1
𝑛−1 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

 In principle:

 unlimited history

 a word depends on all preceding
words

 The word 𝑤𝑖 is represented by an
embedding

 or a one-hot and the embedding is
made by the LM

19

<s>

w1

w2

From J&M, 3.ed., 2019

Autoregressive generation

 Generated by

probabilities:

 Choose word in

accordance with

prob.distribution

 Part of more complex

models

 Encoder-decoder

models

 Translation

20

From J&M, 3.ed., 2019

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation

21

Neural sequence labeling: tagging

 ො𝑦 = 𝑃 𝑡𝑛 𝑤1
𝑛 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

22

From J&M, 3.ed., 2019

Sequence labeling

 Actual models for sequence labeling, e.g. tagging, are more complex

 For example, that it may take words after the tag into consideration.

23

Today

 Feedforward neural networks

 Recurrent networks

 Model

 Language Model

 Sequence Labeling

 Advanced architecture

 Information Extraction

 Named Entity Recognition

 Evaluation

24

Stacked RNN

 Can yield better

results than single-

layers

 Reason?

 Higher-layers of

abstraction

 similar to image

processing

(convolutional nets)

25

From J&M, 3.ed., 2019

Bidirectional RNN

 Example: Tagger

 Considers both

preceding and

following words

26

From J&M, 3.ed., 2019

LSTM

 Problems for RNN

 Keep track of distant information

 Vanishing gradient

 During backpropagation going

backwards through several layers,

the gradient approaches 0

 Long Short-Term Memory

 An advanced architecture with

additional layers and weights

 Not consider the details here

 Bi-LSTM (Binary LSTM)

 Popular standard architecture in

NLP

27

Information extraction

28

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named Entity Recognition

 Evaluation

29

IE basics

 Bottom-Up approach

 Start with unrestricted texts, and do the best you can

 The approach was in particular developed by the Message Understanding
Conferences (MUC) in the 1990s

 Select a particular domain and task

30

Information extraction (IE) is the task of

automatically extracting structured information

from unstructured and/or semi-structured

machine-readable documents. (Wikipedia)

A typical pipeline
31

From NLTK

Some example systems
32

 Stanford core nlp: http://corenlp.run/

 SpaCy (Python): https://spacy.io/docs/api/

 OpenNLP (Java): https://opennlp.apache.org/docs/

 GATE (Java): https://gate.ac.uk/

 https://cloud.gate.ac.uk/shopfront

 UDPipe: http://ufal.mff.cuni.cz/udpipe

 Online demo: http://lindat.mff.cuni.cz/services/udpipe/

 Collection of tools for NER:

 https://www.clarin.eu/resource-families/tools-named-entity-recognition

http://corenlp.run/
https://spacy.io/docs/api/
https://opennlp.apache.org/docs/
https://gate.ac.uk/
https://cloud.gate.ac.uk/shopfront
http://ufal.mff.cuni.cz/udpipe
http://lindat.mff.cuni.cz/services/udpipe/
https://www.clarin.eu/resource-families/tools-named-entity-recognition

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named Entity Recognition

 Evaluation

33

Next steps

 Chunk together words to phrases

34

NP-chunks

 Exactly what is an NP-chunk?

 It is an NP

 But not all NPs are chunks

 Flat structure: no NP-chunk is part
of another NP chunk

 Maximally large

 Opposing restrictions

35

[The/DT market/NN] for/IN

[system-management/NN software/NN] for/IN

[Digital/NNP]

['s/POS hardware/NN] is/VBZ fragmented/JJ enough/RB that/IN

[a/DT giant/NN] such/JJ as/IN

[Computer/NNP Associates/NNPS] should/MD do/VB well/RB there/RB ./.

Chunking methods

 Hand-written rules

 Regular expressions

 Supervised machine learning

36

Regular Expression Chunker

 Input POS-tagged sentences

 Use a regular expression over POS to identify NP-chunks

 NLTK example:

 It inserts parentheses

37

grammar = r"""
NP: {<DT|PP\$>?<JJ>*<NN>}

{<NNP>+}
"""

http://www.nltk.org/book/ch07.html

IOB-tags

 B-NP: First word in NP

 I-NP: Part of NP, not first word

 O: Not part of NP (phrase)

 Properties

 One tag per token

 Unambiguous

 Does not insert anything in the

text itself

38

Assigning IOB-tags

 The process can be considered a form for tagging

 POS-tagging: Word to POS-tag

 IOB-tagging: POS-tag to IOB-tag

 But one may in addition use additional features, e.g. words

 Can use various types of classifiers

 NLTK uses a MaxEnt Classifier (=LogReg, but the implementation is slow)

 We can modify along the lines of mandatory assignment 2, using scikit-learn

39

40

J&M, 3. ed.

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Chunking

 Named Entity Recognition

 Evaluation

41

Named entities
42

 Named entity:

 Anything you can refer
to by a proper name

 i.e. not all NP (chunks):

 high fuel prices

 Maybe longer NP than
just chunk:

 Bank of America

 Find the phrases

 Classify them

Citing high fuel prices, [ORG United Airlines]

said [TIME Friday] it has increased fares by

[MONEY $6] per round trip on flights to

some cities also served by lower-cost

carriers. [ORG American Airlines], a unit of

[ORG AMR Corp.], immediately matched the

move, spokesman [PER Tim Wagner] said.

[ORG United], a unit of [ORG UAL Corp.],

said the increase took effect [TIME Thursday]

and applies to most routes where it

competes against discount carriers, such as

[LOC Chicago] to [LOC Dallas] and [LOC

Denver] to [LOC San Francisco].

Types of NE

 The set of types vary between different systems

 Which classes are useful depend on application

43

Ambiguities
44

Gazetteer

 Useful: List of names,

e.g.

 Gazetteer: list of

geographical names

 But does not remove all

ambiguities

 cf. example

45

Representation (IOB)
46

Feature-based NER

 Similar to tagging and chunking

 You will need features from several layers

 Features may include

 Words, POS-tags, Chunk-tags, Graphical prop.

 and more (See J&M, 3.ed)

47

Neural sequence labeling: NER

 We can use IOB-tags

 IOB-tagged training

data

 RNN

 Similarly to POS-

tagging

48

From J&M, 3.ed., 2019

A more advanced model

 Bi-LSTM

 CRF top-layer

 Optimize the sequence

of tags

 In contrast to

optimizing individual

tags (as we did it in

mandatory 2)

49

From J&M, 3.ed., 2019

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Named Entity Recognition

 Evaluation

 in general

 chunkers and NER

50

Evaluation measure: Accuracy
51

 What does accuracy 0.81 tell us?

 Given a test set of 500 documents:

 The classifier will classify 405 correctly

 And 95 incorrectly

 A good measure given:

 The 2 classes are equally important

 The 2 classes are roughly equally sized

 Example:

 Woman/man

 Movie reviews: pos/neg

But
52

 For some tasks, the classes aren't equally important

 Worse to loose an important mail than to receive yet another spam mail

 For some tasks the different classes have different sizes.

Information retrieval (IR)
53

 Traditional IR, e.g. a library

 Goal: Find all the documents on a particular topic out of 100 000 documents,

 Say there are 5

 The system delivers 10 documents: all irrelevant

 What is the accuracy?

 For these tasks, focus on

 The relevant documents

 The documents returned by the system

 Forget the

 Irrelevant documents which are not returned

IR - evaluation
54

Confusion matrix

 Beware what the rows

and columns are:

 NLTKs

ConfusionMatrix

swaps them

compared to this

table

55

Evaluation measures

 Accuracy: (tp+tn)/N

 Precision:tp/(tp+fp)

 Recall: tp/(tp+fn)

 F-score combines P and R

 𝐹1 =
2𝑃𝑅

𝑃+𝑅
=

1
1
𝑅+

1
𝑃

2

 F1 called ‘’harmonic mean’’

 General form

 𝐹 =
1

𝛼
1

𝑃
+(1−𝛼)

1

𝑅

 for some 0 < 𝛼 < 1

56

Is in C

Yes NO

Class

ifier

Yes tp fp

No fn tn

Confusion matrix

 Precision, recall and

f-score can be

calculated for each

class against the rest

57

Today

 Feedforward neural networks (partly recap)

 Recurrent networks

 Information extraction, IE

 Named Entity Recognition

 Evaluation

 in general

 chunkers and NER

58

Evaluation

 Have we found the correct NERs?

 Evaluate precision and recall as for chunking

 For the correctly identified NERs, have we labelled them correctly?

59

Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("")

 test_sents = conll ('test',
chunks=['NP'])

 IOB Accuracy: 43.4%

 Precision: 0.0%

 Recall: 0.0%

 F-Measure: 0.0%

 What do we evaluate?

 IOB-tags? or

 Whole chunks?

 Yields different results

 For IOB-tags:

 Baseline:
 majority class O,

 yields > 33%

 Whole chunks:

 Which chunks did we find?

 Harder

 Lower numbers

60

Evaluating (IOB-)chunkers

 cp = nltk.RegexpParser("")

 test_sents = conll ('test',

chunks=['NP'])

 IOB Accuracy: 43.4%

 Precision: 0.0%

 Recall: 0.0%

 F-Measure: 0.0%

>> cp = nltk.RegexpParser(

r"NP: {<[CDJNP].*>+}")

 IOB Accuracy: 87.7%

 Precision: 70.6%

 Recall: 67.8%

 F-Measure: 69.2%

61

62

Next week

 Relation extraction (sec. 17.2)

 Encoder-Decoder Models (sec. 10.1-10.2)

63

