IN4080 - 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Probabilities

Tutorial, 18 Aug.

Today - Probability theory

\square Probability
\square Random variable

The benefits of statistics in NLP:

1. Part of the (learned) model:
\square What is the most probable meaning of this occurrence of bass?
\square What is the most probable parse of this sentence?
\square What is the best (most probable) translation of a certain Norwegian sentence into English?

Tagged text and tagging

```
[('They', 'PRP')('saw', 'VBD'). ('a', 'DT'),('saw', 'NN').('.', '.')]
[('They', 'PRP'), ('like', 'VBP'), ('to','TO'), ('saw', 'VB'), ('.',''.')]
[('They', 'PRP'), ('saw', 'VBD'), ('a', 'DT'), ('log', 'NN')]
```

\square In tagged text each token is assigned a "part of speech" (POS) tag
\square A tagger is a program which automatically ascribes tags to words in text \square We will return to how they work
\square From the context we are (most often) able to determine the tag.
\square But some sentences are genuinely ambiguous and hence so are the tags.

The benefits of statistics in NLP:

2. In constructing models from examples ("learning"):
\square What is the best model given these examples?

- Given a set of tagged English sentences.
- Try to construct a tagger from these.
- Between several different candidate taggers, which one is best?
$■$ Given a set of texts translated between French and English
- Try to construct a translations system from these
- Which system is best

The benefits of statistics in NLP:

3. In evaluation:
\square We have two parsers and test them on 1000 sentences. One gets 86% correct and the other gets 88% correct. Can we conclude that one is better than the other

- If parser one gets 86% correct on the 1000 sentences drawn from a much larger corpus. How well will it perform on the corpus as a whole?

Components of statistics

1. Probability theory

- Mathematical theory of chance/random phenomena

2. Descriptive statistics

- Describing and systematizing data

3. Inferential statistics

- Making inferences on the basis of (1) and (2), e.g.
- (Estimation:) "The average height is between 179 cm and 181 cm with 95% confidence"
- (Hypothesis testing:) "This pill cures that illness, with 99\% confidence"

9
 Probability theory

Basic concepts

\square Random experiment (or trial) (no: forsøk)
\square Observing an event with unknown outcome
\square Outcomes (utfallene)
\square The possible results of the experiment
\square Sample space (utfallsrommet)
\square The set of all possible outcomes

Examples

\(\left.\begin{array}{l|l|l}\hline \& Experiment \& Sample space, \Omega

\hline 1 \& Flipping a coin \& \{\mathrm{H}, \mathrm{T}\}

\hline 2 \& Rolling a dice \& \{1,2,3,4,5,6\}

\hline 3 \& Flipping a coin three times \& \{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH},

\& THT, TTH, TTT\}\end{array}\right\}\)| Will it rain tomorrow? | $\{\mathrm{Yes}, \mathrm{No}\}$ |
| :--- | :--- |

Examples

\(\left.$$
\begin{array}{l|l|l|}\hline & \text { Experiment } & \text { Sample space, } \Omega \\
\hline 1 & \text { Flipping a coin } & \{\mathrm{H}, \mathrm{T}\} \\
\hline 2 & \text { Rolling a dice } & \begin{array}{l}\{1,2,3,4,5,6\} \\
\hline 3\end{array} \\
\hline \text { Flipping a coin three times } & \begin{array}{l}\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \\
\mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}\end{array}
$$

\hline 4 \& Will it rain tomorrow? \& \{\mathrm{Yes}, \mathrm{No}\}

\hline 5 \& A word occurrence in "Tom Sawyer" \& \{\mathrm{u} \mid \mathrm{u} is an English word\}

\hline 6 \& Throwing a dice until you get 6 \& \{1,2,3,4, ···\}\end{array}\right\}\)| The maximum temperature at Blindern for a day |
| :--- |
| 7 |

Event

\square An event (begivenhet/hendelse) is a set of elementary outcomes

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	$\{5,6\}$
3	Flipping a coin three times	Getting at least two heads	$\{H H H$, HHT, HTH, THH $\}$

Event

\square An event (begivenhet) is a set of elementary outcomes

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	$\{5,6\}$
3	Flipping a coin three times	Getting at least two heads	$\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
5	A word occurrence in "'Tom Sawyer"	The word is a noun	$\{u \mid u$ is an English noun $\}$
$\mathbf{6}$	Throwing a dice until you get 6	An odd number of throws	$\{1,3,5, \ldots\}$
7	The maximum temperature at Blindern	Between 20 and 22	$\{t \mid 20 \leq \dagger \leq 22\}$

Operations on events

\square Union: $A \cup B$
\square Intersection (snitt): $\mathrm{A} \cap \mathrm{B}$
\square Complement
\square Venn diagram

- http://www.google.com/doodles/iohn-venns-180th-birthday

Probability measure, sannsynlighetsmål

\square A probability measure P is a function from events to the interval $[0,1]$ such that:

1. $P(\Omega)=1$
2. $P(A) \geq 0$
3. If $A \cap B=\varnothing$ then $P(A \cup B)=P(A)+P(B)$
\square And if $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \ldots$ are disjoint, then

$$
P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)
$$

Examples

		Experiment	Event
2	Rolling a fair dice	Getting 5 or 6	$P(\{5,6\})=2 / 6=1 / 3$
3	Flipping a fair coin three times	Getting at least two heads	$P(\{H H H, H H T, H T H, T H H\})=4 / 8$

Examples

	Experiment	Event	Probability
2	Rolling a dice	Getting 5 or 6	$\mathrm{P}(\{5,6\})=2 / 6=1 / 3$
3	Flipping a coin three times	Getting at least two heads	$\mathrm{P}(\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\})=4 / 8$
5	A word in TS	It is a noun	$\mathrm{P}(\{\mathrm{u} \mid \mathrm{u}$ is a noun $\})=0.43$?
6	Throwing a dice until you get 6	An odd number of throws	$\mathrm{P}(\{1,3,5, \ldots\})=$?
7	The maximum temperature at Blindern at a given day	Between 20 and 22	$\mathrm{P}(\{\dagger \mid 20 \leq \mathrm{t} \leq 22\})=0.05$

Some observations

$\square P(\varnothing)=0$
$\square P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Some observations

$\square P(\varnothing)=0$
$\square P(A \cup B)=P(A)+P(B)-P(A \cap B)$
\square If Ω is is finite or more generally countable, then

$$
P(A)=\sum_{a \in A} P(\{a\})
$$

\square In general, $P(\{a\})$ does not have to be the same for all $a \in A$

- For some of our examples, like fair coin or fair dice, they are: $P(\{a\})=1 / n$, where $\#(\Omega)=n$
- But not if the coin/dice is unfair
- E.g. $P(\{n\})$, the probability of using n throws to get the first 6 is not uniform
- If A is infinite, $P(\{a\})$ can't be uniform

Joint probability

$\square \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
\square Both A and B happens

Examples

6 -sided fair dice, find the following probabilities
\square Two throws: the probability of 2 sixes?
\square The probability of getting a six in two throws?
$\square 5$ dices: the probability of getting 5 equal dices?
$\square 5$ dices: the probability of getting 1-2-3-4-5?
$\square 5$ dices: the probability of getting no 6 -s?

Counting methods

Given all outcomes equally likely
$\square \mathrm{P}(\mathrm{A})=$ number of ways A can occur/ total number of outcomes
\square Multiplication principle:
if one experiment has m possible outcomes and another has n possible outcomes, then the two have $m n$ possible outcomes

Sampling

How many different samples?
\square Ordered sequences:

- Choose k items from a population of n items with replacement: n^{k}
\square Without replacement:

$$
\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \cdots(n-k+1)=\prod_{i=0}^{k-1}(n-i)=\frac{n!}{(n-k)!}
$$

\square Unordered sequences
\square Without replacement: $\frac{1}{k!}\left(\frac{n!}{(n-k)!}\right)=\left(\frac{n!}{k!(n-k)!}\right)=\binom{n}{k}$

- = the number of ordered sequences/ the number of ordered sequences containing the same k elements

Conditional probability

\square Conditional probability (betinget sannsynlighet)

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

\square The probability of A happens if B happens

Conditional probability

\square Conditional probability (betinget sannsynlighet)

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

\square The probability of A happens if B happens
\square Multiplication rule $P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)$
$\square A$ and B are independent iff $P(A \cap B)=P(A) P(B)$

Example

\square Throwing two dice

- A: the sum of the two is 7
\square B: the first dice is 1
- $P(A)=6 / 36=1 / 6$
- $P(B)=1 / 6$
- $P(A \cap B)=$
$P(\{(1,6)\})=1 / 36=P(A) P(B)$
\square Hence: A and B are independent

Also throwing two dice
$\square \mathrm{C}$: the sum of the two is 5
\square B: the first dice is 1

- $P(C)=4 / 36=1 / 9$
$\square P(C \cap B)=P(\{(1,4)\})=1 / 36$
$\square P(C) P(B)=1 / 9 * 1 / 6=1 / 54$
\square Hence: B and C are not independent

Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

\square Jargon:
$\square P(A)$ - prior probability
$\square P(A \mid B)$ - posterior probability
\square Extended form

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid-A) P(-A)}
$$

Example: Corona test

\square The test has a good sensitivity (= recall)8cf. Wikipedia):
\square It recognizes 80% of the infected
$\square P($ pos $\mid c 19)=0.8$
\square It has an even better specificity:
\square If you are not ill, there is only 0.1% chance for a positive test
$\square P(p o s \mid-c 19)=0.001$
\square What is the chances you are ill if you get a positive test?
\square (These numbers are realistic, though I don't recall the sources).

Example: Corona test, contd.

$\square P($ pos $\mid c 19)=0.8, P($ pos $\mid-c 19)=0.001$
\square We also need the prior probability.
\square Before the summer it was assumed to be something like $P(c 19)=\frac{1}{10000}$
\square i.e. 10 in 100,000 or 500 in Norway
\square Then $P(c 19 \mid p o s)=\frac{P(\text { pos } \mid c 19) P(c 19)}{P(p o s \mid c 19) P(c 19)+P(\text { pos } \mid-c 19) P(-c 19)}=$
$\frac{0.8 \times 0.0001}{0.8 \times 0.0001+0.001 \times 0.999}=0.074$

Example: What to learn?

\square Most probably you are not ill, even if you get a positive test.
\square But it is much more probable that your are ill after a positive test (posterior probability) than before the test (prior probability).
\square It doesn't make sense to test large samples to find out how many are infected.
\square Why we don't test everybody.
\square Repeating the test might help.

Exercises:

a) What would the probability have been
if there were 10 times as many infected?
b) What would the probability have been if the specificity of the test was only 98%

What are probabilities?

\square Example throwing a dice:

1. Classical view:

- The six outcomes are equally likely

2. Frequenist:
\square If you throw the dice many, many, many times, the number of 6 s approach 16.6666...\%
3. Bayesian: subjective beliefs

Random variable

\square A variable X in statistics is a property (feature) of an outcome of an experiment.

- Formally it is a function from a sample space (utfallsrom) Ω to a value space Ω_{x}.
\square When the value space Ω_{x} is numerical (roughly a subset of R^{n}), it is called a random variable
\square There are two kinds:
- Discrete random variables
- Continuous random variables
\square A third type of variable: categorical variable, when Ω_{x} is nonnumerical

Examples

1. Throwing two dice,

- $\Omega=\{(1,1),(1,2), \ldots(1,6),(2,1), \ldots(6,6)\}$

1. The number of 6 s is a random variable $X, \Omega_{x}=\{0,1,2\}$
2. The number of 5 or 6 s is a random variable $\mathrm{Y}, \Omega_{\mathrm{Y}}=\Omega_{\mathrm{X}}$
3. The sum of the two dice, $Z, \Omega_{Z}=\{2,3, \ldots, 12\}$
4. A random person:
5. X, the height of the person $\Omega_{\mathrm{x}}=[0,3]$ (meters)
6. Y, the gender $\Omega_{Y}=\{0,1\}$ (1 for female)
$\square \quad$ Ex 2.1 is continuous, the other are discrete

Discrete random variable

\square The value space is a finite or a countable infinite set of numbers $\{x 1, x 2, \ldots, x n, \ldots\}$
\square The probability mass function, pmf, p, also called frequency function, which to each value yields
$\square p\left(x_{i}\right)=P\left(X=x_{i}\right)=P\left(\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}\right)$
\square The cumulative distribution function, cdf, $\square F\left(x_{i}\right)=P\left(X \leq x_{i}\right)=P\left(\left\{\omega \in \Omega \mid X(\omega) \leq x_{i}\right\}\right)$

Examples

\square Throwing two dice,
$\square \Omega=\{(1,1),(1,2), \ldots(1,6),(2,1), \ldots(6,6)\}$
\square (1.3) The sum of the two dice, Z,

$$
\Omega_{z}=\{2,3, \ldots, 12\}
$$

- $p_{z}(2)=P(\{(1,1)\}=1 / 36$
$-p_{z}(7)=6 / 36$
$-F_{z}(7)=1+2+\ldots+6=21 / 36$
\square (1.1) The number of $6 s X, \Omega_{X}=\{0,1,2\}$
- $p_{x}(2)=P(\{(6,6)\}=1 / 36$
- $p_{x}(1)=P(\{(6, x) \mid x \neq 6\}+P(\{(x, 6) \mid x \neq 6\}=10 / 36$
$\square \mathrm{px}(0)=25 / 36$

Mean - example

\square Throwing two dice, what is the mean value of their sum?

- $(2+3+4+5+6+7+$ $3+4+5+6+7+8+$
$4+5+6+7+8+9+$
$5+6+7+8+9+10+$

$$
6+7+8+9+10+11+
$$

$$
7+8+9+10+11+12) / 36=
$$

$\square(2+2 * 3+3 * 4+4 * 5+5 * 6+6 * 7+5 * 8+\ldots 2 * 11+12) / 36=$
$\square(1 / 36) 2+(2 / 36) * 3+(3 / 36) * 4+\ldots+(1 / 36) * 12=$
$\square \mathrm{p}(2) * 2+\mathrm{p}(3) * 3+\mathrm{p}(4) * 4+\ldots \mathrm{p}(12) * 12=$
$\square \Sigma p(x) * x$

Mean of a discrete random variable

\square The mean (or expectation) (forventningsverdi) of a discrete random variable X :

$$
\mu_{X}=E(X)=\sum_{x} p(x) x
$$

\square Useful to remember

$$
\begin{aligned}
& \mu_{(X+Y)}=\mu_{X}+\mu_{Y} \\
& \mu_{(a+b X)}=a+b \mu_{x}
\end{aligned}
$$

Examples:
One dice: 3.5
Two dice: 7
Ten dice: 35

More than mean

\square Mean doesn't say everything
\square Examples
\square (1.3) The sum of the two dice, Z, i.e.
$\square p_{z}(2)=1 / 36, \ldots, p_{z}(7)=6 / 36$ etc
$\square(3.2) p_{2}$ given by:

- $p_{2}(7)=1$
- $p_{2}(x)=0$ for $x \neq 7$
$\square(3.3) p_{3}$ given by:
- $p_{3}(x)=1 / 11$ for $x=2,3, \ldots, 12$
\square Have the same mean but are very different

Variance

\square The variance of a discrete random variable X

$$
\operatorname{Var}(X)=\sigma^{2}=\sum_{x} p(x)(x-\mu)^{2}
$$

\square The standard deviation of the random variable

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

Examples

\square Throwing one dice

- $\mu=(1+2+. .+6) / 6=7 / 2$
$\square \sigma^{2}=\left((1-7 / 2)^{2}+(2-7 / 2)^{2}+\ldots(6-7 / 2)^{2}\right) / 6=(25+9+1) / 4 * 3=35 / 12$
\square (Ex 1.3) Throwing two dice: 35/6
$\square(E x 3.2) p_{2}$, where $p_{2}(7)=1$ has variance 0
\square (Ex 3.3) p_{3}, the uniform distribution, has variance:
$\square\left((2-7)^{2}+\ldots(12-7)^{2}\right) / 11=(25+16+9+4+1+0) * 2 / 11=10$

Take home

\square Probability space
\square Random experiment (or trial) (no: forsøk)

- Outcomes (utfallene)
\square Sample space (utfallsrommet)
\square An event (begivenhet/hendelse)
\square Bayes theorem
\square Discrete random variable
- The probability mass function, pmf
- The cumulative distribution function, cdf
\square The mean (or expectation) (forventningsverdi)
\square The variance of a discrete random variable X
- The standard deviation of the random variable

