IN4080 - 2022 FALL
 NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Today

\square Multinomial Logistic Regression
\square Representing categorical features
\square Naïve Bayes vs. Logistic Regression
\square Evaluation
\square Language models

Repeat: Logistic Regression - Decision

\square Two classes: C and \bar{C}
\square An observation: $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$
\square Model weights: $\mathbf{w}=\left(w_{0}, \ldots, w_{n}\right)$
\square Assign class C to \boldsymbol{x} iff

$$
\begin{aligned}
& \square \mathrm{z}=\sum_{i=0}^{n} w_{i} x_{i}=\boldsymbol{w} \cdot \boldsymbol{x}>0 \\
& \square e^{z}>1 \\
& \square \hat{y}=P(C \mid \boldsymbol{x})=\sigma(z)=\frac{1}{1+e^{-z}}>0.5
\end{aligned}
$$

Logistic Regression: Learning

\square Objective: reduce the loss
\square Cross-entropy loss:

- (= max. joint probability)
$\square L_{C E}(\vec{w})=\sum_{j=1}^{m}-\log P\left(y^{(j)} \mid \vec{x}^{(j)}\right)$
\square Gradient descent:
$\square w_{i} \leftarrow\left(w_{i}-\eta \frac{\partial}{\partial w_{i}} L_{C E}(\hat{y}, y)\right)$
\square For one observation $\boldsymbol{x}^{(j)}$:
$\square w_{i} \leftarrow\left(w_{i}-\eta\left(\hat{y}^{(j)}-y^{(j)}\right) x_{i}^{(j)}\right)$

weights

Multinomial Logistic Regression

\square A type of multi-class classifier:

- A finite set of classes $C_{i}, i=1, \ldots, k$
\square An observation $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ is assigned to exactly one of the classes
\square A model consists of weights for each class:
$\square \boldsymbol{w}_{\boldsymbol{i}}=\left(w_{i, 0}, \ldots, w_{i, n}\right)$
\square Consider a linear expression for each class
$\square z_{i}=\boldsymbol{w}_{i} \cdot \boldsymbol{x}=\sum_{j=0}^{n} w_{i, j} x_{j}$
\square Choose the class C_{i} with the largest Z_{i}

https:/ /scikit-learn.org/stable/auto_examples/ linear_model/plot_logistic_multinomial.html

Beware: Jurafsky and Martin uses $w_{i, j}$ where Marsland, IN3050, uses $w_{j, i}$

Multinomial Logistic Regression

$\square z_{i}=\boldsymbol{w}_{\boldsymbol{i}} \cdot \boldsymbol{x}=\sum_{j=0}^{n} w_{i, j} x_{j}$
\square The probability of class C_{i} : $\hat{y}_{i}=P\left(C_{i} \mid \boldsymbol{x}\right)=$ $\left(\operatorname{softmax}\left(z_{1}, \ldots, z_{k}\right)\right)_{i}$

$$
=\frac{e^{z_{i}}}{\sum_{j=1}^{m} e^{Z_{j}}}
$$

\square Choose the class C_{i} with
\square the largest z_{i}
\square the largest $\hat{y}_{i}=P\left(C_{i} \mid \boldsymbol{x}\right)$

y1
y2
y3
y^{4}

Connections going into a node

$\square z_{i}=\boldsymbol{w}_{\boldsymbol{i}} \cdot \boldsymbol{x}=\sum_{j=0}^{n} w_{i, j} x_{j}$
\square The probability of class C_{i} : $\hat{y}_{i}=P\left(C_{i} \mid \boldsymbol{x}\right)=$ $\left(\operatorname{softmax}\left(z_{1}, \ldots, z_{k}\right)\right)_{i}$

$$
=\frac{e^{z_{i}}}{\sum_{j=1}^{m} e^{z_{j}}}
$$

\square Choose the class C_{i} with
\square the largest z_{i}
\square the largest $\hat{y}_{i}=P\left(C_{i} \mid \boldsymbol{x}\right)$

y1
y2
y3
y4

Connections going out of a node

$\square z_{i}=\boldsymbol{w}_{\boldsymbol{i}} \cdot \boldsymbol{x}=\sum_{j=0}^{n} w_{i, j} x_{j}$
\square The probability of class C_{i} : $\hat{y}_{i}=P\left(C_{i} \mid \boldsymbol{x}\right)=$ $\left(\operatorname{softmax}\left(z_{1}, \ldots, z_{k}\right)\right)_{i}$

$$
=\frac{e^{Z_{i}}}{\sum_{j=1}^{m} e^{Z_{j}}}
$$

\square Choose the class C_{i} with
\square the largest z_{i}
\square the largest $\hat{y}_{i}=P\left(C_{i} \mid \boldsymbol{x}\right)$

yl
y2
y3
y4

Matrix form

$$
W \mathbf{x}=\left[\begin{array}{rrrr}
w_{1,1} & w_{1,2} & \cdots & w_{1, n} \\
w_{2,1} & w_{2,2} & \cdots & w_{2, n} \\
\hline \vdots & \vdots & \ddots & \vdots \\
w_{m, 1} & w_{m, 2} & \cdots & w_{m, n}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{r}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]=\left[\begin{array}{r}
z_{1} \\
z_{2} \\
\vdots \\
z_{m}
\end{array}\right]=\mathbf{z}
$$

\square For those of you who know matrices:
\square The connections between the layers: a matrix
\square Running it through the connections: matrix multiplication

y1

Training Multinomial Logistic Regression

\square One observation
\square Target of form $\mathbf{y}=(0, \ldots, 0,1,0, \ldots, 0)$

- say $y_{c}=1$ and $y_{j}=0$ for $j \neq c$
\square Compare the predicted $\widehat{\boldsymbol{y}}=\left(\hat{y}_{1}, \hat{y}_{2}, . . \hat{y}_{k}\right)$
\square to the target labels using cross-entropy loss
$-L_{C E}(\widehat{\boldsymbol{y}}, \boldsymbol{y})=-\sum_{j=1}^{k} y_{j} \log \hat{y}_{j}$

\square A batch $Y=\left\{\left(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}\right), \ldots,\left(\boldsymbol{x}^{(m)}, \boldsymbol{y}^{(m)}\right)\right\}$: $\square L_{C E}(Y, \hat{Y})=\sum_{j=1}^{m} L_{C E}\left(\hat{y}^{(j)}, y^{(j)}\right)$

Training Multinomial Logistic Regression

\square Gradient descent:
\square partial derivatives
$\square+$ some algebra
\square yield update rule:
$-w_{i, j}=w_{i, j}-\eta\left(\hat{y}_{i}-y_{i}\right) x_{j}$
\square which means
$-w_{c, j}=w_{c, j}+\eta\left(1-\hat{y}_{c}\right) x_{j}$
$-w_{i, j}=w_{i, j}-\eta\left(\hat{y}_{i}\right) x_{j}$, for $j \neq c$
\square c.f. J\&M (5.47)

```
n features, k classes
```


Example: softmax

$\square 4$ different classes corresponding to the dots below the 0 -line

For each of them:
\square a corresponding softmax curve
$\square=$ the probability of the observation belonging to this class
\square Similarly with two features
\square A surface for each class

- The intersections of the surfaces project to straight lines in the $x y$ plane
■ = decision boundaries

The decision boundaries turn out to be straight lines

Categories as numbers

\square In the naive Bayes model we could handle categorical values directly, e.g., characters:

- What is the probability that $c _n=$ ' z '
\square But many classifier can only handle numerical data
\square How can we represent categorical data by numerical data?
\square (In general, it is not a good idea to just assign a single number to each

Data representation

4 different featues					
feature	f 1	f 2	f 3	f 4	Classes
type	cat	cat	Bool (num)	num	
Value set	$\mathrm{a}, \mathrm{b}, \mathrm{c}$	x, y	True, False	$0,1,2$, $3, \ldots$	Class 1, class2

Dictionary representation
in NLTK

One-hot encoding

feature 1			feature 2		
a	b	c	x	y	
$(1,0,0)$	$(0,1,0)$	$(0,0,1)$		$(1,0)$	$(0,1)$

\square Represent categorical variables as vectors/arrays of numerical variables

Representation in scikit: "'one hot" encoding

Converting a dictionary

\square We can construct the data to scikit directly
\square Scikit has methods for converting Python-dictionaries/NLTK-format to arrays

```
" train_data = [inst[0] for inst in train]
" train_target = [inst[1] for inst in train]
" v = DictVectorizer()
" X_train=v.fit_transform(train_data)
X_test=v.transform(test_data)
```

1. Constructs (=fit) repr. format 2. Transform

Transform

 Use same vas for train
Multinomial NB in scikit

\square We can construct the data to scikit directly
\square Scikit has methods for converting text to bag of words arrays

```
" train_data=["en rose er en rose",
        "anta en rose er en fiol"]
    v = CountVectorizer()
    X_train=v.fit_transform(train_data)
    print(X_train.toarray())
    [[0 2 1 1 O 2]
    [llllll
```

\square Positions corresponds to [anta, en, er, fiol, rose]

Sparse vectors

\square One hot encoding uses space
$\square 26$ English characters:
\square Each is represented as a vector with 25 ' 0 '-s and a single ' 1 '
\square Bernoulli NB text. classifier with 2000 most frequent words
\square Each word represented by a vector with 1999 ' 0 '-s and a single ' 1 '.
scikit-learn uses internally a dictionary-like representation for these vectors, called "sparse vectors"

Naïve Bayes vs. Logistic Regression

Naïve Bayes vs. Logistic Regression

\square Both are probability-based and make a hard decision by choosing
$\square \operatorname{argmax} P\left(C_{i} \mid \boldsymbol{x}\right)$

$$
C_{i} \in \mathcal{C}
$$

\square For Naïve Bayes:
$\square \operatorname{argmax} P\left(C_{i} \mid \boldsymbol{x}\right)=\underset{C_{i} \in \mathcal{C}}{\operatorname{argmax}} P\left(C_{i}\right) \prod_{j=1}^{n} P\left(v_{j}=x_{j} \mid C_{i}\right)=$

\square a linear expression for each class like the Log.Reg

Comparing NB and LogReg

25
\square NB is an instance of LogReg,
\square i.e. one possible choice of weights
\square LogReg will do at least as well as NB on the training data
\square with respect to the cross-entropy loss
\square (without any regularization)
\square When the independence assumptions holds, NB will do as well as LogReg
\square When the independence assumptions does not hold, NB may put too much weight on some features
\square LogReg will not do this: If we add features that depend on other features, LogReg will put less weight on them

Comparing NB and LogReg

26
\square NB is a generative classifier:

- It has a model of how the data are generated
$\square P(C) P(\vec{f} \mid C)=P(\vec{f}, C)$
\square LogReg is a discriminative classifier
- It only considers the conditional probability $P(C \mid \vec{f})$

Comparing cats and dogs

Generałive

\square Comparing cats and dogs:

- a cat model/distribution
\square a dog model
\square If we also want to compare dogs and wolfs
\square we use the same dog model:
- features
- weights

Discriminative

\square The model is determined by the classes and the differences between them
\square Consider other features and weights for dog when comparing to wolf than to cat.

Generating positive movie reviews

\square First choose the length of the review, say $n=1000$ words
\square Then choose the first word
\square according to the probability distribution $P(w \mid ' p o s ') ~ e . g . ~$

- $\hat{P}(w=$ the $\mid p o s)=0.1$
- $\hat{P}(w=p i t t \mid p o s)=\frac{31}{798742}$
\square Then choose word 2, etc. up to word 1000
\square Observation:
\square Whether we compare to negative film reviews or positive book reviews, we will use the same features
\square Footnote:
\square The multinomial text model tacitly suppress "choose length of document", and assumes it is independent of class

Discriminative classifiers

\square A discriminative classifier considers the probability of the class given the observation directly.
\square E.g. a discriminative text classifier may focus on the features:
\square terrible and terrific for pos. vs. neg film review
\square director and author for pos. film vs. pos. book review
\square The discriminative classifier
\square may be more efficient
\square but gives less explanation
\square and may eventually focus on wrong features

Evaluation measure: Accuracy

\square What does accuracy 0.81 tell us?
\square Given a test set of 500 documents:
\square The classifier will classify 405 correctly
\square And 95 incorrectly
\square A good measure given:
\square The 2 classes are equally important
\square The 2 classes are roughly equally sized
\square Example:

- Woman/man
- Movie reviews: pos/neg

But

\square For some tasks, the classes aren't equally important
\square Worse to loose an important mail than to receive yet another spam mail
\square For some tasks the different classes have different sizes.

Information retrieval (IR)

\square Traditional IR, e.g. a library
\square Goal: Find all the documents on a particular topic out of 100000 documents,

- Say there are 5
\square The system delivers 10 documents: all irrelevant
- What is the accuracy?
\square For these tasks, focus on
- The relevant documents
\square The documents returned by the system
\square Forget the
\square Irrelevant documents which are not returned

IR - evaluation

Confusion matrix

Figure 6.4 Contingency table
\square Beware what the rows and columns are:
\square NLTKs
ConfusionMatrix swaps them compared to this table

Evaluation measures

\square Accuracy: (tp+tn)/N
\square Precision:tp/(tp+fp)
\square Recall: tp/(tp+fn)
\square F-score combines P and R
$\square F_{1}=\frac{2 P R}{P+R}\left(=\frac{1}{\frac{1}{\frac{R}{P}+\frac{1}{P}}}\right)$
$\square F_{1}$ called 'harmonic mean"
\square General form
$\square F=\frac{1}{\alpha_{\bar{P}}^{\frac{1}{P}+(1-\alpha) \frac{1}{R}}}$
\square for some $0<\alpha<1$

Confusion matrix

\square Precision, recall and f-score can be calculated for each class against the rest

Figure 6.5 Confusion matrix for a three-class categonization task, showing for each pair of classes ($c_{\|}, c_{2}$), how many documents from $c_{\|}$were (in) oorrectly assigned to c_{2}

Probabilistic Language Models

\square Goal: Ascribe probabilities to word sequences.
Motivation:
\square Translation:
■ $P($ she is a tall woman) $>P($ she is a high woman)

- $P($ she has a high position) $>P($ she has a tall position)
\square Spelling correction:
- $P($ She met the prefect.) $>P($ She met the perfect.)
$\square P($ She met the prefect match. $)<P($ She met the perfect match.)
\square Speech recognition:
- P(l saw a van) > P(eyes awe of an)

Probabilistic Language Models

\square Goal: Ascribe probabilities to word sequences.
$\square P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)$
\square Related: the probability of the next word
$\square P\left(w_{n} \mid w_{1}, w_{2}, w_{3}, \ldots, w_{n-1}\right)$
\square A model which does either is called a Language Model, LM
\square Comment: The term is somewhat misleading
■ (Probably origin from speech recognition where it is combined with an acoustic model)

Chain rule

\square The two definitions are related by the chain rule for probability:
$\square P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)=$
$\square P\left(w_{1}\right) \times P\left(w_{2} \mid w_{1}\right) \times P\left(w_{3} \mid w_{1}, w_{2}\right) \times \cdots \times P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)=$
$\square \prod_{i}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right)=\prod_{i}^{n} P\left(w_{i} \mid w_{1}^{i-1}\right)$
$\square P($ "its water is so transparent") = P (its) $\times P$ (water/its) $\times P$ (is/its water)
$\times P$ (so|its water is) $\times P$ (transparent/its water is so)
\square But this does not work for long sequences

- (we may not even have seen before)

Markov assumption

\square A word depends only on the immediate preceding word
$\square P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \approx$
$\square P\left(w_{1}\right) \times P\left(w_{2} \mid w_{1}\right) \times P\left(w_{3} \mid w_{2}\right) \times \cdots \times P\left(w_{n} \mid w_{n-1}\right)=$
$\square \prod_{i}^{n} P\left(w_{i} \mid w_{i-1}\right)$
$\square \mathrm{P}$ ("its water is so transparent") \approx

$$
P(\text { its }) \times P(\text { water } \mid \text { its }) \times P(\text { is } \mid \text { water }) \times P(\text { so } \mid \text { is }) \times P(\text { transparent } \mid \text { so })
$$

\square This is called a bigram model

Estimating bigram probabilities

\square The probabilities can be estimated by counting
\square This yields maximum likelihood probabilities
\square (=maximum probable on the training data)
$\square \hat{P}\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}$

Example from J\&M

$$
\hat{P}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

$$
\begin{aligned}
& \text { <s> I am Sam </s> } \\
& \text { <s> Sam I am </s> } \\
& \text { <s> I do not like green eggs and ham </s> }
\end{aligned}
$$

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(</ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

General ngram models

\square A word depends only on the k many immediately preceding words
$\square P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \approx$
$\square \prod_{i}^{n} P\left(w_{i} \mid w_{i-k}, w_{i+1-k}, \ldots, w_{i-1}\right)=\prod_{i}^{n} P\left(w_{i} \mid w_{i-k}^{i-1}\right)$
\square This is called a

- unigram model - no preceding words
\square trigram model - two preceding words
$\square k$-gram model $-k$-1 preceding words
- We can train them similarly to the bigram model.
- Have to be more careful with the smoothing for larger k-s.

Generating with n-grams

\square Goal: Generate a sequence of words
\square Unigram:
\square Choose the first word according to how probable it is
\square Choose the second word according to how probable it is, etc.
$\square=$ the generative model for multinomial NB text classification
\square Bigram
\square Select word k according to $\hat{P}\left(w_{i} \mid w_{i-1}\right)$
\square k-gram
\square Select word w_{i} according to how probable it is given the $k-1$ preceding words $P\left(w_{i} \mid w_{i-k}^{i-1}\right)$

Shakespeare

-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
-Hill he late speaks; or! a more to leg less first you enter
-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
gram -What means, sir. I confess she? then all sorts, he is trim, captain.
-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
3 gram 'tis done.
-This shall forbid it should be branded, if renown made it empty.
-King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
gram -It cannot be but so.

Unknown words

\square There might be words that is never observed during training.
\square Use a special symbol for unseen words during application, e.g. UNK
\square Set aside a probability for seeing a new word
\square This may be estimated from a held-out corpus
\square Adjust
\square the probabilities for the other words in a unigram model accordingly
\square the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone

\square Since we might not have seen all possibilities in training data, we might use Lidstone or, more generally, Laplace smoothing
$\square \hat{P}\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)+k}{\operatorname{count}\left(w_{i-1}\right)+k|V|}$
\square where $|V|$ is the size of the vocabulary V.

But:

\square Shakespeare produced
$\square \mathrm{N}=884,647$ word tokens
$\square V=29,066$ word types
\square Bigrams:
\square Possibilities:
$\square V^{2}=844,000,000$
\square Shakespeare,

- bigram tokens: 884,647
- bigram types: 300,000

\square Add-k smoothing is not appropriate

Smoothing n-grams

Backoff

\square If you have good evidence, use the trigram model,
\square If not, use the bigram model,
\square or even the unigram model

Interpolation

\square Combine the models

Use either of this. According to J\&M interpolation works better

Interpolation

\square Simple interpolation:

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3} P\left(w_{n}\right)
\end{aligned}
$$

\square The λ-s can be tuned on a held out corpus
\square A more elaborate model will condition the λ-s on the context
\square (Brings in elements of backoff)

Evaluation of n-gram models

\square Extrinsic evaluation:

- To compare two LMs, see how well they are doing in an application, e.g. translation, speech recognition
\square Intrinsic evaluation:
\square Use a held out-corpus and measure $P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)^{\frac{1}{n}}$
- The n-root compensate for different lengths
- $\prod_{i}^{n} P\left(w_{i} \mid w_{i-k}^{i-1}\right)^{\frac{1}{n}}$ for a k-gram model
- It is normal to use the inverse of this, called the perplexity
$\square P P\left(w_{1}^{n}\right)=\frac{1}{P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)^{\frac{1}{n}}}=P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)^{-\frac{1}{n}}$

Properties of LMs

\square The best smoothing is achieved with Kneser-Ney smoothing
\square Short-comings of all n-gram models
\square The smoothing is not optimal
\square The context are restricted to a limited number of preceding words.

A practical advice: Use logarithms when working with ngrams

