
IN4080 – 2022 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 5, 22 Sept

2

Today

 Multinomial Logistic Regression

 Representing categorical features

 Naïve Bayes vs. Logistic Regression

 Evaluation

 Language models

3

Repeat: Logistic Regression - Decision
4

x1

x2

x3

x0

=1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦

 Two classes: 𝐶 and ҧ𝐶

 An observation: 𝒙 = (𝑥1, … , 𝑥𝑛)

 Model weights: 𝐰 = (𝑤0, … , 𝑤𝑛)

 Assign class 𝐶 to 𝒙 iff

 z = σ𝑖=0
𝑛 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙 > 0

 𝑒𝑧 > 1

 ො𝑦 = 𝑃 𝐶 𝒙 = 𝜎 𝑧 =
1

1+𝑒−𝑧
> 0.5

𝑛 features

Logistic Regression: Learning

 Objective: reduce the loss

 Cross-entropy loss:

 (= max. joint probability)

 𝐿𝐶𝐸 𝑤 = σ𝑗=1
𝑚 − log 𝑃(𝑦(𝑗)| Ԧ𝑥(𝑗))

 Gradient descent:

 𝑤𝑖 ← (𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 ො𝑦, 𝑦)

 For one observation 𝒙(𝑗):

 𝑤𝑖 ← (𝑤𝑖 − 𝜂 ො𝑦(𝑗) − 𝑦(𝑗) 𝑥𝑖
(𝑗)
)

5

weights

𝑚 observations, observation 𝑗, feature 𝑖

Multinomial Logistic Regression

 A type of multi-class classifier:

 A finite set of classes 𝐶𝑖 , 𝑖 = 1,… , 𝑘

 An observation 𝒙 = (𝑥1, … , 𝑥𝑛) is

assigned to exactly one of the classes

 A model consists of weights for each class:

 𝒘𝒊 = (𝑤𝑖,0, … , 𝑤𝑖,𝑛)

 Consider a linear expression for each class

 𝑧𝑖 = 𝒘𝑖 ∙ 𝒙 = σ𝑗=0
𝑛 𝑤𝑖,𝑗𝑥𝑗

 Choose the class 𝐶𝑖 with the largest 𝑧𝑖

6

https://scikit-learn.org/stable/auto_examples/

linear_model/plot_logistic_multinomial.html

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗

where Marsland, IN3050, uses 𝑤𝑗,𝑖
𝑛 features, 𝑘 classes, class 𝑖, feature 𝑗

Multinomial Logistic Regression

 𝑧𝑖 = 𝒘𝒊 ∙ 𝒙 = σ𝑗=0
𝑛 𝑤𝑖,𝑗𝑥𝑗

 The probability of class 𝐶𝑖 :
ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙 =
(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧1, … , 𝑧𝑘))𝑖

=
𝑒𝑧𝑖

σ𝑗=1
𝑚 𝑒𝑧𝑗

 Choose the class 𝐶𝑖 with

 the largest 𝑧𝑖

 the largest ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙

7

x1

x2

x3

x0

=1

z2

z3

z4

z1

ො𝑦2

ො𝑦3

ො𝑦4

ො𝑦1

y2

y3

y4

y1

𝑤2,3

𝑤2,1

𝑤2,2

𝑤2,0
s

o

f

t

m

a

x

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖𝑛 features, 𝑘 classes

Connections going into a node

 𝑧𝑖 = 𝒘𝒊 ∙ 𝒙 = σ𝑗=0
𝑛 𝑤𝑖,𝑗𝑥𝑗

 The probability of class 𝐶𝑖 :
ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙 =
(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧1, … , 𝑧𝑘))𝑖

=
𝑒𝑧𝑖

σ𝑗=1
𝑚 𝑒𝑧𝑗

 Choose the class 𝐶𝑖 with

 the largest 𝑧𝑖

 the largest ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙

8

x1

x2

x3

x0

=1

z2

z3

z4

z1

ො𝑦2

ො𝑦3

ො𝑦4

ො𝑦1

y2

y3

y4

y1

𝑤2,3

𝑤2,1

𝑤2,2

𝑤2,0
s

o

f

t

m

a

x

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖𝑛 features, 𝑘 classes

Connections going out of a node

 𝑧𝑖 = 𝒘𝒊 ∙ 𝒙 = σ𝑗=0
𝑛 𝑤𝑖,𝑗𝑥𝑗

 The probability of class 𝐶𝑖 :
ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙 =
(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧1, … , 𝑧𝑘))𝑖

=
𝑒𝑧𝑖

σ𝑗=1
𝑚 𝑒𝑧𝑗

 Choose the class 𝐶𝑖 with

 the largest 𝑧𝑖

 the largest ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙

9

x1

x2

x3

x0

=1

z2

z3

z4

z1

ො𝑦2

ො𝑦3

ො𝑦4

ො𝑦1

y2

y3

y4

y1

𝑤4,2

𝑤1,2

𝑤2,2

𝑤3,2

s

o

f

t

m

a

x

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖𝑛 features, 𝑘 classes

Matrix form

 For those of you who know matrices:

 The connections between the layers:

a matrix

 Running it through the connections:

matrix multiplication

10

1

Oops: 𝑛 features, 𝑚 classes

Training Multinomial Logistic Regression

 One observation

 Target of form 𝐲 = (0, … , 0,1,0, … , 0)
 say 𝑦𝑐 = 1 and 𝑦𝑗 = 0 for 𝑗 ≠ 𝑐

 Compare the predicted ෝ𝒚 = ො𝑦1, ො𝑦2, . . ො𝑦𝑘
 to the target labels using cross-entropy loss

 𝐿𝐶𝐸 ෝ𝒚, 𝒚 = −σ𝑗=1
𝑘 𝑦𝑗 log ො𝑦𝑗

 A batch 𝑌 = { 𝒙 1 , 𝒚 1 , … , (𝒙(𝑚), 𝒚(𝑚))}:

 𝐿𝐶𝐸 𝑌, ෠𝑌 = σ𝑗=1
𝑚 𝐿𝐶𝐸(ො𝑦

(𝑗), 𝑦(𝑗))

11

𝑚 observations, 𝑛 features, 𝑘 classes

Training Multinomial Logistic Regression

 Gradient descent:

 partial derivatives

 + some algebra

 yield update rule:

 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝜂 ො𝑦𝑖 − 𝑦𝑖 𝑥𝑗

 which means

 𝑤𝑐,𝑗 = 𝑤𝑐,𝑗 + 𝜂 1 − ො𝑦𝑐 𝑥𝑗

 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝜂 ො𝑦𝑖 𝑥𝑗 , for 𝑗 ≠ 𝑐

 c.f. J&M (5.47)

12

𝑛 features, 𝑘 classes

Example: softmax

 4 different classes corresponding
to the dots below the 0-line

 For each of them:

 a corresponding softmax curve

 = the probability of the
observation belonging to this class

 Similarly with two features

 A surface for each class

 The intersections of the surfaces
project to straight lines in the xy-
plane
 = decision boundaries

13

14

https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html

The decision

boundaries turn out to

be straight lines

Categorical features

15

Categories as numbers

 In the naive Bayes model we could handle categorical values directly,

e.g., characters:

 What is the probability that c_n = ‘z’

 But many classifier can only handle numerical data

 How can we represent categorical data by numerical data?

 (In general, it is not a good idea to just assign a single number to each

category: ‘a’1, ‘b’2, ‘c’ 3, …)

16

Data representation

[({'f1': 'a', 'f2': 'y', 'f3': True, 'f4': 5}, 'class_1'),

({'f1': 'b', 'f2': 'y', 'f3': False, 'f4': 2}, 'class_2'),

({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

17

4 features

Dictionary

representation

in NLTK

class

3 training

instances

4 different featues Classes

feature f1 f2 f3 f4

type cat cat Bool

(num)

num

Value

set

a, b, c x, y True,

False

0, 1, 2,

3, …

Class1,

class2

Assume the

following

example

One-hot encoding
18

feature 1 feature 2

a b c x y

(1,0,0) (0,1,0) (0,0,1) (1,0) (0,1)

 Represent categorical variables

as vectors/arrays of numerical

variables

Representation in scikit: ‘’one hot’’ encoding

[({'f1': 'a', 'f2': 'y', 'f3': True, 'f4': 5}, 'class_1'),

({'f1': 'b', 'f2': 'y', 'f3': False, 'f4': 2}, 'class_2'),

({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

X_train:

array([[1., 0., 0., 0., 1., 1., 5.],

[0., 1., 0., 0., 1., 0., 2.],

[0., 0., 1., 1., 0., 0., 4.]])

train_target: ['class_1', 'class_2', 'class_1'], or

train_target: [1, 2, 1]

19

4 features

scikit

NLTK

7 features

class

3 corresponding classes

3 training

instances

3 training

instances

One-hot encoding

a b c

[1, 0, 0] [0, 1,0] [0, 0, 1]

Converting a dictionary

 We can construct the data to scikit directly

 Scikit has methods for converting Python-dictionaries/NLTK-format
to arrays

» train_data = [inst[0] for inst in train]

» train_target = [inst[1] for inst in train]

» v = DictVectorizer()

» X_train=v.fit_transform(train_data)

» X_test=v.transform(test_data)

20

1. Constructs (=fit)

repr. format

2. Transform

Transform

Use same v as

for train

Multinomial NB in scikit

 We can construct the data to scikit directly

 Scikit has methods for converting text to bag of words arrays

 Positions corresponds to [anta, en, er, fiol, rose]

» train_data=["en rose er en rose",
"anta en rose er en fiol"]

» v = CountVectorizer()

» X_train=v.fit_transform(train_data)

» print(X_train.toarray())
[[0 2 1 0 2]
[1 2 1 1 1]]

21

Sparse vectors

 One hot encoding uses space

 26 English characters:

 Each is represented as a vector

with 25 ‘0’-s and a single ‘1’

 Bernoulli NB text. classifier with

2000 most frequent words

 Each word represented by a

vector with 1999 ‘0’-s and a

single ‘1’.

 scikit-learn uses internally a

dictionary-like representation

for these vectors, called ’’sparse

vectors’’

22

Naïve Bayes vs. Logistic Regression

23

Naïve Bayes vs. Logistic Regression

 Both are probability-based and make a hard decision by choosing

 argmax
𝐶𝑖∈𝒞

𝑃(𝐶𝑖|𝒙)

 For Naïve Bayes:

 argmax
𝐶𝑖∈𝒞

𝑃(𝐶𝑖|𝒙) = argmax
𝐶𝑖∈𝒞

𝑃 𝐶𝑖 ς𝑗=1
𝑛 𝑃 𝑣𝑗 = 𝑥𝑗|𝐶𝑖 =

argmax
𝐶𝑖∈𝒞

(log 𝑃 𝐶𝑖 + σ𝑖=1
𝑛 log(𝑃 𝑣𝑗 = 𝑥𝑗|𝐶𝑖))

 a linear expression for each class like the Log.Reg

24

𝑤𝑖,0 𝑤𝑖,𝑗𝑥𝑗

Comparing NB and LogReg

 NB is an instance of LogReg,

 i.e. one possible choice of weights

 LogReg will do at least as well as NB on the training data

 with respect to the cross-entropy loss

 (without any regularization)

 When the independence assumptions holds, NB will do as well as LogReg

 When the independence assumptions does not hold, NB may put too much
weight on some features

 LogReg will not do this: If we add features that depend on other features,
LogReg will put less weight on them

25

Comparing NB and LogReg

 NB is a generative classifier:

 It has a model of how the data are generated

 𝑃 𝐶 𝑃 Ԧ𝑓 𝐶 = 𝑃(Ԧ𝑓, 𝐶)

 LogReg is a discriminative classifier

 It only considers the conditional probability 𝑃 𝐶| Ԧ𝑓

26

Comparing cats and dogs

 Comparing cats and dogs:

 a cat model/distribution

 a dog model

 If we also want to compare
dogs and wolfs

 we use the same dog model:

 features

 weights

 The model is determined by the

classes and the differences

between them

 Consider other features and

weights for dog when

comparing to wolf than to cat.

28

Generative Discriminative

Generating positive movie reviews

 First choose the length of the
review, say n=1000 words

 Then choose the first word

 according to the probability
distribution P(w | 'pos') e.g.

 ෠𝑃 𝑤 = 𝑡ℎ𝑒 𝑝𝑜𝑠) = 0.1

 ෠𝑃 𝑤 = 𝑝𝑖𝑡𝑡 𝑝𝑜𝑠) =
31

798 742

 Then choose word 2, etc. up to
word 1000

 Observation:

 Whether we compare to
negative film reviews or positive
book reviews, we will use the
same features

 Footnote:

 The multinomial text model
tacitly suppress "choose length
of document", and assumes it is
independent of class

29

Discriminative classifiers

 A discriminative classifier considers the probability of the class given

the observation directly.

 E.g. a discriminative text classifier may focus on the features:

 terrible and terrific for pos. vs. neg film review

 director and author for pos. film vs. pos. book review

 The discriminative classifier

 may be more efficient

 but gives less explanation

 and may eventually focus on wrong features

30

Evaluation31

Evaluation measure: Accuracy
32

 What does accuracy 0.81 tell us?

 Given a test set of 500 documents:

 The classifier will classify 405 correctly

 And 95 incorrectly

 A good measure given:

 The 2 classes are equally important

 The 2 classes are roughly equally sized

 Example:

 Woman/man

 Movie reviews: pos/neg

But
33

 For some tasks, the classes aren't equally important

 Worse to loose an important mail than to receive yet another spam mail

 For some tasks the different classes have different sizes.

Information retrieval (IR)
34

 Traditional IR, e.g. a library

 Goal: Find all the documents on a particular topic out of 100 000 documents,

 Say there are 5

 The system delivers 10 documents: all irrelevant

 What is the accuracy?

 For these tasks, focus on

 The relevant documents

 The documents returned by the system

 Forget the

 Irrelevant documents which are not returned

IR - evaluation
35

Confusion matrix

 Beware what the rows

and columns are:

 NLTKs

ConfusionMatrix

swaps them

compared to this

table

36

Evaluation measures

 Accuracy: (tp+tn)/N

 Precision:tp/(tp+fp)

 Recall: tp/(tp+fn)

 F-score combines P and R

 𝐹1 =
2𝑃𝑅

𝑃+𝑅
=

1
1
𝑅+

1
𝑃

2

 F1 called ‘’harmonic mean’’

 General form

 𝐹 =
1

𝛼
1

𝑃
+(1−𝛼)

1

𝑅

 for some 0 < 𝛼 < 1

37

Is in C

Yes NO

Class

ifier

Yes tp fp

No fn tn

Confusion matrix

 Precision, recall and

f-score can be

calculated for each

class against the rest

38

Language Models

39

Probabilistic Language Models
40

 Goal: Ascribe probabilities to word sequences.

 Motivation:

 Translation:

 P(she is a tall woman) > P(she is a high woman)

 P(she has a high position) > P(she has a tall position)

 Spelling correction:

 P(She met the prefect.) > P(She met the perfect.)

 P(She met the prefect match.) < P(She met the perfect match.)

 Speech recognition:

 P(I saw a van) > P(eyes awe of an)

Probabilistic Language Models
41

 Goal: Ascribe probabilities to word sequences.

 𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛)

 Related: the probability of the next word

 𝑃(𝑤𝑛 | 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛−1)

 A model which does either is called a Language Model, LM

 Comment: The term is somewhat misleading

 (Probably origin from speech recognition where it is combined with an acoustic

model)

Chain rule
42

 The two definitions are related by the chain rule for probability:

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 =

 𝑃 𝑤1 × 𝑃 𝑤2 𝑤1 × 𝑃 𝑤3|𝑤1, 𝑤2 ×∙∙∙× 𝑃 𝑤𝑛|𝑤1, 𝑤2, … , 𝑤𝑛−1 =

 ς𝑖
𝑛𝑃 𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖|𝑤1
𝑖−1

 P(“its water is so transparent”) =
P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is so)

 But this does not work for long sequences
 (we may not even have seen before)

Markov assumption
43

 A word depends only on the immediate preceding word

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 𝑃 𝑤1 × 𝑃 𝑤2 𝑤1 × 𝑃 𝑤3|𝑤2 ×∙∙∙× 𝑃 𝑤𝑛| 𝑤𝑛−1 =

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−1

 P(“its water is so transparent”) ≈

P(its) × P(water|its) × P(is| water) × P(so|is) × P(transparent| so)

 This is called a bigram model

Estimating bigram probabilities
44

 The probabilities can be estimated by counting

 This yields maximum likelihood probabilities

 (=maximum probable on the training data)


෠𝑃 𝑤𝑖 𝑤𝑖−1 =

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−1,𝑤𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−1)

Example from J&M
45

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

෠𝑃 𝑤𝑖 𝑤𝑖−1 =
𝑐(𝑤𝑖−1, 𝑤𝑖)

𝑐(𝑤𝑖−1)

General ngram models
46

 A word depends only on the k many immediately preceding words

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘 , 𝑤𝑖+1−𝑘, … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 This is called a
 unigram model – no preceding words

 trigram model – two preceding words

 k-gram model – k-1 preceding words

• We can train them similarly to

the bigram model.

• Have to be more careful with

the smoothing for larger k-s.

Generating with n-grams
47

 Goal: Generate a sequence of words

 Unigram:

 Choose the first word according to how probable it is

 Choose the second word according to how probable it is, etc.

 = the generative model for multinomial NB text classification

 Bigram

 Select word k according to ෠𝑃 𝑤𝑖 𝑤𝑖−1

 k-gram

 Select word 𝑤𝑖 according to how probable it is given the 𝑘 − 1 preceding words

𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

Shakespeare
48

Unknown words
49

 There might be words that is never observed during training.

 Use a special symbol for unseen words during application, e.g. UNK

 Set aside a probability for seeing a new word

 This may be estimated from a held-out corpus

 Adjust

 the probabilities for the other words in a unigram model accordingly

 the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone
50

 Since we might not have seen all possibilities in training data, we might

use Lidstone or, more generally, Laplace smoothing


෠𝑃 𝑤𝑖 𝑤𝑖−1 =

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1,𝑤𝑖 +𝑘

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1 +𝑘 |𝑉|

 where |𝑉| is the size of the vocabulary 𝑉.

But:

 Shakespeare produced

 N = 884,647 word tokens

 V = 29,066 word types

 Bigrams:

 Possibilities:

 𝑉2 = 844,000,000

 Shakespeare,

 bigram tokens: 884,647

 bigram types: 300,000

 Add-k smoothing is not

appropriate

51

Smoothing n-grams

 If you have good evidence, use

the trigram model,

 If not, use the bigram model,

 or even the unigram model

 Combine the models

52

Backoff Interpolation

Use either of this. According to J&M interpolation works better

Interpolation

 Simple interpolation:

 The 𝜆-s can be tuned on a held out corpus

 A more elaborate model will condition the 𝜆-s on the context

 (Brings in elements of backoff)

53

Evaluation of n-gram models
54

 Extrinsic evaluation:

 To compare two LMs, see how well they are doing in an application, e.g.
translation, speech recognition

 Intrinsic evaluation:

 Use a held out-corpus and measure 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛

1

𝑛

 The n-root compensate for different lengths

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘

𝑖−1
1

𝑛 for a k-gram model

 It is normal to use the inverse of this, called the perplexity

 𝑃𝑃 𝑤1
𝑛 =

1

𝑃 𝑤1,𝑤2,𝑤3,…,𝑤𝑛

1
𝑛

=𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛
−
1

𝑛

Properties of LMs

 The best smoothing is achieved with Kneser-Ney smoothing

 Short-comings of all n-gram models

 The smoothing is not optimal

 The context are restricted to a limited number of preceding words.

55

A practical advice: Use

logarithms when working with n-

grams

