
www.nr.no

Dialogue management, 
system design 
& evaluation
Pierre Lison

IN4080: Natural Language 
Processing (Fall 2022)

27.10.2022



Plan for today
► Dialogue management

▪ Handcrafted approaches
▪ Data-driven approaches

► Design of dialogue systems
▪ Architectures
▪ Evaluation



Plan for today
► Dialogue management

▪ Handcrafted approaches
▪ Data-driven approaches

► Design of dialogue systems
▪ Architectures
▪ Evaluation



Basic architecture
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Generation / 
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This pipeline is often used for chatbots
• Main limitation: no management of the 

dialogue itself (beyond current utterance)
• Most appropriate for short interactions



More advanced architecture

5
User

Dialogue management

Dialogue 
state

Response 
selection

State 
tracking

input signal
(user utterance)

Language 
Understanding

User 
intent

output signal
(machine utterance)

Generation

Selected response



Dialogue manager

►Conversational skills to emulate:
▪ Interpret utterances contextually
▪ Manage turn-taking
▪ Fulfill conversational obligations

& social conventions
▪ Plan multi-utterance responses
▪ Manage the system uncertainty

►The dialogue manager is responsible for 
controlling the flow of the interaction



Dialogue management
… is about decision-making:

▪ i.e. what should the system decide 
to say or do at a given point

▪ decision-making under uncertainty, 
since the communication channel is 
“noisy” (errors, ambiguities, etc.)

▪ Actions can be both linguistic and 
non-linguistic (booking a flight 
ticket, picking up an object, etc.)

▪ The same holds for observations  
(visual input, external events, etc.)

Dialogue 
manager

bla bla...

reply A?
reply B?

reply C?

Input x



Finite-state automata
= encode dialogue strategies as                      
finite-state automata

▪ the nodes represent machine actions
▪ and the edges possible (mutually exclusive) 

user responses

U: 
apples

U: oranges

U: sth else

M: apples or 
oranges?

U: thank you

U: thank you

M: you’re welcome!

M: what? sorry i didn’t 
understand

M: here’s an apple

M:  here’s an orange

Also called 
flowcharts 
(somewhat 
more 
loosely)



Formalisation of an FSA
1. Finite, non-empty set S of (atomic) states, each 

associated with a specific machine action. 
2. A finite, non-empty set Σ of possible user inputs 

accepted by the automaton
3. A (partial) function δ : S x Σ → S defining the 

transitions between states
4. An initial state s0 ∈ S
5. A set of final states F ⊂ S



Finite-state automata
►Transitions can relate to other signals than 

user inputs (for instance, external events)
►And can also express complex conditions 

(pattern matching on the user input, 
confidence thresholds, etc.)



Finite-state automata
Advantages Limitations

• Easy to design
• Fast, efficient
• Does not require 

dialogue data
• Predictable system 

behaviour (both for   
the user and for the   
system designer)

• Only allows for scripted
interactions - not "true" 
conversation

• No principled account of 
uncertainties

• Difficult to scale to 
complex domains with 
many variables and 
alternative inputs



Frame-based managers
► The interaction flow can be made slightly 

more flexible in frame-based systems

► The state is represented as a frame with 
slots to be filled by the user’s answers

Slot Question
ORIGIN CITY «From what city are you leaving?»
DESTINATION CITY «Where are you going?»
DEPARTURE TIME «When would you like to leave?»
ARRIVAL TIME «When do you want to arrive?»



Frame-based managers
►The user will sometimes provide additional 

information to the system's questions
System: What is your departure?
User: I want to leave from Oslo before 9:00 AM»

►The system should fills the appropriate slots 
with all available information

► VoiceXML: Voice-extensible Markup Language
▪ Markup language for basic slot-filling systems
▪ Allows mixed initiative



VoiceXML
<form>

<field name="transporttype">
<prompt>Please choose airline, hotel, or rental car. </prompt>
<grammar type="application/x=nuance-gsl">

[airline hotel "rental car"]
</grammar>

</field>
<block>

<prompt>You have chosen <value expr="transporttype">. 
</prompt>

</block>
</form>



Logic-based reasoning
►Difficult to capture complex interactions 

with finite-state automata or frames
▪ Crude notion of a dialogue state

▪ Crude notion of a dialogue state transition: only a 
few «hard» transitions possible for each node

►Possible solution: use richer (more 
expressive) representations of the state
▪ & enable more sophisticated forms of reasoning



Logic-based reasoning
► «Information-state update» (ISU) is an example of 

approach based on a rich state representation
▪ Encodes the mental states, beliefs and intentions of the 

speakers, the common ground, dialogue context

► This state is read/written by two types of rules:

▪ Update rules modify the current state upon the observation of 
new user dialogue move

▪ Action selection rules then select the system action based on 
the information present in this updated state

[S. Larsson and D. R. Traum (2000), «Information state and 
dialogue management in the TRINDI dialogue move engine toolkit» 

in Natural Language Engineering]



Logic-based reasoning
Advantages Limitations

• Rich representation of 
the dialogue state that 
can capture user intents, 
background knowledge, 
grounding status, etc.

• Powerful tools for 
interpretation & decision

• Can (in theory) perform 
long-term planning

• No account of 
uncertainty

• Requires detailed 
descriptions of the 
dialogue domain 

• More difficult to 
design (logical 
abstractions)

• Hard to scale!



Interaction style
►Rigid, repetitive 

structure of the 
interaction

► Irritating 
confirmations & 
acknowledgements

►No user or context 
adaptivity

“Saturday night live” sketch comedy, 2005
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Data-driven techniques
The approaches presented so far suffer from 
several limitations:

▪ Difficult to predict the user behaviour in advance

▪ They ignore all the uncertainties appearing through 
the dialogue (ASR errors, ambiguities, etc.)

▪ Unable to learn or adapt to the users or the 
environment (leading to rigid/repetitive behaviour)

▪ Limited to one goal... but real interactions are 
trade-offs between various competing objectives



Data-driven techniques
►Solution: perform automatic optimisation of 

the «dialogue policies» from experience:
▪ Often based on reinforcement learning techniques

▪ "Experience": interactions with real or simulated users

►General procedure:
▪ Dialogue manager starts with «dumb» dialogue policy

▪ It interacts with users and receives a feedback
▪ It can then correct his policy based on this feedback

▪ Repeat process until policy is fully optimised



Conventional software life cycle

Design by "Best practices"

(Paek 2007)

Automatic strategy optimisation

Automatic design by optimization 
function

(= “programming by reward”)

Data-driven techniques

[slide borrowed from O. Lemon]



Data-driven techniques
►Dialogue management is again viewed as a 

planning/control problem:
▪ Agent must control its actions

▪ To reach a long-term goal

▪ In an uncertain environment

▪ Where there are many possible paths to the goal

▪ ... and complex trade-offs need to be determined

►But this time, planning includes multiple goals 
(encoded in rewards), is performed under uncertainty, 
and is learned from the agent experience



Data-driven techniques
Planning problems are generally defined 
with three components:

▪ A state space (the set of all possible states)
▪ An action space (the set of all possible actions)
▪ The goals for the task (encoded here with rewards)

J

?

?

?

Goal



Data-driven techniques
►Most tasks have to encode trade-offs between 

various, competing objectives
▪ A flight booking system must book the right ticket
▪ But it must do so with the fewest number of requests

►Typically encoded via rewards (utilities) 
associated to particular state/action pairs

State Action Reward
User wants to book ticket x Booking x +10
User wants to book ticket x Booking y ≠ x −30
User wants to book ticket x Clarification request −1



Markov Decision Processes
► We can define these ideas more precisely using a formalism 

called Markov Decision Processes (MDPs)

► Markov Decision Processes are an extension of Markov 
Chains where the agent selects an action at each state

▪ This action will then modify the state space

▪ And will yield a particular reward for the agent

S1

D1

S2

R1

D2

S3

R2

......

Dn-1

Rn-1

SnSn-1



Graphical notation

S1

D

S2

R

(random 
variable)

(random 
variable)

(decision 
variable)

(utility 
variable)

P(S2|S1,d) determines the 
probability of reaching S2 when 
executing action D in state S1

P(S1) determines 
the probability of 
being in state S1

R(S1,D) determines the 
utility of executing action 
D while in state S1



Markov Decision Processes
A MDP is as a tuple <S,A,T,R>, where:

► S is the state space (possible states in the domain)

► A is the action space (possible actions for the agent)

► T is the transition function,  defined as T(s, a, s′) = 
P(s′|s, a).  It is the probability of arriving to state s’ 
after executing action a in state s.

► R is the reward function, defined as R : S × A → R.  It 
is a real number encoding the utility for the agent to 
perform action a while in state s.



Expected cumulative reward
► In an MDP, the agent seeks to maximise its 

expected cumulative reward Q(s,a)

►How much worth is a reward expected at time 
(t+i) compared to one received right now?
▪ We use a discount factor γ to capture this balance
▪ Related to delayed gratification in psychology

The agent must try to predict 
future inputs/rewards

The rewards accumulate 
over time



Bellman equation
The Bellman equation tells us that we can 
write the expected cumulative reward Q in a 
recursive fashion:

[R. Bellman (1957): «Dynamic Programming»]

Notice that we are estimating the Q-values based 
on... our estimation of the Q-values (can be used to 
iteratively refine these estimates until convergence)



MDP policy
►Given an MDP, a (dialogue) policy tells us 

which action to execute in each state

►A dialogue policy is a mapping π: S → A 
from states to actions

►An optimal dialogue policy π* is a policy that 
always outputs the action yielding the 
maximum expected cumulative reward:



Reinforcement learning
► Reinforcement learning can help us learn 

these Q values through interaction

► They work by iteratively refining their estimate 
of the Q values
▪ The agent acts in the environment and observes 

both states and rewards 
▪ This operation is repeated until convergence

► In dialogue systems: policy learning can be 
done either in simulation or with real users

[R. Sutton & A. Barto (2018): «Reinforcement Learning: An Introduction»]
(complete book available online!)

http://www.incompleteideas.net/book/the-book-2nd.html


Partially observable MDPs
► In an MDP, we assume the current (dialogue) 

state is fully observable
▪ We may be uncertain about the future, but the current 

state is assumed to be known with certainty

▪ Often not a reasonable assumption in dialogue!

►We can extend MDPs to Partially Observable 
Markov Decision Processes (POMDPs)
▪ In a POMDP, we have a probability distribution P(s) 

over possible current states



Partially observable MDPs
►In a POMDP, : the "true" dialogue state is not 

directly observable but can only be inferred from 
observations. 

►This is expressed by the belief state, which 
represents the information known to the agent

►The dialogue policy is then defined as a 
mapping from belief states to actions

▪ Much trickier to learn than MDP policies!



(Belief) state tracking

► The belief state is regularly updated with 
new observations (from e.g. NLU)

► In recent systems, belief state tracking and 
NLU are often one single (neural) model

Dialogue management

Dialogue   
state

Dialogue 
policy

State 
tracking
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Pipeline architectures
► Components connected in processing chain

► Each component is a black box getting inputs 
from its predecessor and generating an output

ASR NLU DM NLG TTS

Limitations:
▪ No feedback between components
▪ Rigid information flow 
▪ Poor turn-taking behaviour (system does not 

react until the full pipeline has been traversed)



Blackboard architectures
► Revolves around a blackboard (dialogue state) and a 

set of components

► Modules listen for relevant changes, in which case they 
do some processing and update the state with the result

► Better information flow, but more complex design

ASR

NLU
DM

NLG

TTSDialogue 
state



Dialogue context 
(history, external 
knowledge etc.)

End-to-end architectures

Single neural model mapping user inputs to responses

• Pro: no need for separate modules or annotated data
• Con: less modular setup, need dialogue corpus

Dialogue management done implicitly (input to the model 
must also include recent history + other contextual info)

NLU + DM + NLG
(single seq2seq model)

ASR
TTS



Incrementality
Humans process and produce 
language incrementally:
► When listening, we don't wait  

for an utterance to be fully 
pronounced to process it!

► We gradually refine our 
understanding as we go, 
phoneme by phoneme

► We also continuously       
provide feedback signals

Human-human dialogues 
are full of interruptions, 
speech overlaps, 
backchannels, and co-
completion of utterances



Incrementality
► But most dialogue systems 

operate in «batch mode»
▪ NLU expects full utterance as input
▪ TTS waits for complete system 

response to start synthesis

► Leads to «ping-pong»     
turn-taking behaviour:
▪ Alternating turns between user 

& system, one speaker at a time

Can dialogue 
systems be 
made to work 
incrementally, 
on partial units 
of content?

[Schlangen, D., & Skantze, G. (2011). A general, abstract model of 
incremental dialogue processing. Dialogue & Discourse]



How to collect data?
► "Chicken-and-egg" problem: 

▪ Need data to train data-driven models
▪ But to collect data, we need a system that 

can interact with users

► One solution is to use 
Wizard-of-Oz studies:
▪ Replace the system with a 

human operator (without 
the users being aware of it)



Evaluation
► Some dialogue processing tasks             

have standard evaluation metrics:
▪ ASR: Word Error Rate

▪ NLU: [precision, recall, F-score] for intent 
recognition and slot-filling

▪ TTS: evaluation by human listeners on sound 
intelligibility and quality

► But how do we evaluate the end-to-end the 
conversational behaviour of the system?



Evaluation
One way to evaluate is via user satisfaction ratings
The ratings can be obtained from surveys that users 
are asked to fill after interacting with the system:

TTS Performance Was the system easy to understand ?

ASR Performance Did the system understand what you said?

Task Ease Was it easy to find the message/flight/train you wanted?

Interaction Pace Was the pace of interaction with the system appropriate?

User Expertise Did you know what you could say at each point?

System Response How often was the system sluggish and slow to reply to you?

Expected Behavior Did the system work the way you expected it to?

Future Use Do you think you’d use the system in the future?

[M. Walker et al. (2001), «Quantitative and Qualitative Evaluation of Darpa 
Communicator Spoken Dialogue Systems», Proceedings of ACL]



Evaluation
►However, user evaluation surveys are 

expensive and time-consuming
▪ Not feasible to conduct after each system change!

▪ Can we automate the evaluation process?

►Solution: rely on metrics that can be 
extracted from interaction logs, and are 
known to correlate with user satisfaction
▪ Improving these observable metrics should 

therefore increase user satisfaction

[M. Walker et al. (1997), "PARADISE: A general framework for evaluating 
spoken dialogue agents", Proceedings of ACL]



Evaluation
Criteria Description Possible metrics

Task 
completion 
success

How often did the system 
complete its task 
successfully?

- κ agreement on slots -
completion ratio

Efficiency 
costs

How efficient was the 
system in executing its 
task?

- nb of turns (from user, 
system, or both) - total 
elapsed time

Quality 
costs

How good was the system 
interaction?

- nb of ASR rejection prompts 
- nb of user barge-ins - nb of 
error messages

NB: this list of metrics is of course not exhaustive!



Evaluation
► Can't we use metrics like BLEU to compare 

system outputs with human responses?
▪ No: very weak correlation                                 

between BLEU scores                                 
and human judgments!

► But alternative metrics                         have 
exist, like ADEM

[Liu et al (2016). How NOT To Evaluate 
Your Dialogue System: An Empirical Study 

of Unsupervised Evaluation Metrics for 
Dialogue Response Generation. In EMNLP.]

[Lowe et al. (2017). Towards an Automatic 
Turing Test: Learning to Evaluate Dialogue 
Responses. In ACL.]
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Summary
►Dialogue management = decide                   

what to do/say at a given time, based on:
▪ System goals (and trade-offs)
▪ Current (uncertain) dialogue state

►Various approaches:
▪ Easiest (but quite rigid): finite-state approaches
▪ Frame-based systems (slightly) more flexible
▪ Statistical/neural approaches optimise dialogue 

policies from (real/simulated) interactions

► Evaluation via objective and subjective metrics

What to say next ?



What we haven’t covered
► Natural language generation (NLG)

► Speech                                               
synthesis

► Multimodal & 
situated 
systems

Furhat robot (initially developed at KTH, 
Stockholm), see www.furhatrobotics.com

http://www.furhatrobotics.com/
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