IN4080-2022 FALL
 NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Data

\square "Data is the new oil"
\square We generate enormous amounts around the world every day
\square The commodity of Google, Facebook, ... and the gang

- "Data Science":
- Used in various scientific fields to extract knowledge from data
- Master's program at UiO
- UiO is establishing a center for DS
\square Language data is the raw material of modern NLP

\square Advise in "data science", machine learning and data-driven NLP:
Start by taking a look at your data
\square (But tuck away your test data first)
\square General form:
\square A set of observations (data points, objects, experiments)
\square To each object some associated attributes
■ Called variables in statistics
- Features in machine learning
- (Attributes in OO-programming)

Example data set: email spam

spam	chars	lines breaks	dollar' occurs. numbers	(winner' occurs?	format	number	
1	no	21,705	551	0	no	html	small
2	no	7,011	183	0	no	html	big
3	yes	631	28	0	no	text	none
4	no	2,454	61	0	no	text	small
5	no	41,623	1088	9	no	html	small
\ldots							
50	no	15,829	242	0	no	html	small

[^0]
Example data set: email spam

	spam	chars	lines breaks	dollar' occurs. numbers	'winner occurs?	format	number	
1	no	21,705	551	0	no	html	small	
2	no	7,011	183	0	no	html	big	50 observations, rows
3	yes	631	28	0	no	text	none	7 variables, columns
4	no	2,454	61	0	no	text	small	4 categorical variables
5	no	41,623	1088	9	no	html	small	3 numeric variables
\ldots								
50	no	15,829	242	0	no	html	small	

Some words of warning

\square This is how data sets often are presented in texts on
\square Statistics
\square Machine learning
\square But we know that there is a lot of work before this

1. Preprocessing text
2. Selecting attributes (variables, features)
3. Extracting the attributes

Text as a data set

	token	POS
1	He	PRON
2	looked	VERB
3	at	ADP
4	lined	DET
5	face	VORB
6	with	ADP
7	vague	ADJ
8	interest	NOUN
9	He	P
10	smiled	PRON
11	.	VERB
12		
13		

\square Two attributes
\square Token type ('He’, ‘looked’, ...)
\square POS (part of speech)

- = classes of words
- we will see a lot to them

Types of (statistical) variables (attributes, features)

All variables

Categorical	Numerical (quantitative)	
	Discrete	Continuous

\square Binary variables are both
\square Categorical (two categories)
\square Numerical, $\{0,1\}$
\square We will see ways to represent
\square A categorical variable in terms of numerical variables
\square and the other way around
\square Machine learning, difference btw.
\square Categorical (classification)
\square Numeric (regression)
\square Statistics, difference btw.
\square Discrete
\square Continuous

Categorical variables

\square Categorical:
\square Person: Name
\square Word: Part of Speech (POS)

- \{Verb, Noun, Adj, ...\}
\square Noun: Gender
- \{Mask, Fem, Neut\}
\square Binary/Boolean:
\square Email: spam?
\square Person: 18 ys. or older?
\square Sequence of words: Grammatical English sentence?

Numeric variables

\square Discrete
\square Person: Years of age, Weight in kilos, Height in centimeters
\square Sentence: Number of words
\square Word: length
\square Text: number of occurrences of great, (42)
\square Continuous
\square Person: Height with decimals
\square Program execution: Time
\square Occurrences of a word in a text: Relative frequency (18.666...\%)

Frequencies

\square Given a set of observations O
\square Which each has a variable, f, which takes values from a set V
\square To each v in V, we can define
\square The absolute frequency of v in O :

- the number of elements x in O such that $x . f=v$
- (requires O finite)
\square The relative frequency of v in O :
- The absolute frequency/the number of elements in O

Universal POS tagset (NLTK)

Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
Punctuation marks	., ; !	
X	other	ersatz, esprit, dunno, gr8, univeristy

Distribution of universal POS in Brown

\square Brown corpus:

- cal.1 mill. words
\square For each word occurrence:
- attribute: simplified tag
- 12 different tags
\square Frequency(absolute)
- for each of the 12 values:
\square the number of occurrences in Brown
\square Frequency (relative)
\square the relative number
- Same graph pattern
- Different scale

Caf	Freq
ADV	56239
NOUN	275244
ADP	144766
NUM	14874
DET	137019
-	147565
PRT	29829
VERB	182750
X	1700
CONJ	38151
PRON	49334
ADJ	83721

Frequency table
 Normally the Cat will
 be one row (not column) and the
 frequencies another row

Distribution of universal POS in Brown

Cat	Freq
ADV	56239
NOUN	275244
ADP	144766
NUM	14874
DET	137019
-	147565
PRT	29829
VERB	182750
X	1700
CONJ	38151
PRON	49334
ADJ	83721

Bar chart

To better
understand our
data we may use graphics.
For frequency
distributions, the
bar chart is the
most useful

Frequencies

\square Frequencies can be defined for all types of value sets V (binary, categorical, numerical) as long as there are only finitely many observations or V is countable,
\square But doesn't make much sense for continuous values or for numerical data with very varied values:
\square The frequencies are 0 or 1 for many (all) values

More than one categorical feature

Two features, example NLTK, sec. 2.1

	can could	may	might	must will		
news	93	86	66	38	50	389
religion	82	59	78	12	54	71
hobbies	268	58	131	22	83	264
science_fiction	16	49	4	12	8	16
romance	74	193	11	51	45	43
humor	16	30	8	8	9	13

\square Example of a contingency table (directly from NLTK)
\square Observations, O, all occurrences of the five modals in Brown
\square For each observation, two parameters
$\square \mathrm{f} 1$, which modal, $\mathrm{V} 1=\{$ can, could, may, might, must, will\}
$\square \mathrm{f} 2$, genre, $\mathrm{V} 2=\{$ news, religion, hobbies, sci-fi, romance, humor\}

Two features, example NLTK, sec. 2.1

can could							may
news	93	86	66	38	50	389	722
religion	82	59	78	12	54	71	356
hobbies	268	58	131	22	83	264	826
science_fiction	16	49	4	12	8	16	105
romance	74	193	11	51	45	43	417
humor	16	30	8	8	9	13	84
Total	549	475	298	143	249	796	2510

\square Example of complete contingency table
\square Added the sums for each row and column

Two features, example NLTK, sec. 2.1

	can could	may	might	must	will	Total	
news	93	86	66	38	50	389	722
religion	82	59	78	12	54	71	356
hobbies	268	58	131	22	83	264	826
science_fiction	16	49	4	12	8	16	105
romance	74	193	11	51	45	43	417
humor	16	30	8	8	9	13	84
Total	549	475	298	143	249	796	2510

\square Each row and each column is a frequency distribution
\square We can calculate the relative frequency for each row - E.g. news: $93 / 722,86 / 722,66 / 722$, etc.
\square We can make a chart for each row and inspect the differences

Example continued

	can could	may	might must will			
news	93	86	66	38	50	389
religion	82	59	78	12	54	71
hobbies	268	58	131	22	83	264
science fiction	16	49	4	12	8	16
romance	74	193	11	51	45	43
humor	16	30	8	8	9	13

We see the same differences in pattern, the same shapes, whether we use absolute or relative frequencies

Example continued

	can could	may might must will				
news	93	86	66	38	50	389
religion	82	59	78	12	54	71
hobbies	268	58	131	22	83	264
science fiction	16	49	4	12	8	16
romance	74	193	11	51	45	43
humor	16	30	8	8	9	13

\square Or we could color code to display two dimensions in the same chart
\square (In this chart it would have been more enlightening to use relative frequencies)


```
173172173183177177 186180178187179181184172180180171 176186175176181 176 177
178176174186172175186183185184176179175193181 178177 183196187184179182184
181 176 185 180176 176176167178182176186179176166186169186183178186184179177
174176184174177 178173182182184185172179179189178170183166188187184184177
181180183184
```


\square With finally many different values, we may use

- Table
\square Bar chart as for categorical data
\square We will of course put the values in order

Numerical values

```
173172173183177177 186180178187179181 184172180180171 176186175176181 176177
178176174186172175186183185184176179175193181 178177 183196187184179182184
181 176 185 180176 176176167178182176186179176166186169186183178186184179177
174176184174177 178173182182184185172179179189178170183166188187184184177
181180183184
```


We may ask more questions:
\square Max?

- 196
\square Min?
- 166
\square Middle, average?

3 ways to define "middle", "average"

\square Median (in the example: 179)

- equally many above and below,
\square Formally, order $x_{1}, x_{2}, \ldots, x_{n}$, then
- the median is $x_{(n / 2)}$ if n is even and
- $\left(x_{(n-1) / 2}+x_{(n+1) / 2}\right) / 2$ if n is odd.
\square Mean: ex: 179.54
$\square \bar{x}=\left(x_{1}+x_{2}+\cdots+x_{n}\right) / n=$ $\frac{1}{n} \sum_{i=1}^{n} x_{i}$
\square Mode, the most frequent one, ex: 176

Histogram for numerical data

\square Split the set of values into equally sized intervals
\square For each interval, ask how many individuals take a value in it
\square Over the interval, draw a rectangle with height proportional to this frequency
\square The y-axis may be tagged with

- Absolute frequencies
- Relative frequencies, or
- Densities (= absolute frequencies/elements in the interval)

Histogram for numerical data

Ex 1: 5 bins

Ex 1: 10 bins

More than one numerical feature

Scatter plot

\square When the objects have two numerical attributes, we may plot the pairs for each object in a coordinate system.
\square Called a scatter plot
\square A good way to visualize numerical data

Old Faithful Eruptions

Scatter plot too

\square Scatter plot with:

- 2 numerical features
\square one categorical feature
\square Use different colors - or symbols - to indicate categorical feature
\square Common in machine learning to explain algorithms

More attributes

\square A scatterplot only shows to numeric attributes
\square With more attributes, we may use more plots
\square (But there is a limit to informative they are with, say, 100 attributes).

Dispersion

\square Median or mean does not say everything
\square Nor does max, mean or range (=max-min)
\square Example:
\square Two sets
\square The same median $=$ mean $=4$, $\min : 0$, max:8

Ex 2: Uniform

Median, quartile, percentile (approach 1)

\square The n-percentile p :
$\square n$ percent of the objects are below p
$\square(100-n)$ percent are above p

- (where $0<n<100$)
\square Median is the 50-percentile
\square Quartiles are the 25-, 50-, 75-percentiles

\square Split the objects into 4 equally big bins
\square Example 1: 176, 179, 184
- Example 2: 3.75, 7.5, 11.25
- Example 3: 6, 7.5, 9

Boxplot

\square Example 1:

- Max 196
\square Quartiles:
-176, 179, 184
- Min 166
\square Also good for continuous data
\square (The exact definition for the "end points" may vary when "outliers")

Variance (approach 2)

\square Mean: $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
\square Variance: $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
\square Idea:

Beware:
 For some statistical
 purposes one divides
 by ($\mathrm{n}-1$) instead of n .

\square Measure how far each point is from the mean
\square Take the average
\square Square - otherwise the average would be 0
\square Standard deviation: square root of the variance
\square "Correct dimension and magnitude"

The examples

$E X$	Min	25%	Median	75%	Max	Mean	Vari.	s.d
1	166	176	179	184	196	179.54	30.33	5.5
2	0	3.75	7.5	11.25	15	7.5	21.21	4.61
3	0	6	7.5	9	15	7.5	3.75	1.94

Example: sentence length

\square NLTK: austen-emma.tx \dagger
\square Number of sentences: 9111
\square Length:

- Min: 1
- Max: 274
- Mean: 21.3
\square Median: 14
- Q1-Q2-Q3: 6-14-29

- Std.dev.: 23.86

Example cntd.: the whole picture

Example: sentence length

\square NLTK: austen-emma.tx \dagger
\square Number of sentences: 9111
\square Length:

- Min: 1
- Max: 274
- Mean: 21.3
\square Median: 14
- Q1-Q2-Q3: 6-14-29

- Std.dev.: 23.86

Example: sentence length

\square NLTK: austen-emma.tx \dagger
\square Number of sentences: 9111
\square Length:
\square Min: 1
\square Max: 274

- Mean: 21.3
\square Median: 14
- Q1-Q2-Q3: 6-14-29
\square Std.dev.: 23.86

Take home

\square Statistical variables:
\square Categorical
\square Numerical

- Discrete
- Continuous
\square Frequencies
\square Median
\square Quartiles, percentiles
\square Mean
\square Variance
\square Standard deviation
\square Tables
\square Contingency table
\square Bar chart
\square Histogram
\square Scatter plot
\square Boxplot

[^0]: From OpenIntro Statistics
 Creative Commons license

