

Chatbots models, NLU & ASR

Pierre Lison

IN4080: Natural Language Processing (Fall 2022)

18.10.2022

Plan for today

- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language Understanding (NLU) for dialogue systems
- Speech recognition

Plan for today

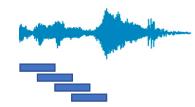
- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language Understanding (NLU) for dialogue systems
- Speech recognition

Oblig 3

Three parts:

Chatbot trained on movie and TV subtitles

Silence detector in audio files



(Simulated) talking elevator

Oblig 3

- Deadline: November 11
 - Concrete delivery: Jupyter notebook
 - Text explanations in the notebook as important as the code itself!
- Don't hesitate to ask questions during the group sessions
 - we are here to help!

Plan for today

- Obligatory assignment
- ► Chatbot models (cont'd)
- Natural Language Understanding (NLU) for dialogue systems
- Speech recognition

Chatbot models: recap

Rule-based models:

if (some pattern match X on user input)
then respond Y to user

► IR models using cosine similarities between vectors

$$r = response \left(\underset{t \in C}{\operatorname{argmax}} \frac{q^T t}{||q||t||} \right)$$

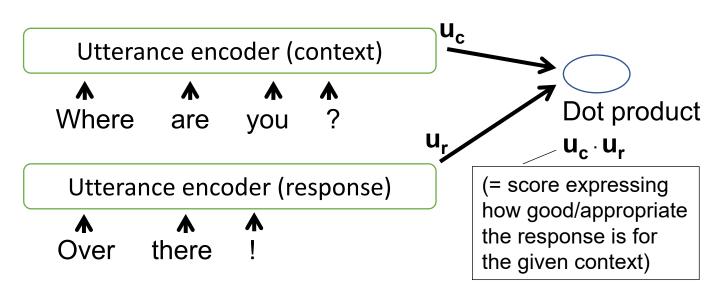
Where C is the set of utterances in dialogue corpus (in a vector representation)

and q is the user input (also in vector form)

Dual encoders

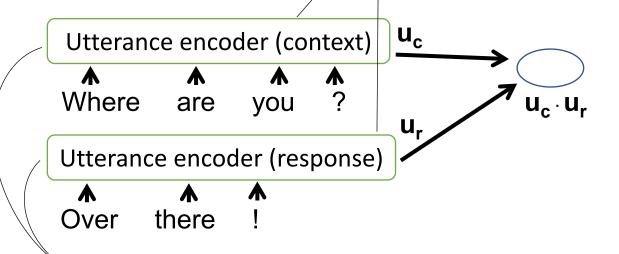
Another type of IR-based chatbots

➤ We compute here the dot product between the user input (called "context") and a possible response



Dual encoders

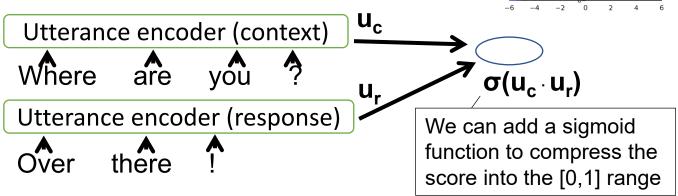
The encoders are typically deep neural networks based on e.g. transformers



The two encoders often rely on a shared neural network, apart from a last transformation step that is specific for the context or response

Dual encoders

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-x}}$$



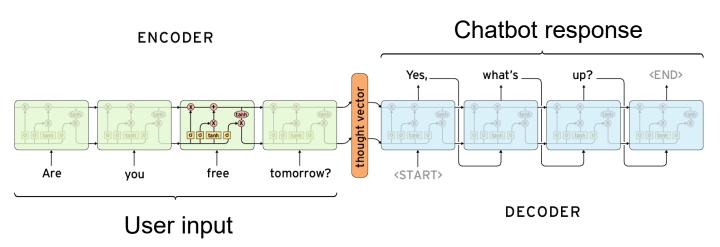
Dual encoders are trained with both *positive* and *negative* examples:

- ▶ Positive : actual consecutive pairs of utterances observed in the corpus → output=1
- Negative: random pairs of utterances → output=0

Seq2seq models

- Sequence-to-sequence models generate a response token-by-token
 - Akin to machine translation
 - Can generate new responses never observed in the corpus
- Two steps:
 - First «encode» the input with a neural model (=tokenise the input and extract the vectors for each token)
 - Then «decode» the output token-by-token (based on the input vectors and the output produced so far)

Seq2seq models



NB: state-of-the-art seq2seq models use an attention mechanism (not shown here) above the recurrent layer

Seq2seq models

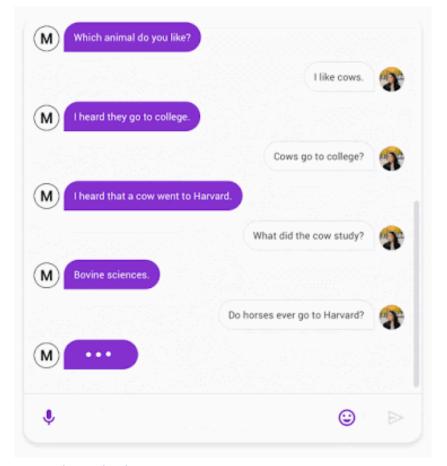
Interesting models for dialogue research

▶ But:

- Difficult to «control» (hard to know in advance what the system may generate)
- Lack of diversity in the responses (often stick to generic answers: «I don't know» etc.)
- Getting a seq2seq model that works reasonably well takes time (and often lots of data)

Example from Meena (Google)

2.6 billion parameters, trained on 341 GB of text (public domain social media conversations)



Taking stock

Pro: Fine-grained control on interaction

Rule-based chatbots

→ Con: Difficult to build, scale and maintain

Corpus-based chatbots

Pro: Easy to build, well-formed responses

IR approaches

seq2seq

existing responses in corpus

Pro: Powerful model, can generate anything

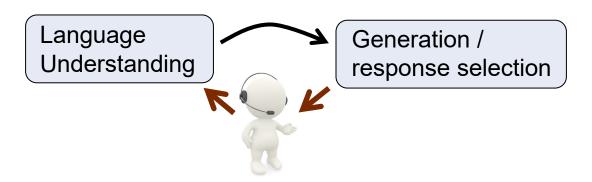
Con: Difficult to train, hard to control, needs lots of data

Corpus-based approaches seen so far often limited to chi-chat dialogues (for which we can easily crawl data)

Plan for today

- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language Understanding (NLU) for dialogue systems
- Speech recognition

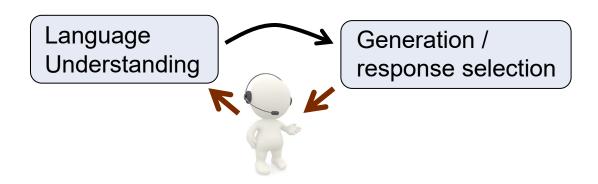
NLU-based chatbots



Can we build data-driven chatbots for taskspecific interactions (not just chit-chat)?

- "Standard" case for commercial chatbots
- Typically: no available task-specific dialogue data

NLU-based chatbots

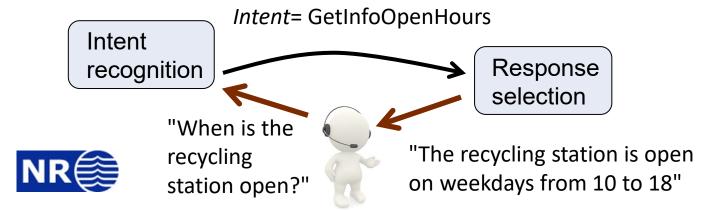


- Solution: NLU as a classification task
 - From a set of (predefined) possible intents
- Response selection generally handcrafted
 - Chatbot owners want to have control over what the chatbot actually says

Intent recognition

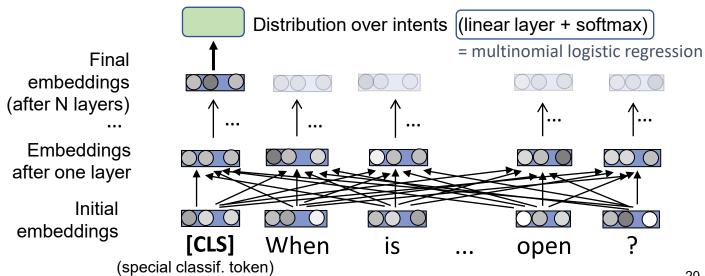
Goal: map user utterance to its most likely intent

- Input: sequence (of characters or tokens)
 - + possibly preceding context
- Output: intent (what the user tries to accomplish)



Intent recognition

- Many possible machine learning models
 - Convolutional, recurrent, transformers, etc
- Example using BERT:



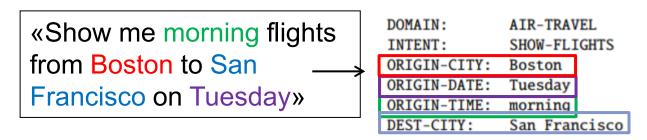
20

Intent recognition

- Need to collect training data to learn this classification model
 - Data: user utterances (+ context) manually annotated with their intent(s)
 - Often annotated by "chatbot trainers" in industry
- Standard approach these days:
 - Take a pre-trained neural language model (i.e. NorBERT for Norwegian)
 - Fine-tune it for this specific classification task

Slot filling

► In addition to intents, we also sometimes need to detect specific entities ("slots"), such as mentions of places or times

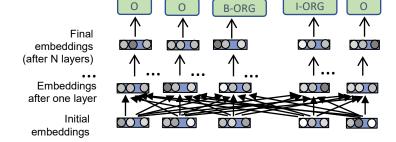


- Slots are domain-specific
 - And so are the ontologies listing all possible values for each slot

Slot filling

Can be framed as a sequence labelling task (as in NER), using e.g. **BIO** schemes

Slot filling



- Token-level classification task
 - Output classes: BIO-prefixed categories
- Slot-filling models also need to be trained / fine-tuned on annotated training data
- Possible to fine-tune intent classifier and slot filler on same model

Small amounts of data?

 Use transfer learning to exploit models trained on related domains

Source domain (with large amounts of training data)

 $\begin{array}{c} \mathsf{Data}_{\mathsf{s}} \longrightarrow \mathsf{Source} \; \mathsf{model} & \longrightarrow \mathsf{Output}_{\mathsf{s}} \\ \\ \mathsf{Data}_{\mathsf{t}} \longrightarrow & \mathsf{Source} & \longrightarrow & \mathsf{Target-} \\ \\ \mathsf{padel} \longrightarrow & \mathsf{specific} & \longrightarrow & \mathsf{Output}_{\mathsf{t}} \end{array}$

Target domain (with small amounts of training data)

Fine-tuning of a pre-existing language model is a type of transfer learning

Small amounts of data?

- Use transfer learning to exploit models trained on related domains
- Use data augmentation to generate new labelled utterances from existing ones

"When is the recycling → GetInfoOpenHours station open?"

Replace with synonyms

Small amounts of data?

- Use transfer learning to exploit models trained on related domains
- 2. Use *data augmentation* to generate more utterances from existing ones
- 3. Label more data, either manually or using weak supervision techniques

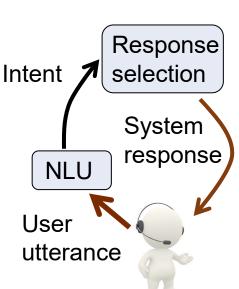
Response selection

Given an intent, how to create a response?

 In commercial systems, system responses are typically written by hand

- Possibly in templated form, i.e. "{Place} is open from {Start-time} to {Close-time}"
- But data-driven generation methods also exists

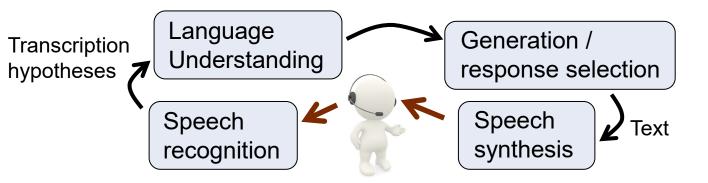
[see e.g. Garbacea & Mei (2020), "Neural Language Generation: Formulation, Methods, and Evaluation"]



Plan for today

- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language Understanding (NLU) for dialogue systems
- Speech recognition

Spoken dialogue systems

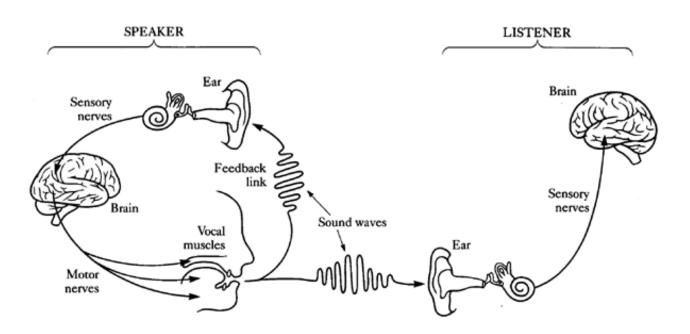


Spoken interfaces add a layer of complexity

- Need to handle uncertainties, ASR errors etc.
- Speech communicates more than just words (intonation, emotions in voice, etc.)
- Need to handle turn-taking

A difficult problem!

The speech chain



Speech production

- ► Sounds are *variations in air pressure*
- ► How are they produced?
 - An air supply: the lungs (we usually speak by breathing out)
 - A sound source setting the air in motion (e.g. vibrating) in ways relevant to speech production: the *larynx*, in which the *vocal folds* are located
 - A set of 3 filters modulating the sound: the pharynx, the oral tract (teeth, tongue, palate, lips, etc.) & the nasal tract

Speech production

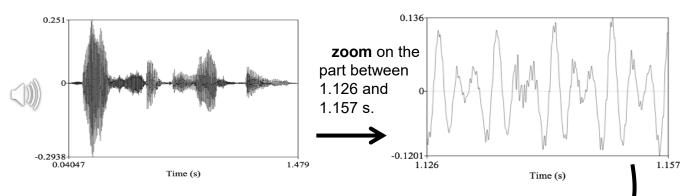
Visualisation of the vocal tract via *magnetic* resonance imaging [MRI]:

NB: A few languages also rely on sounds not produced by vibration of vocal folds, such as *click languages* (e.g. Khoisan family in south-east Africa):

Speech perception

A (speech) sound is a variation of air pressure

- This variation originates from the speaker's speech organs
- We can plot a wave showing the changes in air pressure over time (zero value being the normal air pressure)



About 4 cycles in the waveform, which means a ◄ frequency of about 4/0.03 ≈129 Hz

Important measures

- The fundamental frequency F₀: lowest frequency of the sound wave, corresponding to the speed of vibration of the vocal folds (between 85-180 Hz for male voices and 165-255 Hz for female voices)
- 2. The **intensity**: the signal power normalised to the human auditory threshold, measured in **dB** (decibels):

Intensity =
$$10 \log_{10} \frac{\text{Power}}{P_0} = 10 \log_{10} \frac{1}{NP_0} \sum_{i=1}^{N} y(t_i)^2$$
 energy of signal

for a sample of N time points $t_1,...$ t_N P₀ is the human auditory threshold, = 2 x 10⁻⁵ Pa

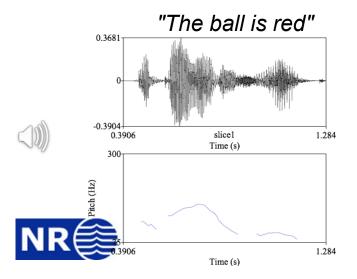
Note: dB scale is logarithmic, not linear!

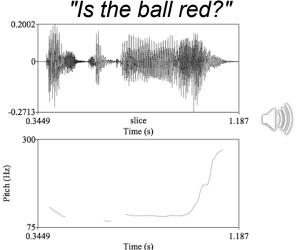
Total

Why are F₀ and the intensity important?

F₀ correlates with the *pitch* of the voice, and the pitch movement for an utterance will give us its *intonation*

Interrogative utterance = rising intonation at the end

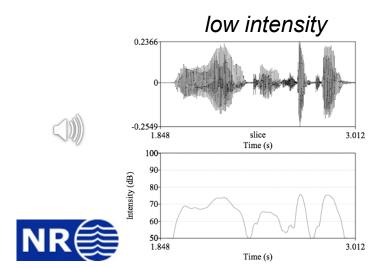


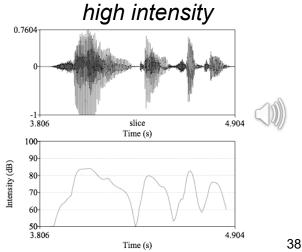


Why are F₀ and the intensity important?

F₀ correlates with the *pitch* of the voice, and the pitch movement for an utterance will give us its *intonation*

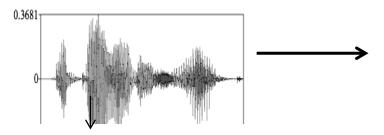
The signal intensity corresponds to the *loudness* of the speech sound





The speech recognition task

Input: Audio data



Sequence **O** of acoustic observations (i.e. every 20 ms)

Output: Transcription

"The ball is red"

Goal: Map speech signal **O** into sequence of linguistic symbols \widehat{W} (words or characters):

$$\hat{W} = \operatorname*{argmax}_{W} P(W|O)$$

Why is ASR difficult?

 Many sources of variation: speaker voice (and style), accents, ambient noise, etc.

Why is ASR difficult?

- Many sources of variation: speaker voice and speaking style, accents, ambient noise, etc.
- Very long input sequences
 - For audio frames lasting 20 ms.
 and offset of 10 ms. → 100
 observations per sec. (each observation including many numerical features)
- ▶ But output sequence (e.g. phonemes, characters or tokens) much shorter and <u>no explicit alignment</u> <u>between input and output</u>

Preprocessing

- Most speech sounds cannot be distinguished from the raw waveform
- Better: convert the signal to a representation of the signal's component frequencies
 - Based on Fourier's transform



spectrogram showing which frequencies are most active at a given time

"Classical" model

Using Bayes' rule, we can rewrite W as:

$$\hat{W} = \operatorname*{argmax}_{W} \frac{P(O|W)P(W)}{P(O)} \qquad \text{(Bayes)}$$

$$= \operatorname*{argmax}_{W} P(O|W)P(W) \qquad \text{(P(O) constant for all W)}$$
 Acoustic model
$$\text{Language model}$$

Determines the probability of the acoustic inputs O given the word sequence W Determines the probability of the word sequence W

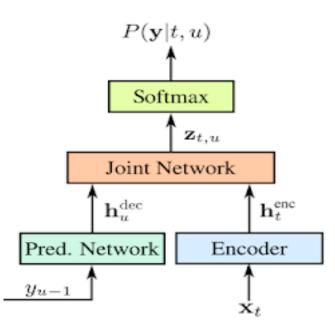
Neural ASR

- The best performing ASR are deep, endto-end neural architectures
 - Less dependent on external ressources (such as pronunciation dictionaries)
 - Move from carefully handcrafted acoustic features to *learned* representations
- Too time demanding to review here
 - But they rely on the same building blocks as other NNs: convolutions, recurrence, (self-)attention, etc.

Neural ASR

An example of a relatively simple neural model: Google's on-device ASR

- Encoder maps audio signal x_t to hidden representations (with stacked LSTMs)
- Prediction Network is a language model
- Model then merges the two hidden representations and predicts outputs character-by-character



ASR Performance

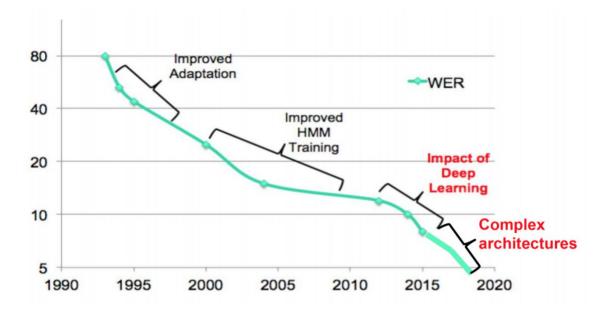


Figure: ASR Performance¹ on English Conversational Telephony (Switchboard)

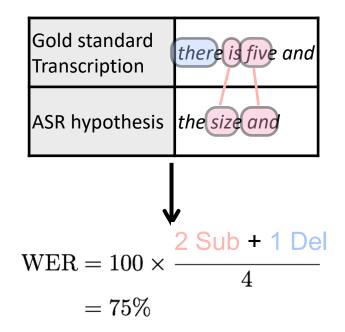
ASR evaluation

- Standard metric: Word Error Rate
 - Measures how much the utterance hypothesis h differs from the «gold standard» transcription t*
- = Minimum edit distance between h and t*, counting the number of word substitutions, insertions and deletions:

$$\label{eq:word_energy} \text{Word Error Rate} = 100 \times \frac{\text{Insertions} + \text{Substitutions} + \text{Deletions}}{\text{Number of words in transcription}}$$

ASR evaluation

Gold standard Transcription	yes can you <mark>now</mark> rotate this tr <mark>i</mark> angle
ASR hypothesis	yes can you not rotate this triangle there
WER = $100 \times \frac{1 \text{ Sub} + 1 \text{ Ins}}{7}$ = 28.6%	



Disfluencies

- ➤ Speakers construct their utterances «as they go», incrementally
 - Production leaves a trace in the speech stream
- ► Presence of multiple disfluencies
 - Pauses, fillers («øh», «um», «liksom»)
 - Repetitions («the the ball»)
 - Corrections («the ball err mug»)
 - Repairs («the bu/ ball»)

Disfluencies

Internal structure of a disfluency:

- reparandum: part of the utterance which is edited out
- ▶ interregnum: (optional) filler
- repair: part meant to replace the reparandum

Some disfluencies

så <u>gikk jeg</u> e <u>flytta vi</u> til Nesøya da begynte jeg på barneskolen der

og så har jeg gått på Landøya ungdomsskole # som ligger ## rett over broa nesten # rett med Holmen

jeg gikk på Bryn e skole som lå rett ved der vi bodde den gangen e <u>barneskole</u>

videre på Hauger ungdomsskole

da <u>hadde alle hele på skolen skulle</u> liksom # spise julegrøt og <u>det va- det var</u> bare en mandel

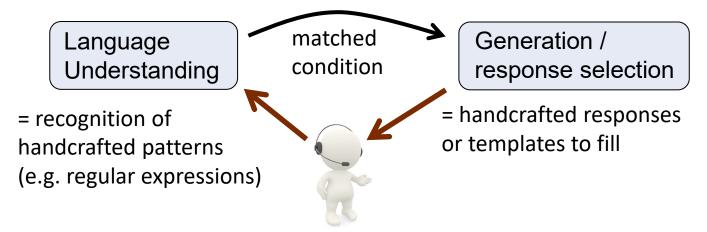
og da var jeg som fikk den da ble skikkelig sånn " wow # jeg har fått den " ble så glad

Plan for today

- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language Understanding (NLU)
- Speech recognition
- Summary

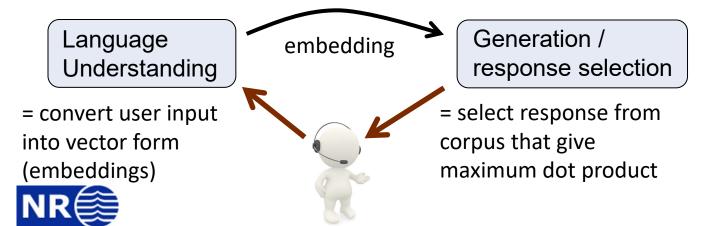
How to develop a chatbot:

Rule-based approaches



How to develop a chatbot:

- Rule-based approaches
- IR-based approaches



How to develop a chatbot:

- Rule-based approaches
- IR-based approaches
- Seq-to-seq approaches

Language Understanding

= convert user input into vector form (embeddings)

embedding

Generation / response selection

= generates the response token by token (learned from corpus)

How to develop a chatbot:

- Rule-based approaches
- IR-based approaches
- Seq-to-seq approaches
- NLU-based approaches

Often useful to rely on a combination of techniques — such as doing intent recognition using both rules and ML

Language Understanding

=map utterance to an intent + slots

Intent + slots

Generation / response selection

= handcrafted response or template to fill

Acoustic observations

$$_{7}$$
 O = o_{1} , o_{2} , o_{3} , ..., o_{m}

ASR:
$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|O)$$
 Re

Recognition hypothesis W = w₁, w₂, w₃, ..., w_n

- Deep NNs have boosted ASR performance
 - But not yet a «solved problem»
 - (especially for ressource-poor languages and non-standard voices/acoustic environments)
 - Word Error Rate metric used for evaluation
- Disfluencies abound in spoken language

Next week

- Next week, we'll talk about dialogue management
 - that is, how do we control the flow of the interaction over time?
 - Including how to optimise dialogue policies using reinforcement learning
- And we will also talk about how to design and evaluate dialogue systems

