
www.nr.no

Dialogue management,
system design
& evaluation
Pierre Lison

IN4080: Natural Language
Processing (Fall 2022)

27.10.2022

Plan for today
► Dialogue management

▪ Handcrafted approaches
▪ Data-driven approaches

► Design of dialogue systems
▪ Architectures
▪ Evaluation

Plan for today
► Dialogue management

▪ Handcrafted approaches
▪ Data-driven approaches

► Design of dialogue systems
▪ Architectures
▪ Evaluation

Basic architecture

4

Language
Understanding

Generation /
response selection

This pipeline is often used for chatbots
• Main limitation: no management of the

dialogue itself (beyond current utterance)
• Most appropriate for short interactions

More advanced architecture

5
User

Dialogue management

Dialogue
state

Response
selection

State
tracking

input signal
(user utterance)

Language
Understanding

User
intent

output signal
(machine utterance)

Generation

Selected response

Dialogue manager

►Conversational skills to emulate:
▪ Interpret utterances contextually
▪ Manage turn-taking
▪ Fulfill conversational obligations

& social conventions
▪ Plan multi-utterance responses
▪ Manage the system uncertainty

►The dialogue manager is responsible for
controlling the flow of the interaction

Dialogue management
… is about decision-making:

▪ i.e. what should the system decide
to say or do at a given point

▪ decision-making under uncertainty,
since the communication channel is
“noisy” (errors, ambiguities, etc.)

▪ Actions can be both linguistic and
non-linguistic (booking a flight
ticket, picking up an object, etc.)

▪ The same holds for observations
(visual input, external events, etc.)

Dialogue
manager

bla bla...

reply A?
reply B?

reply C?

Input x

Finite-state automata
= encode dialogue strategies as
finite-state automata

▪ the nodes represent machine actions
▪ and the edges possible (mutually exclusive)

user responses

U:
apples

U: oranges

U: sth else

M: apples or
oranges?

U: thank you

U: thank you

M: you’re welcome!

M: what? sorry i didn’t
understand

M: here’s an apple

M: here’s an orange

Also called
flowcharts
(somewhat
more
loosely)

Formalisation of an FSA
1. Finite, non-empty set S of (atomic) states, each

associated with a specific machine action.
2. A finite, non-empty set Σ of possible user inputs

accepted by the automaton
3. A (partial) function δ : S x Σ → S defining the

transitions between states
4. An initial state s0 ∈ S
5. A set of final states F ⊂ S

Finite-state automata
►Transitions can relate to other signals than

user inputs (for instance, external events)
►And can also express complex conditions

(pattern matching on the user input,
confidence thresholds, etc.)

Finite-state automata
Advantages Limitations

• Easy to design
• Fast, efficient
• Does not require

dialogue data
• Predictable system

behaviour (both for
the user and for the
system designer)

• Only allows for scripted
interactions - not "true"
conversation

• No principled account of
uncertainties

• Difficult to scale to
complex domains with
many variables and
alternative inputs

Frame-based managers
► The interaction flow can be made slightly

more flexible in frame-based systems

► The state is represented as a frame with
slots to be filled by the user’s answers

Slot Question
ORIGIN CITY «From what city are you leaving?»
DESTINATION CITY «Where are you going?»
DEPARTURE TIME «When would you like to leave?»
ARRIVAL TIME «When do you want to arrive?»

Frame-based managers
►The user will sometimes provide additional

information to the system's questions
System: What is your departure?
User: I want to leave from Oslo before 9:00 AM»

►The system should fills the appropriate slots
with all available information

► VoiceXML: Voice-extensible Markup Language
▪ Markup language for basic slot-filling systems
▪ Allows mixed initiative

VoiceXML
<form>

<field name="transporttype">
<prompt>Please choose airline, hotel, or rental car. </prompt>
<grammar type="application/x=nuance-gsl">

[airline hotel "rental car"]
</grammar>

</field>
<block>

<prompt>You have chosen <value expr="transporttype">.
</prompt>

</block>
</form>

Logic-based reasoning
►Difficult to capture complex interactions

with finite-state automata or frames
▪ Crude notion of a dialogue state

▪ Crude notion of a dialogue state transition: only a
few «hard» transitions possible for each node

►Possible solution: use richer (more
expressive) representations of the state
▪ & enable more sophisticated forms of reasoning

Logic-based reasoning
► «Information-state update» (ISU) is an example of

approach based on a rich state representation
▪ Encodes the mental states, beliefs and intentions of the

speakers, the common ground, dialogue context

► This state is read/written by two types of rules:

▪ Update rules modify the current state upon the observation of
new user dialogue move

▪ Action selection rules then select the system action based on
the information present in this updated state

[S. Larsson and D. R. Traum (2000), «Information state and
dialogue management in the TRINDI dialogue move engine toolkit»

in Natural Language Engineering]

Logic-based reasoning
Advantages Limitations

• Rich representation of
the dialogue state that
can capture user intents,
background knowledge,
grounding status, etc.

• Powerful tools for
interpretation & decision

• Can (in theory) perform
long-term planning

• No account of
uncertainty

• Requires detailed
descriptions of the
dialogue domain

• More difficult to
design (logical
abstractions)

• Hard to scale!

Interaction style
►Rigid, repetitive

structure of the
interaction

► Irritating
confirmations &
acknowledgements

►No user or context
adaptivity

“Saturday night live” sketch comedy, 2005

Plan for today
► Dialogue management

▪ Handcrafted approaches
▪ Data-driven approaches

► Design of dialogue systems
▪ Architectures
▪ Evaluation

Data-driven techniques
The approaches presented so far suffer from
several limitations:

▪ Difficult to predict the user behaviour in advance

▪ They ignore all the uncertainties appearing through
the dialogue (ASR errors, ambiguities, etc.)

▪ Unable to learn or adapt to the users or the
environment (leading to rigid/repetitive behaviour)

▪ Limited to one goal... but real interactions are
trade-offs between various competing objectives

Data-driven techniques
►Solution: perform automatic optimisation of

the «dialogue policies» from experience:
▪ Often based on reinforcement learning techniques

▪ "Experience": interactions with real or simulated users

►General procedure:
▪ Dialogue manager starts with «dumb» dialogue policy

▪ It interacts with users and receives a feedback
▪ It can then correct his policy based on this feedback

▪ Repeat process until policy is fully optimised

Conventional software life cycle

Design by "Best practices"

(Paek 2007)

Automatic strategy optimisation

Automatic design by optimization
function

(= “programming by reward”)

Data-driven techniques

[slide borrowed from O. Lemon]

Data-driven techniques
►Dialogue management is again viewed as a

planning/control problem:
▪ Agent must control its actions

▪ To reach a long-term goal

▪ In an uncertain environment

▪ Where there are many possible paths to the goal

▪ ... and complex trade-offs need to be determined

►But this time, planning includes multiple goals
(encoded in rewards), is performed under uncertainty,
and is learned from the agent experience

Data-driven techniques
Planning problems are generally defined
with three components:

▪ A state space (the set of all possible states)
▪ An action space (the set of all possible actions)
▪ The goals for the task (encoded here with rewards)

J

?

?

?

Goal

Data-driven techniques
►Most tasks have to encode trade-offs between

various, competing objectives
▪ A flight booking system must book the right ticket
▪ But it must do so with the fewest number of requests

►Typically encoded via rewards (utilities)
associated to particular state/action pairs

State Action Reward
User wants to book ticket x Booking x +10
User wants to book ticket x Booking y ≠ x −30
User wants to book ticket x Clarification request −1

Markov Decision Processes
► We can define these ideas more precisely using a formalism

called Markov Decision Processes (MDPs)

► Markov Decision Processes are an extension of Markov
Chains where the agent selects an action at each state

▪ This action will then modify the state space

▪ And will yield a particular reward for the agent

S1

D1

S2

R1

D2

S3

R2

......

Dn-1

Rn-1

SnSn-1

Graphical notation

S1

D

S2

R

(random
variable)

(random
variable)

(decision
variable)

(utility
variable)

P(S2|S1,d) determines the
probability of reaching S2 when
executing action D in state S1

P(S1) determines
the probability of
being in state S1

R(S1,D) determines the
utility of executing action
D while in state S1

Markov Decision Processes
A MDP is as a tuple <S,A,T,R>, where:

► S is the state space (possible states in the domain)

► A is the action space (possible actions for the agent)

► T is the transition function, defined as T(s, a, s′) =
P(s′|s, a). It is the probability of arriving to state s’
after executing action a in state s.

► R is the reward function, defined as R : S × A → R. It
is a real number encoding the utility for the agent to
perform action a while in state s.

Expected cumulative reward
► In an MDP, the agent seeks to maximise its

expected cumulative reward Q(s,a)

►How much worth is a reward expected at time
(t+i) compared to one received right now?
▪ We use a discount factor γ to capture this balance
▪ Related to delayed gratification in psychology

The agent must try to predict
future inputs/rewards

The rewards accumulate
over time

Bellman equation
The Bellman equation tells us that we can
write the expected cumulative reward Q in a
recursive fashion:

[R. Bellman (1957): «Dynamic Programming»]

Notice that we are estimating the Q-values based
on... our estimation of the Q-values (can be used to
iteratively refine these estimates until convergence)

MDP policy
►Given an MDP, a (dialogue) policy tells us

which action to execute in each state

►A dialogue policy is a mapping π: S → A
from states to actions

►An optimal dialogue policy π* is a policy that
always outputs the action yielding the
maximum expected cumulative reward:

Reinforcement learning
► Reinforcement learning can help us learn

these Q values through interaction

► They work by iteratively refining their estimate
of the Q values
▪ The agent acts in the environment and observes

both states and rewards
▪ This operation is repeated until convergence

► In dialogue systems: policy learning can be
done either in simulation or with real users

[R. Sutton & A. Barto (2018): «Reinforcement Learning: An Introduction»]
(complete book available online!)

http://www.incompleteideas.net/book/the-book-2nd.html

Partially observable MDPs
► In an MDP, we assume the current (dialogue)

state is fully observable
▪ We may be uncertain about the future, but the current

state is assumed to be known with certainty

▪ Often not a reasonable assumption in dialogue!

►We can extend MDPs to Partially Observable
Markov Decision Processes (POMDPs)
▪ In a POMDP, we have a probability distribution P(s)

over possible current states

Partially observable MDPs
►In a POMDP, : the "true" dialogue state is not

directly observable but can only be inferred from
observations.

►This is expressed by the belief state, which
represents the information known to the agent

►The dialogue policy is then defined as a
mapping from belief states to actions

▪ Much trickier to learn than MDP policies!

(Belief) state tracking

► The belief state is regularly updated with
new observations (from e.g. NLU)

► In recent systems, belief state tracking and
NLU are often one single (neural) model

Dialogue management

Dialogue
state

Dialogue
policy

State
tracking

Plan for today
► Dialogue management

▪ Handcrafted approaches
▪ Data-driven approaches

► Design of dialogue systems
▪ Architectures
▪ Evaluation

Pipeline architectures
► Components connected in processing chain

► Each component is a black box getting inputs
from its predecessor and generating an output

ASR NLU DM NLG TTS

Limitations:
▪ No feedback between components
▪ Rigid information flow
▪ Poor turn-taking behaviour (system does not

react until the full pipeline has been traversed)

Blackboard architectures
► Revolves around a blackboard (dialogue state) and a

set of components

► Modules listen for relevant changes, in which case they
do some processing and update the state with the result

► Better information flow, but more complex design

ASR

NLU
DM

NLG

TTSDialogue
state

Dialogue context
(history, external
knowledge etc.)

End-to-end architectures

Single neural model mapping user inputs to responses

• Pro: no need for separate modules or annotated data
• Con: less modular setup, need dialogue corpus

Dialogue management done implicitly (input to the model
must also include recent history + other contextual info)

NLU + DM + NLG
(single seq2seq model)

ASR
TTS

Incrementality
Humans process and produce
language incrementally:
► When listening, we don't wait

for an utterance to be fully
pronounced to process it!

► We gradually refine our
understanding as we go,
phoneme by phoneme

► We also continuously
provide feedback signals

Human-human dialogues
are full of interruptions,
speech overlaps,
backchannels, and co-
completion of utterances

Incrementality
► But most dialogue systems

operate in «batch mode»
▪ NLU expects full utterance as input
▪ TTS waits for complete system

response to start synthesis

► Leads to «ping-pong»
turn-taking behaviour:
▪ Alternating turns between user

& system, one speaker at a time

Can dialogue
systems be
made to work
incrementally,
on partial units
of content?

[Schlangen, D., & Skantze, G. (2011). A general, abstract model of
incremental dialogue processing. Dialogue & Discourse]

How to collect data?
► "Chicken-and-egg" problem:

▪ Need data to train data-driven models
▪ But to collect data, we need a system that

can interact with users

► One solution is to use
Wizard-of-Oz studies:
▪ Replace the system with a

human operator (without
the users being aware of it)

Evaluation
► Some dialogue processing tasks

have standard evaluation metrics:
▪ ASR: Word Error Rate

▪ NLU: [precision, recall, F-score] for intent
recognition and slot-filling

▪ TTS: evaluation by human listeners on sound
intelligibility and quality

► But how do we evaluate the end-to-end the
conversational behaviour of the system?

Evaluation
One way to evaluate is via user satisfaction ratings
The ratings can be obtained from surveys that users
are asked to fill after interacting with the system:

TTS Performance Was the system easy to understand ?

ASR Performance Did the system understand what you said?

Task Ease Was it easy to find the message/flight/train you wanted?

Interaction Pace Was the pace of interaction with the system appropriate?

User Expertise Did you know what you could say at each point?

System Response How often was the system sluggish and slow to reply to you?

Expected Behavior Did the system work the way you expected it to?

Future Use Do you think you’d use the system in the future?

[M. Walker et al. (2001), «Quantitative and Qualitative Evaluation of Darpa
Communicator Spoken Dialogue Systems», Proceedings of ACL]

Evaluation
►However, user evaluation surveys are

expensive and time-consuming
▪ Not feasible to conduct after each system change!

▪ Can we automate the evaluation process?

►Solution: rely on metrics that can be
extracted from interaction logs, and are
known to correlate with user satisfaction
▪ Improving these observable metrics should

therefore increase user satisfaction

[M. Walker et al. (1997), "PARADISE: A general framework for evaluating
spoken dialogue agents", Proceedings of ACL]

Evaluation
Criteria Description Possible metrics

Task
completion
success

How often did the system
complete its task
successfully?

- κ agreement on slots -
completion ratio

Efficiency
costs

How efficient was the
system in executing its
task?

- nb of turns (from user,
system, or both) - total
elapsed time

Quality
costs

How good was the system
interaction?

- nb of ASR rejection prompts
- nb of user barge-ins - nb of
error messages

NB: this list of metrics is of course not exhaustive!

Evaluation
► Can't we use metrics like BLEU to compare

system outputs with human responses?
▪ No: very weak correlation

between BLEU scores
and human judgments!

► But alternative metrics have
exist, like ADEM

[Liu et al (2016). How NOT To Evaluate
Your Dialogue System: An Empirical Study

of Unsupervised Evaluation Metrics for
Dialogue Response Generation. In EMNLP.]

[Lowe et al. (2017). Towards an Automatic
Turing Test: Learning to Evaluate Dialogue
Responses. In ACL.]

Plan for today
► Dialogue management

▪ Handcrafted approaches
▪ Data-driven approaches

► Design of dialogue systems
▪ Architectures
▪ Evaluation

► Summary

Summary
►Dialogue management = decide

what to do/say at a given time, based on:
▪ System goals (and trade-offs)
▪ Current (uncertain) dialogue state

►Various approaches:
▪ Easiest (but quite rigid): finite-state approaches
▪ Frame-based systems (slightly) more flexible
▪ Statistical/neural approaches optimise dialogue

policies from (real/simulated) interactions

► Evaluation via objective and subjective metrics

What to say next ?

What we haven’t covered
► Natural language generation (NLG)

► Speech
synthesis

► Multimodal &
situated
systems

Furhat robot (initially developed at KTH,
Stockholm), see www.furhatrobotics.com

http://www.furhatrobotics.com/

	Dialogue management, system design �& evaluation
	Plan for today
	Plan for today
	Basic architecture
	More advanced architecture
	Dialogue manager
	Dialogue management
	Finite-state automata
	Formalisation of an FSA
	Finite-state automata
	Finite-state automata
	Frame-based managers
	Frame-based managers
	VoiceXML
	Logic-based reasoning
	Logic-based reasoning
	Logic-based reasoning
	Interaction style
	Plan for today
	Data-driven techniques
	Data-driven techniques
	Data-driven techniques
	Data-driven techniques
	Data-driven techniques
	Data-driven techniques
	Markov Decision Processes
	Graphical notation
	Markov Decision Processes
	Expected cumulative reward
	Bellman equation
	MDP policy
	Reinforcement learning
	Partially observable MDPs
	Partially observable MDPs
	(Belief) state tracking
	Plan for today
	Pipeline architectures
	Blackboard architectures
	End-to-end architectures
	Incrementality
	Incrementality
	How to collect data?
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Plan for today
	Summary
	What we haven’t covered

