IN4080 – 2020 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

IE: Relation extraction, encoder-decoders

Lecture 14, 16 Nov.

Today

- Information extraction:
 - Relation extractions
 - 5 ways
- Two words on syntax
- Encoder-decoders
- Beam search

IE basics

Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents. (Wikipedia)

- Bottom-Up approach
- Start with unrestricted texts, and do the best you can
- The approach was in particular developed by the Message Understanding Conferences (MUC) in the 1990s
- Select a particular domain and task

A typical pipeline

From NLTK

Goal

- Extract the relations that exist between the (named) entities in the text
- □ A fixed set of relations (normally)
 - Determined by application:
 - Jeopardy
 - Preventing terrorist attacks
 - Detecting illness from medical record
 - •••

- Born_in
- Date_of_birth
- Parent_of
- Author_of
- Winner_of
- Part_of
- Located_in
- Acquire
- Threaten
- Has_symptom
- Has_illness

Relations		Examples	Types
Affiliations			
	Personal	married to, mother of	$PER \rightarrow PER$
	Organizational	spokesman for, president of	$PER \rightarrow ORG$
	Artifactual	owns, invented, produces	$(PER \mid ORG) \rightarrow ART$
Geospatial			•
	Proximity	near, on outskirts	$\text{LOC} \rightarrow \text{LOC}$
	Directional	southeast of	$\text{LOC} \rightarrow \text{LOC}$
Part-Of			
	Organizational	a unit of, parent of	$ORG \rightarrow ORG$
	Political	annexed, acquired	$\text{GPE} \rightarrow \text{GPE}$

Today

- Information extraction:
 - Relation extractions
 - 5 ways
- Two words on syntax
- Encoder-decoders
- Beam search

Methods for relation extraction

- 1. Hand-written patterns
- 2. Machine Learning (Supervised classifiers)
- 3. Semi-supervised classifiers via bootstrapping
- 4. Semi-supervised classifiers via distant supervision
- 5. Unsupervised

1. Hand-written patterns

- Example: acquisitions
- [ORG]...(buy(s) | bought | aquire(s | d))...[ORG]

Hand-write patterns like this

Properties:

- High precision
- Will only cover a small set of patterns
- Low recall
- Time consuming
- □ (Also in NLTK, sec 7.6)

NP {, NP}* {,} (and or) other NP _H	temples, treasuries, and other important civic buildings
NP_H such as $\{NP,\}^*$ $\{(or and)\}$ NP	red algae such as Gelidium
such NP _H as {NP,} ${(or and)}$ NP	such authors as Herrick, Goldsmith, and Shakespeare
$NP_H \{,\}$ including $\{NP,\}^* \{(or and)\} NP$	common-law countries, including Canada and England
$NP_H \{,\}$ especially $\{NP\}^* \{(or and)\} NP$	European countries, especially France, England, and Spain
Figure 17.12 Hand-built lexico-syntactic patte	rns for finding hypernyms, using {} to mark optionality

(Hearst 1992a, Hearst 1998).

Methods for relation extraction

- 1. Hand-written patterns
- 2. Machine Learning (Supervised classifiers)
- 3. Semi-supervised classifiers via bootstrapping
- 4. Semi-supervised classifiers via distant supervision
- 5. Unsupervised

2. Supervised classifiers

□ A corpus

- A fixed set of entities and relations
- □ The sentences in the corpus are hand-annotated:
 - Entities
 - Relations between them
- Split the corpus into parts for training and testing
- □ Train a classifier:
 - Choose learner:

Naive Bayes, Logistic regression (Max Ent), SVM, ...

Select features

2. Supervised classifiers, contd.

□ Training:

Use pairs of entities within the same sentence with no relation between them as negative data

Classification

- 1. Find the NERs
- 2. For each pair of NERs determine whether there is a relation between them
- 3. If there is, label the relation

Examples of features

	M1 headword	airlines (as a word token or an embedding)
American	M2 headword	Wagner
Airlines, a unit	Word(s) before M1	NONE
of AMR,	Word(s) after M2	said
immediately	D 6 114	
matched the	Bag of words between	$\{a, unit, of, AMR, Inc., immediately, matched, the, move, spokesman \}$
marched me	M1 type	ORG
move,	M2 type	PERS
spokesman Tim	Concatenated types	ORG-PERS
Wagner said	Constituent path	$NP \uparrow NP \uparrow S \uparrow S \downarrow NP$
	Base phrase path	$NP \rightarrow NP \rightarrow PP \rightarrow NP \rightarrow VP \rightarrow NP \rightarrow NP$
	Typed-dependency path	Airlines \leftarrow_{subi} matched \leftarrow_{comp} said \rightarrow_{subi} Wagner

Figure 17.14 Sample of features extracted during classification of the <American Airlines, Tim Wagner> tuple; M1 is the first mention, M2 the second.

Properties

- □ The bottleneck is the availability of training data
- To hand label data is time consuming
- Mostly applied to restricted domains
- Does not generalize well to other domains

Methods for relation extraction

- 1. Hand-written patterns
- 2. Machine Learning (Supervised classifiers)
- 3. Semi-supervised classifiers via bootstrapping
- 4. Semi-supervised classifiers via distant supervision
- 5. Unsupervised

3. Semisupervised, bootstrapping

- If we know a pattern for a relation, we can determine whether a pair stands in the relation
- Conversely: If we know that a pair stands in a relationship, we can find patterns that describe the relation

Example

- □ (IBM, AlchemyAPI): ACQUIRE
- Search for sentences containing IBM and AlchemyAPI
- □ Results (Web-search, Google, btw. first 10 results):
 - IBM's Watson makes intelligent acquisition of Denver-based AlchemyAPI (Denver Post)
 - IBM is buying machine-learning systems maker AlchemyAPI Inc. to bolster its Watson technology as competition heats up in the data analytics and artificial intelligence fields. (Bloomberg)
 - IBM has acquired computing services provider AlchemyAPI to broaden its portfolio of Watson-branded cognitive computing services. (ComputerWorld)

Example contd.

Extract patterns

- IBM's Watson makes intelligent acquisition of Denver-based AlchemyAPI (Denver Post)
- IBM is buying machine-learning systems maker AlchemyAPI Inc. to bolster its Watson technology as competition heats up in the data analytics and artificial intelligence fields. (Bloomberg)
- IBM <u>has acquired computing services provider</u> AlchemyAPI to broaden its portfolio of Watson-branded cognitive computing services. (ComputerWorld)

Procedure

- From the extracted sentences, we extract patterns
- Use these patterns to extract more pairs of entities that stand in these patterns
- These pairs may again be used for extracting more patterns, etc.

...makes intelligent acquisition ...
... is buying ...
... has acquired ...

Bootstrapping

A little more

- □ We could either
 - extract pattern templates and search for more occurrences of these patters in text, or
 - extract features for classification and build a classifier
- □ If we use patterns we should generalize
 - \square makes intelligent acquisition \rightarrow (make(s) | made) JJ* acquisition
- During the process we should evaluate before we extend:
 - Does the new pattern recognize other pairs we know stand in the relation?
 - Does the new pattern return pairs that are not in the relation? (Precision)

Methods for relation extraction

- 1. Hand-written patterns
- 2. Machine Learning (Supervised classifiers)
- 3. Semi-supervised classifiers via bootstrapping
- 4. Semi-supervised classifiers via distant supervision
- 5. Unsupervised

4. Distant supervision for RE

□ Combine:

A large external knowledge base, e.g. Wikipedia, Word-net

Large amounts of unlabeled text

- Extract tuples that stand in known relation from knowledge base:
 Many tuples
- Follow the bootstrapping technique on the text

4. Distant supervision for RE

Properties:

- Large data sets allow for
 - fine-grained features
 - combinations of features
 - M1 = ORG & M2 = PER & nextword="said" & path= $NP \uparrow NP \uparrow S \downarrow S \downarrow NP$
- Evaluation
- Requirement
 - Large knowledge-base

Methods for relation extraction

- 1. Hand-written patterns
- 2. Machine Learning (Supervised classifiers)
- 3. Semi-supervised classifiers via bootstrapping
- 4. Semi-supervised classifiers via distant supervision
- 5. Unsupervised

5. Unsupervised relation extraction

- Open IE
- Example:
 - 1. Tag and chunk
 - 2. Find all word sequences
 - satisfying certain syntactic constraints,
 - in particular containing a verb
 - These are taken to be the relations
 - For each such, find the immediate non-vacuous NP to the left and to the right
 - 4. Assign a confidence score

United has a hub in Chicago, which is the headquarters of United Continental Holdings.

```
r1: <United,
has a hub in,
Chicago>
r2: <Chicago,
is the headquarters of,
United Continental Holdings>
```

Evaluating relation extraction

- Supervised methods can be evaluated on each of the examples in a test set.
- For the semi-supervised method:
 - we don't have a test set.
 - we can evaluate the precision of the returned examples manually

- Beware the difference between
 - Determine for a sentence whether an entity pair in the sentence is in a particular relation
 - Recall and precision
 - Determine from a text:
 - We may use several occurrences of the pair in the text to draw a conclusion
 - Precision

We skip the confidence scoring

More fine grained IE

So far

- Tokenization+tagging
- □ Identifying the "actors"
 - Chunking
 - Named-entity recognition
 - Co-reference resolution
- Relation detection

Possible refinements

- Event detection
 - Co-reference resolution of events
- Temporal extraction
- Template filling

Some example systems

- □ Stanford core nlp: <u>http://corenlp.run/</u>
- □ SpaCy (Python): <u>https://spacy.io/docs/api/</u>
- OpenNLP (Java): <u>https://opennlp.apache.org/docs/</u>
- GATE (Java): https://gate.ac.uk/
 - <u>https://cloud.gate.ac.uk/shopfront</u>
- UDPipe: <u>http://ufal.mff.cuni.cz/udpipe</u>
 - Online demo: <u>http://lindat.mff.cuni.cz/services/udpipe/</u>
- □ Collection of tools for NER:
 - <u>https://www.clarin.eu/resource-families/tools-named-entity-recognition</u>

Today

Information extraction:

- Relation extractions
 - 5 ways

□ Two words on syntax and treebanks

- Encoder-decoders
- Beam search

Sentences have inner structure

So far

- □ Sentence: a sequence of words
- Properties of words: morphology, tags, embeddings
- Probabilities of sequences
- Flat

But

- Sentences have inner structure
- The structure determines whether the sentence is grammatical or not
- The structure determines how to understand the sentence

Why syntax?

- Some sequences of words are well-formed meaningful sentences.
- Others are not:
 - Are meaningful of some sentences sequences well-formed words

- □ It makes a difference:
 - A dog bit the man.
 - The man bit a dog.
- BOW-models don't capture this difference

Two ways to describe sentence structure

Phrase structure

Dependency structure

Focus of INF2820

Focus of IN2110

Constituents and phrases

□ Constituent: A group of word which functions as a unit in the sentence

- See Wikipedia: Constituent for criteria of constituency
- Phrase: A sequence of words which "belong together"
 - = constituent (for us)
 - In some theories a phrase is a constituent of more than one word

Phrases

- Phrases can be classified into categories:
 - Noun Phrases, Verb Phrases, Prepositional Phrases, etc.
- Phrases of the same category have similar distribution,
 - e.g. NPs can replace names
 - (but there are restrictions on case, number, person, gender agreement, etc.)
- Phrases of the same category have similar structure, simplified:
 NP (roughly): (DET) ADJ* N PP* (+ some alternatives, e.g. pronoun)
 PP: PREP NP

Phrase structure

- A sentence is hierarchically ordered into phrases
- Various syntactic theories and models and NLP tools depart with respect to the actual trees:
 - Models based on X-bar theory prefer "deep threes": binary branching
 - Penn treebank prefers shallow trees

A Penn treebank tree

Treebanks

□ A collection of analyzed sentences/trees

Penn treebank is best known

Treebanks

- Treebanks are corpora in which each sentence has been paired with a parse tree (presumably the right one).
- □ These are generally created
 - By first parsing the collection with an automatic parser
 - And then having human annotators correct each parse as necessary.
- This requires detailed annotation guidelines that provide a POS tagset, a grammar and instructions for how to deal with particular grammatical constructions.

Different types of treebanks

Hand-made

- Human annotators assign trees.
- □ The trees define a grammar:
 - Many rules
 - Penn uses flat trees

Parse bank

- □ Start with a grammar
- And a parser
- Parse the sentences
- A human annotator selects the best analysis between the candidates
- May be used for training a parse ranker

Treebanks

- □ There are available free dependency treebanks for many languages
- □ The place to start in these days: <u>http://universaldependencies.org/</u>
- CONLL-formats:
 - One word per line, a number of columns for various information
 - CONLL-X, CONLL-U different POSTAGs

ID	FORM	LEMMA	UPOSTAG	XPOSTAG	FEATS	HEAD	DEPREL
1	They	they	PRON	PRP	Case=Nom Number=Plur	2	nsubj
2	buy	buy	VERB	VBP	Number=Plur Person=3 Tense=Pres	0	root
3	and	and	CONJ	CC	_	4	СС
4	sell	sell	VERB	VBP	Number=Plur Person=3 Tense=Pres	2	conj
5	books	book	NOUN	NNS	Number=Plur	2	obj
6			PUNCT		_	2	punct

from Andrei's INF5830 slides

Today

Information extraction:

- Relation extractions
 - 5 ways
- Two words on syntax and treebanks
- □ Encoder-decoders
- Beam search

Using an RNN to generate the completion of an input phrase.

ldea

- Read-in the first part of the sentence, and
- □ then predict the rest of the sentence
- □ using an RNN trained on sentences

Applied to machine translation

Bi-text

- Text translated between two languages
- The translated sentences are aligned into sentence pairs
- Machine learning based translation systems are trained on large amounts of bitext
- Encoder-decoder based translation
 - Concatenate the two sentences in a pair:
 - source sentence_<\s>_target sentence
 - Train an RNN on these concatenated pairs
 - Apply by reading a source sentences and from there predict a target sentence

Figure 10.2 Training setup for a neural language model approach to machine translation. Source-target bitexts are concatenated and used to train a language model.

Figure 10.4 Basic architecture for an abstract encoder-decoder network. The context is a function of the vector of contextualized input representations and may be used by the decoder in a variety of ways.

Refinements

- The encoder can be more refined that a simple RNN,
 - □ e.g. bi-LSTM
 - (or using GRU which we will not consider here)

The decoder may take more information into consideration

Today

Information extraction:

- Relation extractions
 - 5 ways
- Two words on syntax and treebanks
- Encoder-decoders
- Beam search

Search

- □ For sequence labeling (tagging), we could use greedy search:
 - choose one label/tag at a time:
 - the most probable one given the ones we already have chosen

$$\hat{t}_i = \underset{t_i}{\operatorname{argmax}} P(t_i \mid t_1^{i-1}, w_1^n)$$

(the way we implemented the discriminative tagger in mandatory 2)

But the goal is to find the most probable tag sequence given the data

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- The HMM-model did this
- If there is a limit to the history considered (e.g. *n* previous tags),
- one can use a CRF-model for discriminative tagging, and dynamic programming as in HMM
- □ For encoder-decoder, there is no limit to the history, so this is not an option.

Beam Search

- □ Where greedy search chooses the unique best hypotesis at each step,
- \square Beam search keep a number of best hypotheses, say n=10
 - At each step it
 - considers the best continuations of these hypotheses
 - This will yield more than *n* hypotheses
 - it prunes away the less probable hypotheses, and keep the *n* best ones.

