IN4080 – 2021 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Probabilities

Lecture 3, 2 Sept.

Today - Probability theory

- Probability
- □ Random variable

The benefits of statistics in NLP:

- 1. Part of the (learned) model:
 - What is the most probable meaning of this occurrence of bass?
 - What is the most probable parse of this sentence?
 - What is the best (most probable) translation of a certain Norwegian sentence into English?

Tagged text and tagging

```
[('They', 'PRP'), ('saw', 'VBD'), ('a', 'DT'), ('saw', 'NN'), ('.', '.')]
[('They', 'PRP'), ('like', 'VBP'), ('to', 'TO'), ('saw', 'VB'), ('.', '.')]
[('They', 'PRP'), ('saw', 'VBD'), ('a', 'DT'), ('log', 'NN')]
```

- □ In tagged text each token is assigned a "part of speech" (POS) tag
- A tagger is a program which automatically ascribes tags to words in text
 - We will return to how they work
- From the context we are (most often) able to determine the tag.
 - But some sentences are genuinely ambiguous and hence so are the tags.

The benefits of statistics in NLP:

- 2. In constructing models from examples ("learning"):
 - What is the best (=most likely) model given these examples?
 - Given a set of tagged English sentences.
 - Try to construct a tagger from these.
 - Between several different candidate taggers, which one is best?
 - Given a set of texts translated between French and English
 - Try to construct a translations system from these
 - Which system is best

The benefits of statistics in NLP:

3. In evaluation:

- We have two parsers and test them on 1000 sentences. One gets 86% correct and the other gets 88% correct. Can we conclude that one is better than the other
- □ If parser one gets 86% correct on the 1000 sentences drawn from a much larger corpus. How well will it perform on the corpus as a whole?

Components of statistics

- Probability theory
 - Mathematical theory of chance/random phenomena
- 2. Descriptive statistics
 - Describing and systematizing data
- Inferential statistics
 - Making inferences on the basis of (1) and (2), e.g.
 - (Estimation:) "The average height is between 179cm and 181cm with 95% confidence"
 - (Hypothesis testing:) "This pill cures that illness, with 99% confidence"

9 Probability theory

Basic concepts

- □ Random experiment (or trial) (no: forsøk)
 - Observing an event with unknown outcome
- Outcomes (utfallene)
 - □ The possible results of the experiment
- Sample space (utfallsrommet)
 - The set of all possible outcomes

Examples

	Experiment	Sample space, Ω
1	Flipping a coin	{H, T}
2	Rolling a dice	{1,2,3,4,5,6}
3	Flipping a coin three times	{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
4	Will it rain tomorrow?	{Yes, No}

Examples

	Experiment	Sample space, Ω
1	Flipping a coin	{H, T}
2	Rolling a dice	{1,2,3,4,5,6}
3	Flipping a coin three times	{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
4	Will it rain tomorrow?	{Yes, No}
5	A word occurrence in "Tom Sawyer"	{u u is an English word}
6	Throwing a dice until you get 6	{1,2,3,4,}
7	The maximum temperature at Blindern for a day	{t t is a real}

Event

□ An event (begivenhet/hendelse) is a set of elementary outcomes

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	<i>{</i> 5,6 <i>}</i>
3	Flipping a coin three	Getting at least two	{HHH, HHT, HTH, THH}
	times	heads	

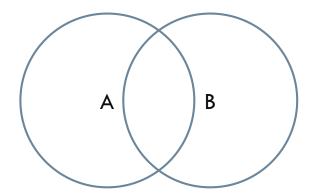
Event

□ An event (begivenhet) is a set of elementary outcomes

	Experiment	Event	Formally
2	Rolling a dice	Getting 5 or 6	{5,6}
3	Flipping a coin three times	Getting at least two heads	{HHH, HHT, HTH, THH}
5	A word occurrence in "Tom Sawyer"	The word is a noun	{υ υ is an English noun}
6	Throwing a dice until you get 6	An odd number of throws	{1,3,5,}
7	The maximum temperature at Blindern	Between 20 and 22	{t 20 ≤ t ≤ 22}

Operations on events

- □ Union: A∪B
- □ Intersection (snitt): A∩B
- □ Complement



- Venn diagram
- □ http://www.google.com/doodles/john-venns-180th-birthday

Probability measure, sannsynlighetsmål

- A probability measure P is a function from events to the interval [0,1] such that:
- 1. $P(\Omega) = 1$
- 2. $P(A) \ge 0$
- 3. If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$
 - And if A1, A2, A3, ... are disjoint, then

$$P\Big(\bigcup_{j=1}^{\infty} A_j\Big) = \sum_{j=1}^{\infty} P(A_j)$$

Examples

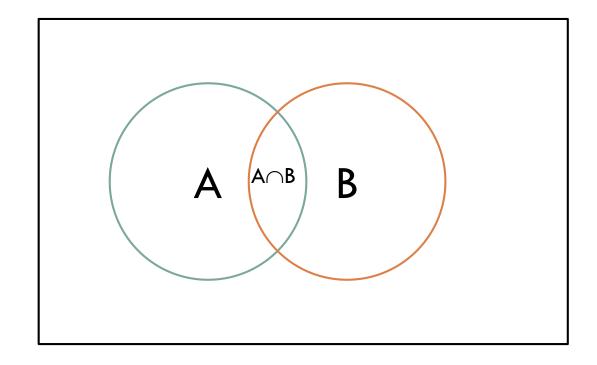
	Experiment	Event	Probability
2	Rolling a fair dice	Getting 5 or 6	$P({5,6})=2/6=1/3$
3	Flipping a fair coin three times	Getting at least two heads	$P({HHH, HHT, HTH, THH}) = 4/8$

Examples

	Experiment	Event	Probability
2	Rolling a dice	Getting 5 or 6	$P({5,6})=2/6=1/3$
3	Flipping a coin three times	Getting at least two heads	$P({HHH, HHT, HTH, THH}) = 4/8$
5	A word in TS	It is a noun	$P(\{u \mid u \text{ is a noun}\}) = 0.43?$
6	Throwing a dice until you get 6	An odd number of throws	P({1,3,5,})=?
7	The maximum temperature at Blindern at a given day	Between 20 and 22	$P(\{t \mid 20 \le t \le 22\})=0.05$

Some observations

- \square P(\varnothing) = 0



Some observations

- \square P(\varnothing) = 0
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $lue{}$ If Ω is finite or more generally countable, then

$$P(A) = \sum_{a \in A} P(\{a\})$$

- \square In general, $P(\{a\})$ does not have to be the same for all $a \in A$
 - For some of our examples, like fair coin or fair dice, they are: $P(\{a\})=1/n$, where $\#(\Omega)=n$
 - But not if the coin/dice is unfair
 - E.g. $P(\{n\})$, the probability of using *n* throws to get the first 6 is not uniform
 - If A is infinite, $P(\{a\})$ can't be uniform

Examples

Backgammon

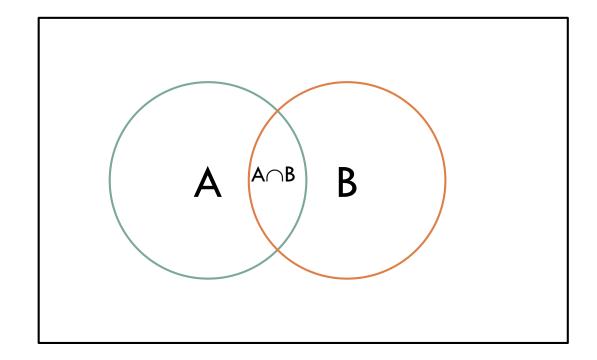
- Throwing two dice
- Both numbers matter, but not which dice is which:
 - \blacksquare e.g., $\{3,5\} = \{5,3\}$
- \square 21 = 15 + 6 possible outcomes
- \square P({{3,5}}}=2/36
- \square P({{5,5}}}=1/36

The sum of two dice

- □ 11 possible outcomes:
 - **2**, 3, ...,12
- \square P({2}) = P({12})=1/36
- \square P({8}) = 5/36

Joint probability

- □ P(A∩B)
 - Both A and B happens



Examples

- 6-sided fair dice, find the following probabilities
- □ Two throws: the probability of 2 sixes?
- □ The probability of getting a six in two throws?
- □ 5 dices: the probability of getting 5 equal dices?
- □ 5 dices: the probability of getting 1-2-3-4-5?
- □ 5 dices: the probability of getting no 6-s?

Counting methods

Given all outcomes equally likely

- P(A) = number of ways A can occur/ total number of outcomes
- Multiplication principle:
 if one experiment has m possible outcomes
 and another has n possible outcomes,
 then the two have m*n possible outcomes

Sampling

How many different samples?

- Ordered sequences:
 - $lue{}$ Choose k items from a population of n items with replacement: n^k
 - Without replacement:

$$n(n-1)(n-2)\cdots(n-k+1) = \prod_{i=0}^{k-1} (n-i) = \frac{n!}{(n-k)!}$$

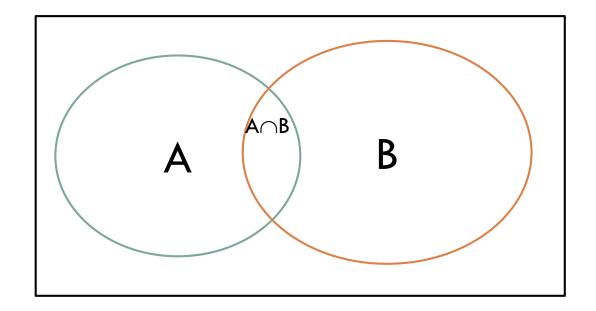
- Unordered sequences
 - Without replacement: $\frac{1}{k!} \left(\frac{n!}{(n-k)!} \right) = \left(\frac{n!}{k!(n-k)!} \right) = \binom{n}{k}$
 - \blacksquare = the number of ordered sequences/ the number of ordered sequences containing the same k elements

Conditional probability

□ Conditional probability (betinget sannsynlighet)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

□ The probability of A happens if B happens



Conditional probability

□ Conditional probability (betinget sannsynlighet)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

- The probability of A happens if B happens
- □ Multiplication rule $P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$
- \square A and B are independent iff $P(A \cap B) = P(A)P(B)$

Example

- □ Throwing two dice
 - A: the first dice is 1
 - B: the second dice is 4
 - $P(A \cap B) = P(\{(1,6)\}) = 1/36 = P(A)P(B)$
 - Hence: A and B are independent

- Also throwing two dice
 - B: the first dice is 1
 - C: the sum of the two is 5
 - P(C)=4/36=1/9
 - $P(C \cap B) = P(\{(1,4)\}) = 1/36$
 - P(C)P(B) = 1/9 * 1/6 = 1/54
 - Hence: B and C are not independent

Bayes theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- □ Jargon:
 - □ P(A) prior probability
 - □ P(A | B) posterior probability
- Extended form

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid -A)P(-A)}$$

Example: Corona test (May 2020, Norway)

- □ The test has a good sensitivity (= recall) (cf. Wikipedia):
 - □ It recognizes 80% of the infected
 - P(pos|c19) = 0.8
- □ It has an even better specificity: 99.9%
 - Specificity: P(neg|-c19) = 0.999
 - □ If you are not ill, there is only 0.1% chance for a positive test
 - P(pos|-c19) = 0.001
- What is the chances you are ill if you get a positive test?
- (Numbers from FHI web page May 2020, removed by Aug 2021)

Source

- □ The numbers were published at:
 - https://www.fhi.no/nettpub/coronavirus/testing-og-oppfolging-av-smittede/testkriterier/
- This is a page which is updated and changed weekly
- □ But the actual version can be recovered with the Way Back Machine:
 - https://web.archive.org/web/20200619010655/https://www.fhi.no/nettp ub/coronavirus/testing-og-oppfolging-av-smittede/testkriterier/

Example: Corona test, contd.

- P(pos|c19) = 0.8, P(pos|-c19) = 0.001
- We also need the prior probability.
 - Before the summer 2020, it was assumed to be something like $P(c19) = \frac{1}{10,000}$
 - i.e. 10 in 100,000 or 500 in Norway
- □ Then P(c19|pos) =

$$\frac{P(pos|c19)P(c19)}{P(pos|c19)P(c19) + P(pos|-c19)P(-c19)}$$

$$= \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.001 \times 0.9999} = 0.074$$

What to be learned for the example?

- Most probably you are not ill, even if you get a positive test.
- But it is much more probable that your are ill after a positive test (posterior probability) than before the test (prior probability).
- It doesn't make sense to test large samples (without symptoms) to find out how many are infected.
 - Why we don't test everybody.
- Repeating the test might help.

Exercise

- □ The number of infected is much larger 1 Sept. 2021, maybe 25,000 in Norway.
- What is the probability you are infected given a positive test today?

Assume the properties of test are the same.

The nature of probabilities

What are probabilities?

- Example throwing a dice:
- 1. Classical view:
 - The six outcomes are equally likely
- 2. Frequenist:
 - If you throw the dice many, many, many times, the number of 6s approach 16.6666...%
- 3. Bayesian: subjective beliefs

Random variables

Random variable

- A variable X in statistics is a property (feature) of an outcome of an experiment.
 - lacktriangle Formally it is a function from a sample space (utfallsrom) Ω to a value space Ω_{χ} .
- \square When the value space $\Omega_{\rm X}$ is numerical (roughly a subset of Rⁿ), it is called a random variable
- There are two kinds:
 - Discrete random variables
 - Continuous random variables
- $lue{}$ A third type of variable: categorical variable, when Ω_{χ} is non-numerical

Examples

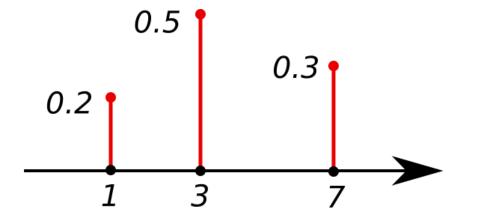
- Throwing two dice,
 - $\Omega = \{(1,1), (1,2), \dots (1,6), (2,1), \dots (6,6)\}$
 - 1. The number of 6s is a random variable X, $\Omega_x = \{0, 1, 2\}$
 - 2. The number of 5 or 6s is a random variable Y, $\Omega_{
 m Y}$ = $\Omega_{
 m X}$
 - 3. The sum of the two dice, Z, $\Omega_7 = \{2, 3, ..., 12\}$
- 2. A random person:
 - 1. X, the height of the person $\Omega_{\rm X}$ =[0, 3] (meters)
 - 2. Y, whether age \geq 18 or not, $\Omega_Y = \{0, 1\}$ (1 for \geq 18)
- □ Ex 2.1 is continuous, the other are discrete

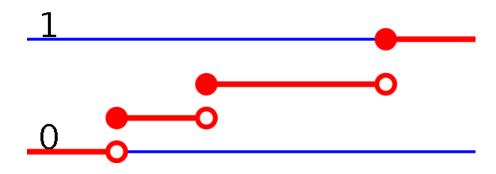
Discrete random variables

Discrete random variable

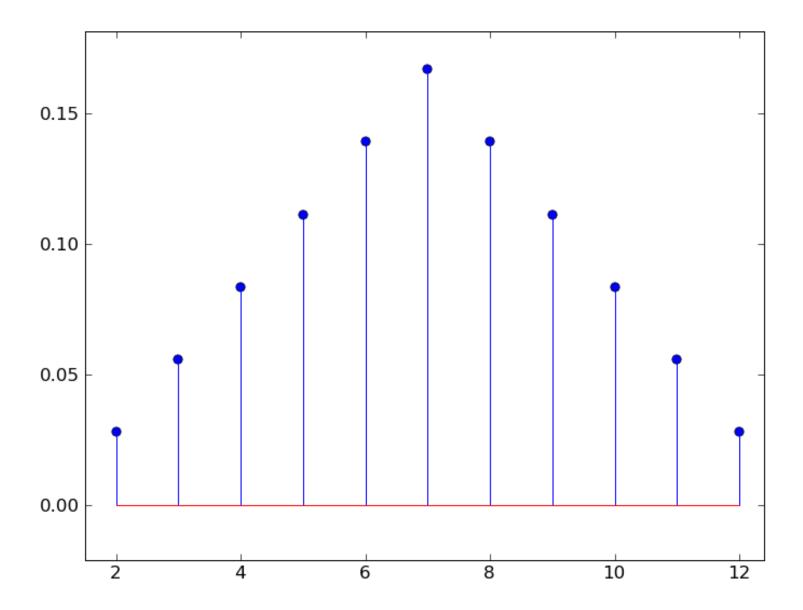
- The value space is a finite or a countable infinite set of numbers {x1, x2,..., xn, ...}
- The probability mass function, pmf, p, also called frequency function, which to each value yields

□ The cumulative distribution function, cdf,



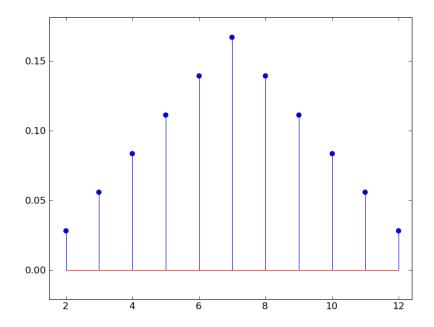


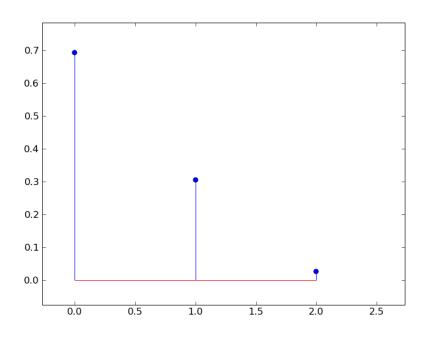
Diagrams: Wikipedia



Examples

- Throwing two dice,
 - $\square \Omega = \{(1,1), (1,2), ..., (1,6), (2,1), ..., (6,6)\}$
 - \square (1.3) The sum of the two dice, Z, $\Omega_7 = \{2, 3, ..., 12\}$
 - $p_7(2) = P(\{(1,1)\} = 1/36$
 - $p_7(7) = 6/36$
 - $F_{z}(7) = 1+2+...+6=21/36$
 - \Box (1.1) The number of 6s X, $\Omega_{x} = \{0, 1, 2\}$
 - $p_X(2) = P(\{(6,6)\} = 1/36$
 - $p_x(1) = P(\{(6,x) \mid x \neq 6\} + P(\{(x,6) \mid x \neq 6\} = 10/36$
 - px(0) = 25/36





Mean - example

 $\square \Sigma p(x) * x$

Throwing two dice, what is the mean value of their sum? \Box (2+3+4+5+6+7+ 3+4+5+6+7+8+ 4+5+6+7+8+9+ 5+6+7+8+9+10+ 6+7+8+9+10+11+ 7+8+9+10+11+12)/36= \square (2 + 2*3 + 3*4 + 4*5 + 5*6 + 6*7 + 5*8 +...2*11+12)/36= \Box (1/36)2 + (2/36)*3 + (3/36)*4 + ... + (1/36)*12 = p(2)*2 + p(3)*3 + p(4)*4 + ... p(12)*12 =

Mean of a discrete random variable

□ The mean (or expectation) (forventningsverdi) of a discrete random variable X:

$$\mu_X = E(X) = \sum_{x} p(x)x$$

Useful to remember

$$\mu_{(X+Y)} = \mu_X + \mu_Y$$

$$\mu_{(a+bX)} = a + b\mu_{x}$$

Examples:

One dice: 3.5

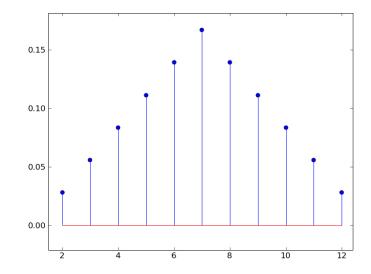
Two dice: 7

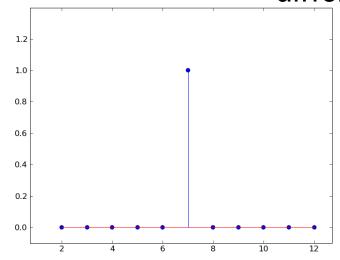
Ten dice: 35

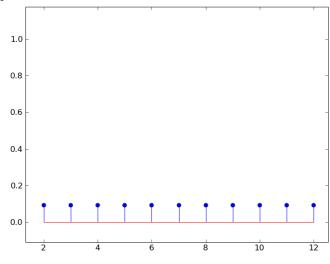
More than mean

- Mean doesn't say everything
- Examples
 - (1.3) The sum of the two dice, Z, i.e.
 - $p_z(2) = 1/36, ..., p_z(7) = 6/36$ etc

- \square (3.2) p₂ given by:
 - $p_2(7)=1$
 - $p_2(x) = 0$ for $x \neq 7$
- \square (3.3) p₃ given by:
 - $p_3(x) = 1/11$ for x = 2,3,...,12
- Have the same mean but are very different







Variance

□ The variance of a discrete random variable X

$$Var(X) = \sigma^2 = \sum_{x} p(x)(x - \mu)^2$$

□ The standard deviation of the random variable

$$\sigma = \sqrt{Var(X)}$$

Examples

- Throwing one fair dice
 - $\mu = (1+2+..+6)/6=7/2$
 - $\sigma^2 = ((1-7/2)^2 + (2-7/2)^2 + ...(6-7/2)^2)/6 = (25+9+1)/4*3=35/12$
- \square (Ex 1.3) Throwing two fair dice: 35/6
- \square (Ex 3.2) p_2 , where $p_2(7)=1$ has variance 0
- \square (Ex 3.3) p_3 , the uniform distribution, has variance:
 - $\square ((2-7)^2 + ... (12-7)^2)/11 = (25+16+9+4+1+0)*2/11 = 10$

Take home

- Probability space
 - Random experiment (or trial) (no: forsøk)
 - Outcomes (utfallene)
 - Sample space (utfallsrommet)
 - An event (begivenhet/hendelse)
 - Bayes theorem
- Discrete random variable
 - The probability mass function, pmf
 - The cumulative distribution function, cdf
 - The mean (or expectation) (forventningsverdi)
 - The variance of a discrete random variable X
 - The standard deviation of the random variable