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Any two of the following 6 (or others) will do: 

 

1. One can use one language model and compare the probability of two or more sentences 

given the model. This may be applied to 

1.1 Speech recognition 

1.2 Machine translation 

1.3 Context-dependent spelling correction 

 

2. One can use two or more language models and compare the models with respect to a text 

corpus asking which model makes the corpus most probable. This may be applied e.g. in 

2.1 Language identification 

2.2 Author attribution 

2.3 Genre classification 
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We will write 𝑤1
𝑛 for the token sequence 𝑤1, 𝑤2, … 𝑤𝑛 

Then the probability of the token sequence is 

𝑃(𝑤1
𝑛) = ∏ 𝑃(𝑤𝑘|𝑤1

𝑘−1)

𝑛

𝑘=1

 

according to the chain rule. 

 

A bigram language model makes the further assumption that 

𝑃(𝑤𝑘|𝑤1
𝑘−1) = 𝑃(𝑤𝑘|𝑤𝑘−1) for k>2, i,e, that the probability of a token only depends on its 

immediate predecessor and not on the whole history, and hence that 

 

𝑃(𝑤1
𝑛) = ∏ 𝑃(𝑤𝑘|𝑤1

𝑘−1)

𝑛

𝑖=1

= 𝑃(𝑤1) ∏ 𝑃(𝑤𝑘|𝑤𝑘−1)

𝑛

𝑘=2
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𝑃(𝑙𝑖𝑘𝑒𝑠 |𝑆𝑎𝑚) =  
𝑐𝑜𝑢𝑛𝑡(𝑆𝑎𝑚 𝑙𝑖𝑘𝑒𝑠)

𝑐𝑜𝑢𝑛𝑡(𝑆𝑎𝑚)
=

2

3
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𝑃(〈𝑠〉 𝑆𝑎𝑚 𝑙𝑖𝑘𝑒𝑠 𝑆𝑎𝑚 〈\𝑠〉) = 

𝑃(〈𝑠〉)𝑃(𝑆𝑎𝑚 | 〈𝑠〉)𝑃(𝑙𝑖𝑘𝑒𝑠 | 𝑆𝑎𝑚)𝑃(𝑆𝑎𝑚 | 𝑙𝑖𝑘𝑒𝑠)𝑃(〈\𝑠〉 | 𝑆𝑎𝑚) = 

1 ∗  
2

3
∗ 

2

3
∗  

1

3
∗  

1

3
=  

4

81
= 0.49 
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P(ham | likes) = 0 since 'likes ham' does not occur in the corpus, hence the whole sentence 

gets probability 0. 
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Interpolation works by combining an n-gram model with n-gram models with shorter n-

grams. For a bigram model that means to combine the bigram model with a unigram model 

and replacing 𝑃(𝑤𝑘|𝑤𝑘−1) with 

𝑃′(𝑤𝑘|𝑤𝑘−1) = 𝑙2 ∗ 𝑃(𝑤𝑘|𝑤𝑘−1) + 𝑙1 ∗ P(𝑤𝑘), for some suitable choice of 𝑙1 and 𝑙2where    

𝑙1+𝑙2 = 1. Normally, 𝑙1 and 𝑙2 are determined by a maximal likelihood on a held out set. 
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𝑃′(〈𝑠〉 𝑆𝑎𝑚 𝑙𝑖𝑘𝑒𝑠 ℎ𝑎𝑚 〈\𝑠〉) = 

𝑃(〈𝑠〉)𝑃′(𝑆𝑎𝑚 | 〈𝑠〉)𝑃′(𝑙𝑖𝑘𝑒𝑠 | 𝑆𝑎𝑚)𝑃′(𝑆𝑎𝑚 | 𝑙𝑖𝑘𝑒𝑠)𝑃(〈\𝑠 | ℎ𝑎𝑚〉) = 

𝑃(〈𝑠〉)(0.5 ∗ 𝑃(𝑆𝑎𝑚 | 〈𝑠〉) + 0.5 ∗ 𝑃(𝑆𝑎𝑚)) ∗ 
(0.5 ∗ 𝑃(𝑙𝑖𝑘𝑒𝑠 |𝑆𝑎𝑚) + 0.5 ∗ 𝑃(𝑙𝑖𝑘𝑒𝑠)) ∗ 
(0.5 ∗ 𝑃(ℎ𝑎𝑚 | 𝑙𝑖𝑘𝑒𝑠) +  0.5 ∗ 𝑃(ℎ𝑎𝑚)) ∗ 
(0.5 ∗ 𝑃(〈\𝑠 | ℎ𝑎𝑚〉) + 0.5 ∗ 𝑃(〈\𝑠〉) = 

 

1 ∗ 0.5 ∗ ( 
2

3
+

3

17
) ∗ 0.5 ∗ ( 

2

3
+

3

17
) ∗ 0.5 ∗ (0 +  

1

17
) ∗ 0.5 ∗ (1 + 

3

17
) =  

0.54∗432∗1∗20

512∗172  =  

0.0031 
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To use Laplace smoothing to bigrams will move too much probability mass to events we have 

never seen and will never se. For example, considering a corpus of all texts written by 

Shakespeare, it is roughly 900,000 word (tokens) and 30,000 different word types.  

 

From the 30,000 word types there are 900 millions possible bigrams but we cannot have seen 

more than 900,000 of these. Using Laplace smoothing will roughly put 99.9% of the 

probability mass on unseen events and only use 0.1% for the observed bigrams. 

 

 
Maks. poeng: 5 

 

c indicates one class, C is the set of all classes. 

𝑓𝑖is one feature, 𝑣𝑖is the value of this feature 

n is the number of features 

f is the feature vector 𝒇 = 〈𝑓1 = 𝑣1, 𝑓2 = 𝑣2, … , 𝑓𝑛 = 𝑣𝑛〉 which may also be written 

 𝒇 = 〈𝑣1, 𝑣2, … , 𝑣𝑛〉 if the order of features is determined 

𝑃(𝑓𝑖 = 𝑣𝑖 | 𝑐) is the probability that the feature 𝑓𝑖takes the value 𝑣𝑖given the class c 

argmax_{c in C} means consider the expression within the scope of argmax for each c in C 

and choose the c that yields the largest value. 

 

The simplifying assumption is that the value of each feature given a class is independent of 

the values of the other features, i,e., that 

𝑃(𝑓1 = 𝑣1, 𝑓2 = 𝑣2, … 𝑓𝑛 = 𝑣𝑛|𝑐) = ∏ 𝑃( 𝑓𝑘 = 𝑣𝑘|𝑐)

𝑛

𝑘=1
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v P(v | pos) P(v | neg) 

fun 3/12 0 

good 3/12 0 

bad 2/12 1/6 

exciting 4/12 0 

terrible 0 5/6 
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A helping step 

Document Class 

fun, good, bad pos 

exciting, good pos 

fun, exciting, bad pos 

bad neg 

terrible neg 

 

v P(v | pos) P(v | neg) 

fun 2/8 0 

good 2/8 0 

bad 2/8 1/2 

exciting 2/8 0 

terrible 0 1/2 



6 

 

Part 3: Text classification 

 
 

 
√02 + 22 + 32 + 12 + 12 + 02 + 12 + 02 = 

√0 + 4 + 9 + 1 + 1 + 0 + 1 + 0  = 

√16      = 4 

 

 
√22 + 02 + 22 + 22 + 32 + 02 + 02 + 22 = 

√4 + 0 + 4 + 4 + 9 + 0 + 0 + 4  = 

√25      = 5 
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√12 + 02 + 12 + 22 + 02 + 12 + 12 + 12 = 

√1 + 0 + 1 + 4 + 0 + 1 + 1 + 1  = 

√9      = 3 

 

 
𝑉𝑝𝑖𝑧𝑧𝑎 ·𝑉𝑠𝑜𝑢𝑝

||𝑉𝑝𝑖𝑧𝑧𝑎||||𝑉𝑠𝑜𝑢𝑝||  
= 

0×2 + 2×0 + 3×2 + 1×2 + 1×3 + 0×0 + 1×0 + 0×2

4×5
= 

0 + 0 + 6 + 2 + 3 + 0 + 0 + 0

20
= 

11

20
= 0.55 

 

 
𝑉𝑝𝑖𝑧𝑧𝑎 ·𝑉𝑙𝑢𝑛𝑐ℎ

||𝑉𝑝𝑖𝑧𝑧𝑎||||𝑉𝑙𝑢𝑛𝑐ℎ||  
= 

0×1 + 2×0 + 3×1 + 1×2 + 1×0 + 0×1 + 1×1 + 0×1

4×3
= 

0 + 0 + 3 + 2 + 0 + 0 + 1 + 0

12
= 

6

12
= 0.5 
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Two central differences: 

1. tf-idf vectors derive the word vectors from counting occurrences in the document, and 

then weighing the words by their inverse document frequencies (also counting). Word 

embeddings, on the other hand, learns the word vectors by trying to predict the 

context of the word given the word, or by trying to predict the word given the context 

of the word 

2. tf-idf vectors are sparse, i.e. they are of high dimensionality and contain tuypically 

many zeros. Word embeddings are dense, i.e. low dimensionality (typically hundreds 

of dimensions).  

 

 

 
 

You need the term and the (relevant) document to calculate the value for TF. 
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You need the term and all the documents in the corpus to calculate the value for IDF. 

 

 
TFIDF is used to weigh terms by their (estimated) importance. It does not express anything 

about the meaning of a term, even though it it used to calculate e.g. tf-idf vectors. Also, it 

does not say anything about the importance of a whole document. 
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The structure is not projective 

 

Definitions of projectivity 

 Intuition: arcs don't cross each other 

 A head A and dependent B must be adjacent:  

o every word between A and B must be subordinate to A 

 If 𝑖 --> j and (𝑖<𝑘<𝑗) or (𝑗<𝑘<𝑖) then 𝑖 --> * 𝑘 

 

Here 6 --> 1 but we do not have 6 -->* 4 

Alternative explanation: The arc 6--> 1 crosses 4 --> 7 (and 4 --> 0) 

 

 
Maks. poeng: 4 

 

Unlabelled attachment score counts how many tokens are ascribed the correct head 

Labelled attachment score counts how many words are ascribed the correct head and the 

correct label. 
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All words except 'What' is ascribed correct head and label; hence both LAS and UAS are 6/7. 

(Since the graph notation does not display the root edge while the conll format does, also 5/7 

is considered correct here). 
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One has to choose between arc-standard or arc-eager. We show the arc-eager (malt-parser). 

We use the following format 

 

stack | buffer - last move, dependency label added to structure, dependency relation added 

 

0 | What do you like to do ? - start 

0 What | do you like to do ? - shift 

0 What do | you like to do ? - shift 

0 What do you | like to do ?, shift 

0 What do | like to do ?, LeftArc - 4:like --> 3:you, nsubj 

0 What | like to do ? - LeftArc, 4:like --> 2:do, aux 

0 | like to do ?, - LeftArc, 4:like --> 1:What, dep 

0 like | to do ? - RightArc, 0 --> 4:like, root 

0 like  to | do ?- shift,  

0 like  | do ? - LeftArc, 6:do --> 5:to, mark 

0 like   do | ? - RightArc, 4:like --> 6:do, xcomp 

0 like   | ? - Reduce 

0 like   ? | - RightArc, 4:like --> 7:?, punct 

0 like  | - Reduce 

0 | - Reduce 
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The overall goal is to extract information from textual material. 

 

Clean up  

First, make sure that the data is interpreted correctly as text, taking into consideration e.g., 

encoding. May also be necessary to remove (or put aside) meta-data as e.g., XML- or HTML-

tags. 

 

Sentence segmentation 

Split the text into units corresponding to sentences. 

 

Word tokenization  

Split each sentence into a sequence of smaller units corresponding to words. May also be 

units corresponding to punctuation.  

 

Part of speech tagging.  

For each sentence, tag the words with a part-of-speech tag, e.g., whether the word is a noun or 

a verb. 

 

Chunking 

Gather words into so-called NP-chunks, e.g., 

(The president) of the (United States) gave (a speech) . 

These are maximally large NPs that do not contain other NP chunks. 

 

Named entity recognition  

To each NP chunk, decide whether it can name an entity and if it can, assign a class from a 

predefined small set of classes, e.g., person which may apply to "the president" in the 

example, and organization which might apply to "the United States". In a different context 

\the United States" could be classified as a location. 

 

Relation extraction  

Extract relations that exist between the named entities of the text. Normally a pre-defined set 

of relations determined by the purpose of the application, e.g., for medical records, this could 

include date of birth, has symptom, has diagnosis etc. 
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Additional steps  

The extraction of temporal expressions and events can be additional steps which may be used 

to extract e.g., not only that the patient has a symptom, but when the symptom first appeared. 
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Hand written patterns  

A person tries to identify patterns that are commonly used to express the relation, e.g.,  

x wrote y, 

 x is the author of y  

y is a book by x  

for authorship. 

The bottleneck is to write these patterns general enough, and to include sufficiently many of 

them, as there are often many ways to express the same. 
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Supervised classification  

Sentences are manually annotated with named entities and relations between them. This is 

used to train a classifier which can then be used to assign relations to other sentences (after 

they have been tagged, chunked and named-entity recognized). 

 

The bottleneck is that one needs much training material to get this to work satisfactorily and 

that it is resource demanding to make this training material. 


