IN4080 – 2020 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Probabilities

Tutorial, 18 Aug.

Today – Probability theory

- Probability
- Random variable

The benefits of statistics in NLP:

- 1. Part of the (learned) model:
 - What is the most probable meaning of this occurrence of bass?
 - What is the most probable parse of this sentence?
 - What is the best (most probable) translation of a certain Norwegian sentence into English?

Tagged text and tagging

[('They', 'PRP'), ('saw', 'VBD'), 'a', 'DT'), ('saw', 'NN'), ('.', '.')] [('They', 'PRP'), ('like', 'VBP'), ('to', 'TO'), ('saw', 'VB'), ('.', '.')] [('They', 'PRP'), ('saw', 'VBD'), ('a', 'DT'), ('log', 'NN')]

- □ In tagged text each token is assigned a <u>"part of speech" (POS) tag</u>
- □ A tagger is a program which automatically ascribes tags to words in text
 - We will return to how they work
- □ From the context we are (most often) able to determine the tag.
 - But some sentences are genuinely ambiguous and hence so are the tags.

The benefits of statistics in NLP:

- 6
- 2. In constructing models from examples ("learning"):
 - What is the best model given these examples?
 - Given a set of tagged English sentences.
 - Try to construct a tagger from these.
 - Between several different candidate taggers, which one is best?
 - Given a set of texts translated between French and English
 - Try to construct a translations system from these
 - Which system is best

The benefits of statistics in NLP:

- 3. In evaluation:
 - We have two parsers and test them on 1000 sentences. One gets 86% correct and the other gets 88% correct. Can we conclude that one is better than the other
 - If parser one gets 86% correct on the 1000 sentences drawn from a much larger corpus. How well will it perform on the corpus as a whole?

Components of statistics

- 1. Probability theory
 - Mathematical theory of chance/random phenomena
- 2. Descriptive statistics
 - Describing and systematizing data
- 3. Inferential statistics
 - Making inferences on the basis of (1) and (2), e.g.
 - (Estimation:) "The average height is between 179cm and 181cm with 95% confidence"
 - (Hypothesis testing:) "This pill cures that illness, with 99% confidence"

Probability theory

9

Basic concepts

Random experiment (or trial) (no: forsøk)

Observing an event with unknown outcome

- Outcomes (utfallene)
 - The possible results of the experiment
- □ Sample space (utfallsrommet)
 - The set of all possible outcomes

	Experiment	Sample space, Ω
1	Flipping a coin	{H, T}
2	Rolling a dice	{1,2,3,4,5,6}
3	Flipping a coin three times	{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
4	Will it rain tomorrow?	{Yes, No}

	Experiment	Sample space, Ω
1	Flipping a coin	{H, T}
2	Rolling a dice	{1,2,3,4,5,6}
3	Flipping a coin three times	{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
4	Will it rain tomorrow?	{Yes, No}
5	A word occurrence in ''Tom Sawyer''	{u u is an English word}
6	Throwing a dice until you get 6	{1,2,3,4,}
7	The maximum temperature at Blindern for a day	{t t is a real}

Event

□ An event (begivenhet/hendelse) is a set of elementary outcomes

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	{5,6}
3	Flipping a coin three times	Getting at least two heads	{ННН, ННТ, НТН, ТНН}

Event

□ An event (begivenhet) is a set of elementary outcomes

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	{5,6}
3	Flipping a coin three times	Getting at least two heads	{HHH, HHT, HTH, THH}
5	A word occurrence in ''Tom Sawyer''	The word is a noun	{υ υ is an English noun}
6	Throwing a dice until you get 6	An odd number of throws	{1,3,5,}
7	The maximum temperature at Blindern	Between 20 and 22	{† 20 ≤ † ≤ 22}

Operations on events

- \Box Union: $A \cup B$
- \Box Intersection (snitt): A \cap B
- Complement

- Venn diagram
- http://www.google.com/doodles/john-venns-180th-birthday

Probability measure, sannsynlighetsmål

- A probability measure P is a function from events to the interval [0,1] such that:
- 1. $P(\Omega) = 1$
- 2. $P(A) \geq 0$
- 3. If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$

And if A1, A2, A3, ... are disjoint, then

$$P\Big(\bigcup_{j=1}^{\infty} A_j\Big) = \sum_{j=1}^{\infty} P(A_j)$$

	Experiment	Event	Probability
2	Rolling a fair dice	Getting 5 or 6	P({5,6})=2/6=1/3
3	Flipping a fair coin three times	Getting at least two heads	$P(\{HHH, HHT, HTH, THH\}) = 4/8$

Experiment Probability **Event** $P({5,6})=2/6=1/3$ 2 Rolling a dice Getting 5 or 6 3 $P(\{HHH, HHT, HTH, THH\}) = 4/8$ Getting at least two heads Flipping a coin three times $P(\{u \mid u \text{ is a noun}\}) = 0.43?$ 5 A word in TS It is a noun P({1,3,5, ...})=? 6 Throwing a dice until you get 6 An odd number of throws $P(\{t \mid 20 \le t \le 22\}) = 0.05$ 7 Between 20 and 22 The maximum temperature at Blindern at a given day

Some observations

$$\square P(\emptyset) = 0$$
$$\square P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Some observations

□ P(∅) = 0

 $\Box P(A \cup B) = P(A) + P(B) - P(A \cap B)$

 \square If Ω is is finite or more generally countable, then

$$P(A) = \sum_{a \in A} P(\{a\})$$

- \square In general, P({a}) does not have to be the same for all a $\in A$
 - For some of our examples, like fair coin or fair dice, they are: $P(\{a\})=1/n$, where $\#(\Omega)=n$
 - But not if the coin/dice is unfair
 - E.g. $P({n})$, the probability of using *n* throws to get the first 6 is not uniform
 - If A is infinite, P({a}) can't be uniform

Joint probability

- □ P(A∩B)
 - Both A and B happens

Examples

6-sided fair dice, find the following probabilities

- □ Two throws: the probability of 2 sixes?
- □ The probability of getting a six in two throws?
- □ 5 dices: the probability of getting 5 equal dices?
- □ 5 dices: the probability of getting 1-2-3-4-5?
- □ 5 dices: the probability of getting no 6-s?

Counting methods

Given all outcomes equally likely

Multiplication principle:

if one experiment has *m* possible outcomes and another has *n* possible outcomes, then the two have *mn* possible outcomes

Sampling

How many different samples?

Ordered sequences:

• Choose k items from a population of n items with replacement: n^k

Without replacement:

$$n(n-1)(n-2)\cdots(n-k+1) = \prod_{i=0}^{k-1} (n-i) = \frac{n!}{(n-k)!}$$

1. 1

Unordered sequences

• Without replacement:
$$\frac{1}{k!} \left(\frac{n!}{(n-k)!} \right) = \left(\frac{n!}{k!(n-k)!} \right) = \binom{n}{k}$$

the number of ordered sequences/ the number of ordered sequences containing the same k elements

Conditional probability

25

Conditional probability (betinget sannsynlighet)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

The probability of A happens if B happens

Conditional probability

26

Conditional probability (betinget sannsynlighet)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

The probability of A happens if B happens
Multiplication rule P(A∩B) = P(A | B)P(B)=P(B | A)P(A)
A and B are independent iff P(A∩B) = P(A)P(B)

Example

- □ Throwing two dice
 - A: the sum of the two is 7
 - B: the first dice is 1
 - P(A) =6/36 = 1/6
 - P(B) = 1/6
 - $P(A \cap B) =$ $P(\{(1,6)\})=1/36=P(A)P(B)$
 - Hence: A and B are independent

- □ Also throwing two dice
 - C: the sum of the two is 5
 - B: the first dice is 1
 - P(C)=4/36=1/9
 - $P(C \cap B) = P(\{(1,4)\}) = 1/36$
 - P(C)P(B)= 1/9 * 1/6 = 1/54
 - Hence: B and C are not independent

Bayes theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Jargon:

P(A) – prior probability

P(A | B) – posterior probability

Extended form

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid -A)P(-A)}$

Example: Corona test

- \Box The test has a good sensitivity (= recall)8cf. <u>Wikipedia</u>):
 - It recognizes 80% of the infected
 - $\square P(pos|c19) = 0.8$
- □ It has an even better specificity:
 - If you are not ill, there is only 0.1% chance for a positive test P(pos|-c19) = 0.001
- □ What is the chances you are ill if you get a positive test?
- □ (These numbers are realistic, though I don't recall the sources).

Example: Corona test, contd.

 $\square P(pos|c19) = 0.8, P(pos|-c19) = 0.001$

□ We also need the prior probability.

Before the summer it was assumed to be something like P(c19) = ¹/₁₀₀₀₀
 i.e. 10 in 100,000 or 500 in Norway

 $\square \text{ Then } P(c19|pos) = \frac{P(pos|c19)P(c19)}{P(pos|c19)P(c19) + P(pos|-c19)P(-c19)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.001 \times 0.999} = 0.074$

Example: What to learn?

- 31
- □ Most probably you are not ill, even if you get a positive test.
- But it is much more probable that your are ill after a positive test (posterior probability) than before the test (prior probability).
- It doesn't make sense to test large samples to find out how many are infected.
- □ Why we don't test everybody.
- Repeating the test might help.

Exercises:

a) What would the probability have beenif there were 10 times as many infected?b) What would the probability have beenif the specificity of the test was only 98%

What are probabilities?

- □ Example throwing a dice:
- 1. Classical view:
 - The six outcomes are equally likely
- 2. Frequenist:
 - If you throw the dice many, many, many times, the number of 6s approach 16.6666...%
- 3. Bayesian: subjective beliefs

Random variables

33

Random variable

- A variable X in statistics is a property (feature) of an outcome of an experiment.
 - \square Formally it is a function from a sample space (utfallsrom) Ω to a value space Ω_{χ} .
- □ When the value space Ω_{χ} is numerical (roughly a subset of Rⁿ), it is called a random variable
- There are two kinds:
 - Discrete random variables
 - Continuous random variables
- \Box A third type of variable: categorical variable, when Ω_{χ} is nonnumerical

Examples

- 1. Throwing two dice,
 - $\square \quad \Omega = \{(1,1), (1,2), \dots (1,6), (2,1), \dots (6,6)\}$
 - 1. The number of 6s is a random variable X, $\Omega_{X} = \{0, 1, 2\}$
 - 2. The number of 5 or 6s is a random variable Y, $\Omega_{\rm Y} = \Omega_{\rm X}$
 - 3. The sum of the two dice, Z, $\Omega_{z} = \{2, 3, ..., 12\}$
- 2. A random person:
 - 1. X, the height of the person Ω_{χ} =[0, 3] (meters)
 - 2. Y, the gender $\Omega_{Y} = \{0, 1\}$ (1 for female)
- □ Ex 2.1 is continuous, the other are discrete

Discrete random variable

- The value space is a finite or a countable infinite set of numbers {x1, x2,..., xn, ...}
- The probability mass function, pmf, p, also called frequency function, which to each value yields
 - $\square p(\mathbf{x}_i) = P(X = \mathbf{x}_i) = P(\{\omega \in \Omega \mid X(\omega) = \mathbf{x}_i\})$
- □ The cumulative distribution function, cdf, □ $F(x_i) = P(X \le x_i) = P(\{\omega \in \Omega \mid X(\omega) \le x_i\})$

Diagrams: Wikipedia

Examples

39

□ Throwing two dice, $\square \Omega = \{(1,1), (1,2), \dots (1,6), (2,1), \dots (6,6)\}$ \square (1.3) The sum of the two dice, Z, $\Omega_7 = \{2, 3, ..., 12\}$ $\mathbf{P}_{7}(2) = P(\{(1,1)\} = 1/36)$ $p_7(7) = 6/36$ $F_7(7) = 1 + 2 + \dots + 6 = 21/36$ \square (1.1) The number of 6s X, $\Omega_x = \{0, 1, 2\}$ $\mathbf{P}_{x}(2) = P(\{(6,6)\} = 1/36)$ $\mathbf{P}_{x}(1) = P(\{(6,x) \mid x \neq 6\} + P(\{(x,6) \mid x \neq 6\} = 10/36)$ px(0) = 25/36

Mean – example

□ Throwing two dice, what is the mean value of their sum?

```
\Box (2+3+4+5+6+7+
     3+4+5+6+7+8+
        4+5+6+7+8+9+
           5+6+7+8+9+10+
             6+7+8+9+10+11+
               7+8+9+10+11+12)/36=
\Box (2 + 2*3 + 3*4 + 4*5 + 5*6 + 6*7 + 5*8 +...2*11+12)/36=
\Box (1/36)2 + (2/36)*3 + (3/36)*4 + ... + (1/36)*12 =
\square p(2)*2 + p(3)*3 + p(4)*4 + ... p(12)*12 =
\Box \Sigma p(\mathbf{x}) * \mathbf{x}
```

Mean of a discrete random variable

41

□ The mean (or expectation) (forventningsverdi) of a discrete random variable X: $\mu_X = E(X) = \sum p(x)x$

Useful to remember

$$\mu_{(X+Y)} = \mu_X + \mu_Y$$
$$\mu_{(a+bX)} = a + b\mu_x$$

Examples: One dice: 3.5 Two dice: 7 Ten dice: 35

More than mean

- Mean doesn't say everything
- Examples
 - (1.3) The sum of the two dice, Z, i.e.
 p₇(2) = 1/36, ..., p₇(7) = 6/36 etc

- (3.2) p₂ given by:
 p₂(7)=1
 p₂(x)= 0 for x ≠ 7
 (3.3) p₃ given by:
 p₃(x)= 1/11 for x = 2,3,...,12
- Have the same mean but are very different

Variance

43

□ The variance of a discrete random variable X

$$Var(X) = \sigma^2 = \sum_{x} p(x)(x - \mu)^2$$

□ The standard deviation of the random variable $\sigma = \sqrt{Var(X)}$

Examples

- □ Throwing one dice
 - $\mu = (1+2+..+6)/6=7/2$ $\sigma^2 = ((1-7/2)^2 + (2-7/2)^2 + ...(6-7/2)^2)/6 = (25+9+1)/4*3=35/12$
- \square (Ex 1.3) Throwing two dice: 35/6
- \square (Ex 3.2) p₂, where p₂(7)=1 has variance 0
- □ (Ex 3.3) p_3 , the uniform distribution, has variance: □ ((2-7)²+...(12-7)²)/11 = (25+16+9+4+1+0)*2/11 = 10

Take home

- Probability space
 - Random experiment (or trial) (no: forsøk)
 - Outcomes (utfallene)
 - Sample space (utfallsrommet)
 - An event (begivenhet/hendelse)
 - Bayes theorem
- Discrete random variable
 - The probability mass function, pmf
 - The cumulative distribution function, cdf
 - The mean (or expectation) (forventningsverdi)
 - The variance of a discrete random variable X
 - The standard deviation of the random variable