IN4080 – 2022 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Logistic Regression

Lecture 4, 15 Sept

Today

- □ Linear classifiers
- Linear regression
- Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- + Evaluation from last week

Logistic regression

In natural language processing, logistic regression is the baseline supervised machine learning algorithm for classification, and also has a very close relationship with neural networks.

(J&M, 3. ed., Ch. 5)

Machine learning

- □ Last week: Naive Bayes
 - Probabilistic classifier
 - Categorical features
- Today
 - A geometrical view on classification
 - In particular: linear classifiers
 - Numerical features
- Eventually see that both Naive Bayes and Logistic regression can fit both descriptions: probailistic and linear

Notation

When considering numerical features, it is usual to use

- \square $(x_1, x_2, ..., x_n)$ for the features, where
 - each feature is a number
 - a fixed order is assumed
- $\square y$ for the output value/class
- □ In particular, J&M use
 - $\ \ \ \hat{y}$ for the predicted value of the learner, $\hat{y}=f(x_1,x_2,\dots,x_n)$
 - \mathbf{D} \mathbf{y} for the true value
 - \square (where Marsland, IN3050, uses y and t, resp.)

Machine learning

- □ In NLP, we often consider
 - thousands of features (dimension)
 - categorical data
- These are difficult to illustrate by figures
- To understand ML algorithms
 - it easier to use one or two features, 2-3 dimensions, to be able to draw figures
 - and then to use numerical data, to get non-trivial figures

Scatter plot example

- Two numeric features
- □ Three classes
- We may indicate the classes by colors or symbols

Classifiers – two classes

- Many classification methods are made for two classes
 - And then generalizes to more classes
- The goal is to find a curve that separates the two classes:
 - The decision boundary
- With more dimensions: to find a (hyper-)surface

Linear classifiers

- Linear classifiers try to find a straight line that separates the two classes (in 2-dim)
- The two classes are linearly separable_if they can be separated by a straight line
- If the data isn't linearly separable, the classifier will make mistakes.
- Then: the goal is to make as few mistakes as possible
 - on unseen data

Linear classifiers: two dimensions

Decision boundary

- \Box a line has the form ax+by+c=0
- \Box ax + by < -c for red points
- \Box ax + by > -c for blue points

One-dimensional classification

- A linear separator is simply a point
- An observation is classified as
 - □ class 1 iff x>m
 - □ class 0 iff x<m

Data set 1: linerarly separable

Data set 2: not linerarly separable

More dimensions

- In a 3 dimensional space (3 features) a linear classifier corresponds to a plane
- In a higher-dimensional space it is called a hyper-plane

Higher dimensions

- With one variable, consider
 - $\Box ax + b$
 - alternatively write it
 - $\square w_0 + w_1 x_1$
- With two variables, consider
 - $\square w_0 + w_1 x_1 + w_2 x_2$
- and so on

- □ Vector form:
- $w_0 + w_1 x_1 + w_2 x_2 = (w_0, w_1, w_2) \cdot (1, x_1, x_2)$
- where we add an extra variable (feature) $x_0 = 1$ to each observation

Linear classifiers: n dimensions

A hyperplane has the form

$$\sum_{i=1}^{n} w_i x_i + w_0 = 0$$

- which equals
 - $\sum_{i=0}^{n} w_i x_i = (w_0, w_1, \dots, w_n) \cdot (x_0, x_1, \dots, x_n) = \vec{w} \cdot \vec{x} = 0,$
 - \square assuming $x_0 = 1$
- An object belongs to class C iff

$$\hat{y} = f(x_0, x_1, ..., x_n) = \sum_{i=0}^{n} w_i x_i = \vec{w} \cdot \vec{x} > 0$$

and to not C, otherwise

Main questions

- What is the best model?
 - Here: What is the best linear decision boundary
- □ How do we find it?
 - (eventually)

Today

- Linear classifiers
- □ Linear regression
- Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- + Evaluation from last week

Linear Regression

□ Data:

- 100 males: height and weight
- □ Goal:
 - Guess the weight of other males when you only know the height

Linear Regression

■ Method:

- Try to fit a straight line to the observed data
- Predict that unseen data are placed on the line
- Questions:
 - What is the best line?
 - How do we find it?

Best fit

- □ To find the best fit, we compare each
 - \blacksquare true value y_i (green point)
 - lacksquare to the corresponding predicted value \hat{y}_i (on the red line)
- □ We define a loss function
 - lacktriangle which measures the discrepancy between the y_i -s and \hat{y}_i -s
 - (alternatively called error function)
- The goal is to minimize the loss

Loss for linear regression

For linear regression, usual to use:

Mean square error:

$$\frac{1}{m}\sum_{i=1}^{m}d_{i}^{2}$$

where

$$d_i = (y_i - \hat{y}_i)$$

$$\hat{y}_i = (ax_i + b)$$

- Why squaring?
 - To not get 0 when we sum the diff.s.
 - Large mistakes are punished more severely

Learning = minimizing the loss

- □ For lin. regr. there is a formula
 - (this is called an analytic solution)
 - But slow with many (millions) of features
- Alternative:
 - Start with one candidate line
 - Try to find better weights
 - A kind of search problem
 - Use Gradient Descent

Linear regression: higher dimensions

- Linear regression of more than two variables works similarly
- We try to fit the best (hyper-)plane

$$\hat{y} = f(x_0, x_1, ..., x_n) = \sum_{i=0}^{n} w_i x_i = \vec{w} \cdot \vec{x}$$

We can use the same mean square error:

$$\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Today

- Linear classifiers
- Linear regression
- Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- + Evaluation from last week

From regression to classification

 Goal: predict gender from two features: height and weight

Predicting gender from height

- First:try to predict from height only
- The decision boundary should be a number: c
- An observation, n, is classified
 - □ 1(male) if height_n > c
 - □ 0 (not male) otherwise
- □ How do we determine c?

Digression

By the way

- How good are the best predictions of gender given height?
 - **0.81**
- □ Given weight?
 - **0.925**
- Given height+weight?
 - **0.95**

Linear regression is not the best choice

- □ How do we determine c?
- We may use linear regression:
 - Try to fit a straight line
 - The observations has $y \in \{0,1\}$
 - The predicted value $\hat{y} = ax + b$
 - \square Assign class 1 iff $\hat{y} > 0.5$
- Possible, but
 - Bad fit, y_i and \hat{y}_i are different
 - Correctly classified objects contribute to the error (wrongly!)

The "correct" decision boundary

- The correct decision boundary is the Heaviside step function
- □ But:
 - Not a differentiable function
 - can't apply gradient descent

The sigmoid curve

- An approximation to the ideal decision boundary
- Differentiable
 - Gradient descent
- Mistakes further from the decision boundary are punished harder

An observation, n, is classified

- $male if f(height_n) > 0.5$
- not male otherwise

The logistic function

- $y = \frac{1}{1+e^{-z}} = \frac{e^z}{e^z+1}$
- □ A sigmoid curve
 - But also other functions make sigmoid curves e.g. $y = \tanh(z)$
- □ Maps $(-\infty, \infty)$ to (0,1)
- Monotone
- Can be used for transforming numeric values into probabilities

Exponential function - Logistic function

$$y = e^z$$

$$y = \frac{1}{1 + e^{-z}} = \frac{e^z}{e^z + 1}$$

The effect

- Instead of a linear classifier which will classify some instances incorrectly
- The logistic regression will ascribe a probability to all instances for the class C (and for notC)
- We can turn it into a classifier by ascribing class C if $P(C|\vec{x}) > 0.5$
- We could also choose other cutoffs, e.g. if the classes are not equally important

Logistic regression

$$\square \log \frac{P(C|\vec{x})}{1 - P(C|\vec{x})} > 0 ?$$

- □ Try to find a linear expression for this $\log \frac{P(C|\vec{x})}{1-P(C|\vec{x})} = \vec{w} \cdot \vec{x} > 0$
- □ Given such a linear expression

$$P(C|\vec{x}) = \frac{e^{\vec{w}\cdot\vec{x}}}{1+e^{\vec{w}\cdot\vec{x}}} = \frac{1}{1+e^{-\vec{w}\cdot\vec{x}}}$$

With two features

From IDRE, UCLA

- \square Two features: x_1, x_2
- \square Apply weights: W_0, W_1, W_2
- \Box Let $y = w_0 + w_1 x_1 + w_2 x_2$
- \square Apply the logistic function, σ , and check whether

$$\sigma(y) = \frac{1}{1+e^{-y}} > 0.5$$

Geometrically:

Folding a plane along a sigmoid
The decision boundary is the intersection of
this surface and the plane 0.5: a straight line

Today

- Linear classifiers
- Linear regression
- Logistic regression
- □ Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- + Evaluation from last week

How to find the best curve?

- □ What are the best choices of a and b in $\frac{1}{1+e^{-(ax+b)}}$?
- Geometrically a and b
 determine the curve's
 - Midpoint:

$$\mathbf{x} = -\frac{b}{a}$$

- Steepness:
 - \blacksquare larger a steeper curve

Learning in the logistic regression model

- A training instance consists of
 - \blacksquare a feature vector \vec{x}
 - \blacksquare a label (class), y, which is 1 or 0.
- \square With a set of weights, \overrightarrow{w} , the classifier will assign

$$\hat{y} = P(C = 1 | \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$$
 to this training instance \vec{x}

- \blacksquare where $P(C=0|\vec{x})=1-\hat{y}$
- □ Goal: find \vec{w} that maximize $P(C = y | \vec{x})$ of all training inst.s

Loss function

- In machine learning we have to determine an objective for the training.
- We can do that in terms of a loss function.
- The goal of the training is to minimize the loss function.
- Example: linear regression
 - Loss: Mean Square Error

- We can choose between various loss functions.
- The choice is partly determined by the learner.
- For logistic regression we choose (simplified) crossentropy loss

Cross-entropy loss

- The underlying idea is that we want to maximize the joint probability of all the predictions we make
 - $\square \prod_{i=1}^m P(y^{(i)} \mid \vec{x}^{(i)})$, over all the training data i = 1, 2, ...m
- This is the same as maximizing

This is the same as minimizing

Which is an instance of what is called the cross-entropy loss

Gradient descent

- We use the derivative of the (mse) loss function to point in which direction to move
- We are approaching a unique global minimum
- □ For details:
 - □ IN3050/4050 (spring)

Gradient descent

- To minimize the loss function we can use gradient descent.
- The gradient
 - (= the partial derivatives of the loss function)
- tells us in which direction we should move: the steepest direction
- □ Good news:
 - The loss function is convex: you are not stuck in local minima
 - We know which way to go
- □ We skip the details of sec. 5.6

Log.Reg. Update One observation

$$\vec{y} = f(x_0, x_1, \dots, x_n) = \sigma(\sum_{i=0}^n w_i x_i) = \sigma(\vec{w} \cdot \vec{x}) = \frac{1}{1 + e^{-\sum_{i=0}^n w_i x_i}}$$

$$\square w_i \leftarrow (w_i - \eta \frac{\partial}{\partial w_i} L_{CE}(\hat{y}, y))$$

$$\square w_i \leftarrow (w_i - \eta(\hat{y} - y)x_i)$$

Vektor form:

$$\square \mathbf{w} \leftarrow (\mathbf{w} - \eta(\hat{y} - y)\mathbf{x})$$

 $\ \square \ \eta > 0$ is a learning rate

Variations of gradient descent

Batch training:

- Calculate the loss for the whole training set
- Make one move in the correct direction
- Repeat (an epoch)
- □ Can be slow

Stochastic gradient descent:

- □ Pick one item
- Calculate the loss for this item
- Move in the direction of the gradient for this item
- Each move does not have to be in the direction of the gradient for the whole set.
- But the overall effect may be good
- Can be faster

Variations of gradient descent

Mini-batch training:

- Pick a subset of the training set of a certain size
- Calculate the loss for this subset
- Make one move in the direction of this gradient
- Repeat (an epoch)
- A good compromise between the two extremes
- (The other two are subcases of this)

Comparision

https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/

Solvers/optimizers

- There are various different solvers and optimizers for gradient descent (which you may meet later).
- Observe that you may specify between solvers in scikit-learn.

Regularization

- LogReg is prone to overfitting to the training data
- Hence apply regularization

$$\hat{w} = \arg\max_{w} \sum_{i=1}^{m} \log P(c^{i} \mid \vec{f}^{i}) - \alpha R(w)$$

- The regularization punishes large weights
- \square Most common is L2-regularization $R(W) = \sum_{i=0}^{n} w_i^2$
- \square Alternative: L1-regularization $R(W) = \sum_{i=0}^{n} |w_i|$

scikit-learn - LogisticRegression

- □ LogisticRegression(penalty='12', ..., C=1.0, ...)
- By adjusting C, you may get better results
- □ The optimal C varies from task to task
- Uses L2-regularization as default
- Whether L1 or L2 may depend on the learner

Today

- Linear classifiers
- Linear regression
- Logistic regression
- Training the logistic regression classifier
- □ Multinomial Logistic Regression
- Representing categorical features
- + Evaluation from last week

Multinomial Logistic Regression

- □ Also called maximum entropy (maxent) classifier, or softmax regression
- With one class we
 - $considered <math>P(C|\vec{x}) = \frac{e^{\vec{w} \cdot \vec{x}}}{1 + e^{\vec{w} \cdot \vec{x}}} = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$
 - lacksquare and implicitly $P(non\mathcal{C}|\vec{x}) = 1 \frac{e^{\overrightarrow{w}\cdot\overrightarrow{x}}}{1 + e^{\overrightarrow{w}\cdot\overrightarrow{x}}} = \frac{1}{1 + e^{\overrightarrow{w}\cdot\overrightarrow{x}}}$
- lacksquare We now consider a linear expression \overrightarrow{w}_i , for each class C_i , i=1,...,k
- □ The probability for each class is then given by the softmax function

$$P(C_j|\vec{x}) = \frac{e^{\overrightarrow{w}_j \cdot \vec{x}}}{\sum_{i=1}^k e^{\overrightarrow{w}_i \cdot \vec{x}}}$$

Example: softmax

- 4 different classes corresponding to the dots below the 0-line
- For each of them a corresponding softmax curve
- This expresses the probability of the observation belonging to this class
- For classification of a new observation: Choose the class with the largest probability.
- □ In 3D
 - A surface for each class
 - They cut each other along straight lines
 - = decision boundaries

Decision surface of LogisticRegression (multinomial)

The decision boundaries turn out to be straight lines

https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html

Training Multinomial Logistic Regression

- □ This is done similarly to the binary task
- We skip the details (for now)

Features in Multinomial LR

- \square Multinomial LR constructs $P(C_j|\vec{x}) = \frac{e^{w_j \cdot x}}{\sum_{i=1}^k e^{\overrightarrow{w_i} \cdot \overrightarrow{x}}}$ for each class.
- lacktriangle This corresponds to one linear expression \overrightarrow{w}_i , for each C_i , $i=1,\ldots,k$
- Alternatively, think of this
 - different features for each class:
 - notation $f_i(C, x)$ feature i for the class C and observation x
 - and one set of weights for the features and classes:
- In scikit-learn we write features as before and LogisticRegression constructs the match with labels during training

Today

- Linear classifiers
- Linear regression
- Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- □ Representing categorical features
- + Evaluation from last week

Categories as numbers

- In the naive Bayes model we could handle categorical values directly,
 e.g., characters:
 - \square What is the probability that $c_n = z'$
- But many classifier can only handle numerical data
- How can we represent categorical data by numerical data?
- □ (In general, it is not a good idea to just assign a single number to each category: $a \rightarrow 1$, $b \rightarrow 2$, $c \rightarrow 3$, ...)

Data representation

Assume the following example

	4 different featues				Classes
feature	f1	f2	f3	f4	
type	cat	cat	Bool (num)	num	
Value set	a, b, c	х, у	True, False	0, 1, 2, 3,	Class1, class2

Dicrtonary representation in NLTK

```
[({'f1': 'a', 'f2': 'y', 'f3': True, 'f4': 5}, 'class_1'), ({'f1': 'b', 'f2': 'y', 'f3': False, 'f4': 2}, 'class_2'), ({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]
```

3 training instances

4 features

class

One-hot encoding

feature 1			feature 2	
а	b	С	x	у
(1,0,0)	(0,1,0)	(0,0,1)	(1,0)	(0,1)

 Represent categorical variables as vectors/arrays of numerical variables

Representation in scikit: "one hot" encoding

NLTK

[({'f1': 'a', 'f2': 'y', 'f3': True, 'f4': 5}, 'class_1'),
({'f1': 'b', 'f2': 'y', 'f3': False, 'f4': 2}, 'class_2'),
({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

4 features

class

scikit

3 training instances

One-hot encoding						
а	b	С				
[1, 0, 0]	[0, 1,0]	[0, 0, 1]				

3 corresponding classes

Converting a dictionary

- We can construct the data to scikit directly
- Scikit has methods for converting Python-dictionaries/NLTK-format to arrays
 - " train_data = [inst[0] for inst in train]
 " train_target = [inst[1] for inst in train]
 " v = DictVectorizer()

 " X_train=v.fit_transform(train_data)

 " X_test=v.transform(test_data)

 Transform
 Use same v as for train

 T

Multinomial NB in scikit

- We can construct the data to scikit directly
- Scikit has methods for converting text to bag of words arrays

Positions corresponds to [anta, en, er, fiol, rose]

Sparse vectors

- One hot encoding uses space
- 26 English characters:
 - Each is represented as a vector with 25 '0'-s and a singel '1'
- Bernoulli NB text. classifier with
 2000 most frequent words
 - Each word represented by a vector with 1999 '0'-s and a singel '1'.

scikit-learn uses internally a dictionary-like representation for these vectors, called "sparse vectors"