IN4080 – 2022 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Lecture 5, 22 Sept

Today

- Multinomial Logistic Regression
- Representing categorical features
- □ Naïve Bayes vs. Logistic Regression
- Evaluation
- Language models

Repeat: Logistic Regression - Decision

- $lue{}$ Two classes: C and $ar{C}$
- \square An observation: $\mathbf{x} = (x_1, ..., x_n)$
- □ Model weights: $\mathbf{w} = (w_0, ..., w_n)$
- \square Assign class C to x iff

$$\mathbf{z} = \sum_{i=0}^{n} w_i x_i = \mathbf{w} \cdot \mathbf{x} > 0$$

- $e^z > 1$
- $\hat{y} = P(C|x) = \sigma(z) = \frac{1}{1+e^{-z}} > 0.5$

Logistic Regression: Learning

- Objective: reduce the loss
- Cross-entropy loss:
 - (= max. joint probability)
 - $L_{CE}(\vec{w}) = \sum_{j=1}^{m} -\log P(y^{(j)}|\vec{x}^{(j)})$
- Gradient descent:
 - $w_i \leftarrow (w_i \eta \frac{\partial}{\partial w_i} L_{CE}(\hat{y}, y))$
- \square For one observation $x^{(j)}$:

m observations, observation j, feature i

Multinomial Logistic Regression

- □ A type of multi-class classifier:
 - \blacksquare A finite set of classes C_i , $i=1,\ldots,k$
 - An observation $x = (x_1, ..., x_n)$ is assigned to exactly one of the classes
- A model consists of weights for each class:

$$\square \mathbf{w_i} = (w_{i,0}, \dots, w_{i,n})$$

Consider a linear expression for each class

$$\square z_i = \mathbf{w}_i \cdot \mathbf{x} = \sum_{j=0}^n w_{i,j} x_j$$

 \square Choose the class C_i with the largest Z_i

n features, k classes, class i, feature j

https://scikit-learn.org/stable/auto_examples/ linear_model/plot_logistic_multinomial.html

Beware: Jurafsky and Martin uses $w_{i,j}$ where Marsland, IN3050, uses $w_{i,i}$

Multinomial Logistic Regression

- $\square z_i = \mathbf{w_i} \cdot \mathbf{x} = \sum_{j=0}^n w_{i,j} x_j$
- The probability of class C_i : $\hat{y}_i = P(C_i | \mathbf{x}) = (softmax(z_1, ..., z_k))_i$

$$=\frac{e^{z_i}}{\sum_{j=1}^m e^{z_j}}$$

- \square Choose the class C_i with
 - \square the largest Z_i
 - the largest $\hat{y}_i = P(C_i|x)$

n features, k classes

Beware: Jurafsky and Martin uses $w_{i,j}$ where Marsland, IN3050, uses $w_{j,i}$

Connections going into a node

- $\square z_i = \mathbf{w_i} \cdot \mathbf{x} = \sum_{j=0}^n w_{i,j} x_j$
- The probability of class C_i : $\hat{y}_i = P(C_i | \mathbf{x}) = (softmax(z_1, ..., z_k))_i$

$$=\frac{e^{z_i}}{\sum_{j=1}^m e^{z_j}}$$

- \square Choose the class C_i with
 - \square the largest Z_i

n features, k classes

Beware: Jurafsky and Martin uses $w_{i,j}$ where Marsland, IN3050, uses $w_{j,i}$

Connections going out of a node

- $\square z_i = \mathbf{w_i} \cdot \mathbf{x} = \sum_{j=0}^n w_{i,j} x_j$
- The probability of class C_i : $\hat{y}_i = P(C_i | \mathbf{x}) = (softmax(z_1, ..., z_k))_i$

$$=\frac{e^{z_i}}{\sum_{j=1}^m e^{z_j}}$$

- \square Choose the class C_i with
 - \square the largest Z_i

n features, k classes

Beware: Jurafsky and Martin uses $w_{i,j}$ where Marsland, IN3050, uses $w_{j,i}$

Matrix form

$$W\mathbf{x} = \begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,n} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{m,1} & w_{m,2} & \cdots & w_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{bmatrix} = \mathbf{z}$$

Oops: n features, m classes

- □ For those of you who know matrices:
 - The connections between the layers:
 a matrix
 - Running it through the connections: matrix multiplication

Training Multinomial Logistic Regression

One observation

- Target of form y = (0, ..., 0, 1, 0, ..., 0)
 - say $y_c = 1$ and $y_j = 0$ for $j \neq c$
- lacksquare Compare the predicted $\hat{m{y}} = (\hat{y}_1, \hat{y}_2, \dots \hat{y}_k)$
- to the target labels using cross-entropy loss

$$L_{CE}(\widehat{\boldsymbol{y}}, \boldsymbol{y}) = -\sum_{j=1}^{k} y_j \log \widehat{y}_j$$

Training Multinomial Logistic Regression

Gradient descent:

- partial derivatives
- + some algebra
- yield update rule:

$$w_{i,j} = w_{i,j} - \eta(\hat{y}_i - y_i)x_j$$

which means

$$\mathbf{w}_{c,j} = w_{c,j} + \eta (1 - \hat{y}_c) x_j$$

$$\mathbf{w}_{i,j} = w_{i,j} - \eta(\hat{y}_i)x_j$$
 , for $j \neq c$

□ c.f. J&M (5.47)

Example: softmax

- 4 different classes corresponding to the dots below the 0-line
- □ For each of them:
 - a corresponding softmax curve
 - = the probability of the observation belonging to this class
- Similarly with two features
 - A surface for each class
 - The intersections of the surfaces project to straight lines in the xyplane
 - = decision boundaries

Decision surface of LogisticRegression (multinomial)

The decision boundaries turn out to be straight lines

https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html

Categorical features

Categories as numbers

- In the naive Bayes model we could handle categorical values directly,
 e.g., characters:
 - \square What is the probability that $c_n = 'z'$
- But many classifier can only handle numerical data
- How can we represent categorical data by numerical data?
- □ (In general, it is not a good idea to just assign a single number to each category: $a \rightarrow 1$, $b \rightarrow 2$, $c \rightarrow 3$, ...)

Data representation

Assume the following example

	4 different featues				Classes
feature	f1	f2	f3	f4	
type	cat	cat	Bool (num)	num	
Value set	a, b, c	х, у	True, False	0, 1, 2, 3,	Class1, class2

Dictionary representation in NLTK

```
[({'f1': 'a', 'f2': 'y', 'f3': True, 'f4': 5}, 'class_1'),
({'f1': 'b', 'f2': 'y', 'f3': False, 'f4': 2}, 'class_2'),
({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]
```

3 training instances

4 features

class

One-hot encoding

feature 1			feature 2	
а	b	С	x	у
(1,0,0)	(0,1,0)	(0,0,1)	(1,0)	(0,1)

 Represent categorical variables as vectors/arrays of numerical variables

Representation in scikit: "one hot" encoding

NLTK

[({'f1': 'a', 'f2': 'y', 'f3': True, 'f4': 5}, 'class_1'),
({'f1': 'b', 'f2': 'y', 'f3': False, 'f4': 2}, 'class_2'),
({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

4 features

class

scikit

3 training instances

One-hot encoding				
а	b	С		
[1, 0, 0]	[0, 1,0]	[0, 0, 1]		

3 corresponding classes

Converting a dictionary

- We can construct the data to scikit directly
- Scikit has methods for converting Python-dictionaries/NLTK-format to arrays

```
" train_data = [inst[0] for inst in train]
" train_target = [inst[1] for inst in train]
" v = DictVectorizer()

" X_train=v.fit_transform(train_data)

" X_test=v.transform(test_data)

Transform
Use same v as for train

T
```

Multinomial NB in scikit

- We can construct the data to scikit directly
- Scikit has methods for converting text to bag of words arrays

Positions corresponds to [anta, en, er, fiol, rose]

Sparse vectors

- One hot encoding uses space
- 26 English characters:
 - Each is represented as a vector with 25 '0'-s and a single '1'
- Bernoulli NB text. classifier with
 2000 most frequent words
 - Each word represented by a vector with 1999 '0'-s and a single '1'.

 scikit-learn uses internally a dictionary-like representation for these vectors, called "sparse vectors"

Naïve Bayes vs. Logistic Regression

- Both are probability-based and make a hard decision by choosing
- □ For Naïve Bayes:
 - $\arg\max_{C_i \in \mathcal{C}} P(C_i | \mathbf{x}) = \arg\max_{C_i \in \mathcal{C}} P(C_i) \prod_{j=1}^n P(v_j = x_j | C_i) = \arg\max_{C_i \in \mathcal{C}} (\log(P(C_i)) + \sum_{i=1}^n (\log(P(v_j = x_j | C_i)))$ $w_{i,0} \qquad w_{i,j} x_j$
 - a linear expression for each class like the Log.Reg

Comparing NB and LogReg

25

- NB is an instance of LogReg,
 - □ i.e. one possible choice of weights
- LogReg will do at least as well as NB on the training data
 - with respect to the cross-entropy loss
 - (without any regularization)
- □ When the independence assumptions holds, NB will do as well as LogReg
- When the independence assumptions does not hold, NB may put too much weight on some features
- LogReg will not do this: If we add features that depend on other features,
 LogReg will put less weight on them

Comparing NB and LogReg

- NB is a generative classifier:
 - It has a model of how the data are generated
 - $P(C)P(\vec{f}|C) = P(\vec{f},C)$
- LogReg is a discriminative classifier
 - lacksquare It only considers the conditional probability $P(C|\vec{f})$

Comparing cats and dogs

Generative

- Comparing cats and dogs:
 - a cat model/distribution
 - a dog model
- If we also want to compare dogs and wolfs
 - we use the same dog model:
 - features
 - weights

Discriminative

- The model is determined by the classes and the differences between them
- Consider other features and weights for dog when comparing to wolf than to cat.

Generating positive movie reviews

- □ First choose the length of the review, say n=1000 words
- Then choose the first word
 - according to the probability distribution P(w | 'pos') e.g.
 - $\hat{P}(w = the|pos) = 0.1$
 - $\widehat{P}(w = pitt|pos) = \frac{31}{798742}$
- □ Then choose word 2, etc. up to word 1000

- Observation:
 - Whether we compare to negative film reviews or positive book reviews, we will use the same features
- □ Footnote:

The multinomial text model tacitly suppress "choose length of document", and assumes it is independent of class

Discriminative classifiers

- A discriminative classifier considers the probability of the class given the observation directly.
- □ E.g. a discriminative text classifier may focus on the features:
 - terrible and terrific for pos. vs. neg film review
 - director and author for pos. film vs. pos. book review
- The discriminative classifier
 - may be more efficient
 - but gives less explanation
 - and may eventually focus on wrong features

Evaluation Evaluation

Evaluation measure: Accuracy

- What does accuracy 0.81 tell us?
- □ Given a test set of 500 documents:
 - The classifier will classify 405 correctly
 - And 95 incorrectly
- □ A good measure given:
 - The 2 classes are equally important
 - The 2 classes are roughly equally sized
 - Example:
 - Woman/man
 - Movie reviews: pos/neg

But

- □ For some tasks, the classes aren't equally important
 - Worse to loose an important mail than to receive yet another spam mail

For some tasks the different classes have different sizes.

Information retrieval (IR)

- □ Traditional IR, e.g. a library
 - Goal: Find all the documents on a particular topic out of 100 000 documents,
 - Say there are 5
 - The system delivers 10 documents: all irrelevant
 - What is the accuracy?
- For these tasks, focus on
 - The relevant documents
 - The documents returned by the system
- Forget the
 - Irrelevant documents which are not returned

IR - evaluation

Document Collection

Confusion matrix

Contingency table

		gold standa	rd labels	
		gold positive	gold negative	
system output	system positive	true positive	false positive	$\mathbf{precision} = \frac{\mathbf{tp}}{\mathbf{tp+fp}}$
labels	system negative	false negative		
		$recall = \frac{tp}{tp+fn}$		$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$

- Beware what the rows and columns are:
 - NLTKsConfusionMatrixswaps themcompared to thistable

Evaluation measures

		Is in	С
		Yes	NO
Class	Yes	tp	fp
ifier	No	fn	tn

- Accuracy: (tp+tn)/N
- Precision:tp/(tp+fp)
- Recall: tp/(tp+fn)

F-score combines P and R

$$\Box F_1 = \frac{2PR}{P+R} \left(= \frac{1}{\frac{1}{R} + \frac{1}{P}} \right)$$

- □ F₁ called "harmonic mean"
- General form

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

 \blacksquare for some $0 < \alpha < 1$

Confusion matrix

gold labels				
	urgent	normal	spam	
urgent	8	10	1	$precisionu = \frac{8}{8+10+1}$
<i>system</i> output normal	5	60	50	$precisionn = \frac{60}{5+60+50}$
spam	3	30	200	precisions= \frac{200}{3+30+200}
	recallu = recallu =recalls =			
	8	60	200	
	8+5+3	10+60+30	1+50+200	

Confusion matrix for a three-class categorization task, showing for each pair of classes (c_1, c_2) , how many documents from c_1 were (in)correctly assigned to c_2 Precision, recall and f-score can be calculated for each class against the rest

Language Models

Probabilistic Language Models

- □ Goal: Ascribe probabilities to word sequences.
- Motivation:
 - Translation:
 - P(she is a tall woman) > P(she is a high woman)
 - P(she has a high position) > P(she has a tall position)
 - Spelling correction:
 - P(She met the prefect.) > P(She met the perfect.)
 - P(She met the prefect match.) < P(She met the perfect match.)</p>
 - Speech recognition:
 - P(I saw a van) > P(eyes awe of an)

Probabilistic Language Models

- Goal: Ascribe probabilities to word sequences.
 - $\square P(w_1, w_2, w_3, ..., w_n)$
- Related: the probability of the next word
 - $\square P(w_n \mid w_1, w_2, w_3, ..., w_{n-1})$
- A model which does either is called a Language Model, LM
 - Comment: The term is somewhat misleading
 - (Probably origin from speech recognition where it is combined with an acoustic model)

Chain rule

- □ The two definitions are related by the chain rule for probability:
- $P(w_1, w_2, w_3, ..., w_n) =$
- $P(w_1) \times P(w_2|w_1) \times P(w_3|w_1, w_2) \times \cdots \times P(w_n|w_1, w_2, \dots, w_{n-1}) =$

- But this does not work for long sequences
 - (we may not even have seen before)

Markov assumption

- A word depends only on the immediate preceding word
- $\square P(w_1, w_2, w_3, ..., w_n) \approx$
- $P(w_1) \times P(w_2|w_1) \times P(w_3|w_2) \times \cdots \times P(w_n|w_{n-1}) = P(w_1) \times P(w_2|w_1) \times P(w_2|w_2) \times \cdots \times P(w_n|w_n) = P(w_1|w_1) \times P(w_2|w_1) \times P(w_2|w_2) \times \cdots \times P(w_n|w_n) = P(w_1|w_1) \times P(w_1|w_2) \times \cdots \times P(w_n|w_n) = P(w_1|w_1) \times P(w_1|w_1) \times P(w_1|w_2) \times P(w_1|w_2)$
- $\square \prod_{i}^{n} P(w_i | w_{i-1})$
- □ P("its water is so transparent") \approx P(its) × P(water | its) × P(is | water) × P(so | is) × P(transparent | so)
- This is called a bigram model

Estimating bigram probabilities

- □ The probabilities can be estimated by counting
- This yields maximum likelihood probabilities
 - (=maximum probable on the training data)

$$\square \widehat{P}(w_i|w_{i-1}) = \frac{count(w_{i-1},w_i)}{count(w_{i-1})}$$

Example from J&M

$$\widehat{P}(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

<s>I do not like green eggs and ham </s>

$$P(I | ~~) = \frac{2}{3} = .67~~$$
 $P(Sam | ~~) = \frac{1}{3} = .33~~$ $P(am | I) = \frac{2}{3} = .67$ $P(| Sam) = \frac{1}{2} = 0.5$ $P(Sam | am) = \frac{1}{2} = .5$ $P(do | I) = \frac{1}{3} = .33$

General ngram models

- A word depends only on the k many immediately preceding words
- $\square P(w_1, w_2, w_3, \dots, w_n) \approx$

- This is called a
 - unigram model no preceding words
 - trigram model two preceding words
 - $\blacksquare k$ -gram model k-1 preceding words

- We can train them similarly to the bigram model.
- Have to be more careful with the smoothing for larger k-s.

Generating with n-grams

- □ Goal: Generate a sequence of words
- Unigram:
 - Choose the first word according to how probable it is
 - Choose the second word according to how probable it is, etc.
 - = the generative model for multinomial NB text classification
- Bigram
 - Select word k according to $\hat{P}(w_i|w_{i-1})$
- □ *k*-gram
 - Select word w_i according to how probable it is given the k-1 preceding words $P(w_i|w_{i-k}^{i-1})$

Shakespeare

-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have -Hill he late speaks; or! a more to leg less first you enter gram -Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. gram -What means, sir. I confess she? then all sorts, he is trim, captain. -Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done. -This shall forbid it should be branded, if renown made it empty. gram -King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; -It cannot be but so.

Unknown words

- There might be words that is never observed during training.
- □ Use a special symbol for unseen words during application, e.g. UNK
- Set aside a probability for seeing a new word
 - This may be estimated from a held-out corpus
- Adjust
 - the probabilities for the other words in a unigram model accordingly
 - the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone

 Since we might not have seen all possibilities in training data, we might use Lidstone or, more generally, Laplace smoothing

 $lue{}$ where |V| is the size of the vocabulary V.

But:

- Shakespeare produced
 - \square N = 884,647 word tokens
 - ∇ V = 29,066 word types
- □ Bigrams:
 - Possibilities:
 - $V^2 = 844,000,000$
 - Shakespeare,
 - bigram tokens: 884,647
 - bigram types: 300,000

Add-k smoothing is not appropriate

Smoothing n-grams

Backoff

- If you have good evidence, use the trigram model,
- □ If not, use the bigram model,
- or even the unigram model

Interpolation

Combine the models

Use either of this. According to J&M interpolation works better

Interpolation

□ Simple interpolation:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$

- \square The λ -s can be tuned on a held out corpus
- \square A more elaborate model will condition the λ -s on the context
 - (Brings in elements of backoff)

Evaluation of n-gram models

- Extrinsic evaluation:
 - To compare two LMs, see how well they are doing in an application, e.g. translation, speech recognition
- Intrinsic evaluation:
 - Use a held out-corpus and measure $P(w_1, w_2, w_3, ..., w_n)^{\frac{1}{n}}$
 - The n-root compensate for different lengths

 - It is normal to use the inverse of this, called the perplexity

$$PP(w_1^n) = \frac{1}{P(w_1, w_2, w_3, \dots, w_n)^{\frac{1}{n}}} = P(w_1, w_2, w_3, \dots, w_n)^{-\frac{1}{n}}$$

Properties of LMs

- The best smoothing is achieved with Kneser-Ney smoothing
- Short-comings of all n-gram models
 - The smoothing is not optimal
 - The context are restricted to a limited number of preceding words.

A practical advice: Use logarithms when working with n-grams