
IN4080 – 2022 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 5, 22 Sept

2

Today

 Multinomial Logistic Regression

 Representing categorical features

 Naïve Bayes vs. Logistic Regression

 Evaluation

 Language models

3

Repeat: Logistic Regression - Decision
4

x1

x2

x3

x0

=1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦

 Two classes: 𝐶 and ҧ𝐶

 An observation: 𝒙 = (𝑥1, … , 𝑥𝑛)

 Model weights: 𝐰 = (𝑤0, … , 𝑤𝑛)

 Assign class 𝐶 to 𝒙 iff

 z = σ𝑖=0
𝑛 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙 > 0

 𝑒𝑧 > 1

 ො𝑦 = 𝑃 𝐶 𝒙 = 𝜎 𝑧 =
1

1+𝑒−𝑧
> 0.5

𝑛 features

Logistic Regression: Learning

 Objective: reduce the loss

 Cross-entropy loss:

 (= max. joint probability)

 𝐿𝐶𝐸 𝑤 = σ𝑗=1
𝑚 − log 𝑃(𝑦(𝑗)| Ԧ𝑥(𝑗))

 Gradient descent:

 𝑤𝑖 ← (𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 ො𝑦, 𝑦)

 For one observation 𝒙(𝑗):

 𝑤𝑖 ← (𝑤𝑖 − 𝜂 ො𝑦(𝑗) − 𝑦(𝑗) 𝑥𝑖
(𝑗)
)

5

weights

𝑚 observations, observation 𝑗, feature 𝑖

Multinomial Logistic Regression

 A type of multi-class classifier:

 A finite set of classes 𝐶𝑖 , 𝑖 = 1,… , 𝑘

 An observation 𝒙 = (𝑥1, … , 𝑥𝑛) is

assigned to exactly one of the classes

 A model consists of weights for each class:

 𝒘𝒊 = (𝑤𝑖,0, … , 𝑤𝑖,𝑛)

 Consider a linear expression for each class

 𝑧𝑖 = 𝒘𝑖 ∙ 𝒙 = σ𝑗=0
𝑛 𝑤𝑖,𝑗𝑥𝑗

 Choose the class 𝐶𝑖 with the largest 𝑧𝑖

6

https://scikit-learn.org/stable/auto_examples/

linear_model/plot_logistic_multinomial.html

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗

where Marsland, IN3050, uses 𝑤𝑗,𝑖
𝑛 features, 𝑘 classes, class 𝑖, feature 𝑗

Multinomial Logistic Regression

 𝑧𝑖 = 𝒘𝒊 ∙ 𝒙 = σ𝑗=0
𝑛 𝑤𝑖,𝑗𝑥𝑗

 The probability of class 𝐶𝑖 :
ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙 =
(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧1, … , 𝑧𝑘))𝑖

=
𝑒𝑧𝑖

σ𝑗=1
𝑚 𝑒𝑧𝑗

 Choose the class 𝐶𝑖 with

 the largest 𝑧𝑖

 the largest ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙

7

x1

x2

x3

x0

=1

z2

z3

z4

z1

ො𝑦2

ො𝑦3

ො𝑦4

ො𝑦1

y2

y3

y4

y1

𝑤2,3

𝑤2,1

𝑤2,2

𝑤2,0
s

o

f

t

m

a

x

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖𝑛 features, 𝑘 classes

Connections going into a node

 𝑧𝑖 = 𝒘𝒊 ∙ 𝒙 = σ𝑗=0
𝑛 𝑤𝑖,𝑗𝑥𝑗

 The probability of class 𝐶𝑖 :
ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙 =
(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧1, … , 𝑧𝑘))𝑖

=
𝑒𝑧𝑖

σ𝑗=1
𝑚 𝑒𝑧𝑗

 Choose the class 𝐶𝑖 with

 the largest 𝑧𝑖

 the largest ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙

8

x1

x2

x3

x0

=1

z2

z3

z4

z1

ො𝑦2

ො𝑦3

ො𝑦4

ො𝑦1

y2

y3

y4

y1

𝑤2,3

𝑤2,1

𝑤2,2

𝑤2,0
s

o

f

t

m

a

x

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖𝑛 features, 𝑘 classes

Connections going out of a node

 𝑧𝑖 = 𝒘𝒊 ∙ 𝒙 = σ𝑗=0
𝑛 𝑤𝑖,𝑗𝑥𝑗

 The probability of class 𝐶𝑖 :
ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙 =
(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧1, … , 𝑧𝑘))𝑖

=
𝑒𝑧𝑖

σ𝑗=1
𝑚 𝑒𝑧𝑗

 Choose the class 𝐶𝑖 with

 the largest 𝑧𝑖

 the largest ො𝑦𝑖 = 𝑃 𝐶𝑖 𝒙

9

x1

x2

x3

x0

=1

z2

z3

z4

z1

ො𝑦2

ො𝑦3

ො𝑦4

ො𝑦1

y2

y3

y4

y1

𝑤4,2

𝑤1,2

𝑤2,2

𝑤3,2

s

o

f

t

m

a

x

Beware: Jurafsky and Martin uses 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖𝑛 features, 𝑘 classes

Matrix form

 For those of you who know matrices:

 The connections between the layers:

a matrix

 Running it through the connections:

matrix multiplication

10

1

Oops: 𝑛 features, 𝑚 classes

Training Multinomial Logistic Regression

 One observation

 Target of form 𝐲 = (0, … , 0,1,0, … , 0)
 say 𝑦𝑐 = 1 and 𝑦𝑗 = 0 for 𝑗 ≠ 𝑐

 Compare the predicted ෝ𝒚 = ො𝑦1, ො𝑦2, . . ො𝑦𝑘
 to the target labels using cross-entropy loss

 𝐿𝐶𝐸 ෝ𝒚, 𝒚 = −σ𝑗=1
𝑘 𝑦𝑗 log ො𝑦𝑗

 A batch 𝑌 = { 𝒙 1 , 𝒚 1 , … , (𝒙(𝑚), 𝒚(𝑚))}:

 𝐿𝐶𝐸 𝑌, 𝑌 = σ𝑗=1
𝑚 𝐿𝐶𝐸(ො𝑦

(𝑗), 𝑦(𝑗))

11

𝑚 observations, 𝑛 features, 𝑘 classes

Training Multinomial Logistic Regression

 Gradient descent:

 partial derivatives

 + some algebra

 yield update rule:

 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝜂 ො𝑦𝑖 − 𝑦𝑖 𝑥𝑗

 which means

 𝑤𝑐,𝑗 = 𝑤𝑐,𝑗 + 𝜂 1 − ො𝑦𝑐 𝑥𝑗

 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝜂 ො𝑦𝑖 𝑥𝑗 , for 𝑗 ≠ 𝑐

 c.f. J&M (5.47)

12

𝑛 features, 𝑘 classes

Example: softmax

 4 different classes corresponding
to the dots below the 0-line

 For each of them:

 a corresponding softmax curve

 = the probability of the
observation belonging to this class

 Similarly with two features

 A surface for each class

 The intersections of the surfaces
project to straight lines in the xy-
plane
 = decision boundaries

13

14

https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html

The decision

boundaries turn out to

be straight lines

Categorical features

15

Categories as numbers

 In the naive Bayes model we could handle categorical values directly,

e.g., characters:

 What is the probability that c_n = ‘z’

 But many classifier can only handle numerical data

 How can we represent categorical data by numerical data?

 (In general, it is not a good idea to just assign a single number to each

category: ‘a’1, ‘b’2, ‘c’ 3, …)

16

Data representation

[({'f1': 'a', 'f2': 'y', 'f3': True, 'f4': 5}, 'class_1'),

({'f1': 'b', 'f2': 'y', 'f3': False, 'f4': 2}, 'class_2'),

({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

17

4 features

Dictionary

representation

in NLTK

class

3 training

instances

4 different featues Classes

feature f1 f2 f3 f4

type cat cat Bool

(num)

num

Value

set

a, b, c x, y True,

False

0, 1, 2,

3, …

Class1,

class2

Assume the

following

example

One-hot encoding
18

feature 1 feature 2

a b c x y

(1,0,0) (0,1,0) (0,0,1) (1,0) (0,1)

 Represent categorical variables

as vectors/arrays of numerical

variables

Representation in scikit: ‘’one hot’’ encoding

[({'f1': 'a', 'f2': 'y', 'f3': True, 'f4': 5}, 'class_1'),

({'f1': 'b', 'f2': 'y', 'f3': False, 'f4': 2}, 'class_2'),

({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

X_train:

array([[1., 0., 0., 0., 1., 1., 5.],

[0., 1., 0., 0., 1., 0., 2.],

[0., 0., 1., 1., 0., 0., 4.]])

train_target: ['class_1', 'class_2', 'class_1'], or

train_target: [1, 2, 1]

19

4 features

scikit

NLTK

7 features

class

3 corresponding classes

3 training

instances

3 training

instances

One-hot encoding

a b c

[1, 0, 0] [0, 1,0] [0, 0, 1]

Converting a dictionary

 We can construct the data to scikit directly

 Scikit has methods for converting Python-dictionaries/NLTK-format
to arrays

» train_data = [inst[0] for inst in train]

» train_target = [inst[1] for inst in train]

» v = DictVectorizer()

» X_train=v.fit_transform(train_data)

» X_test=v.transform(test_data)

20

1. Constructs (=fit)

repr. format

2. Transform

Transform

Use same v as

for train

Multinomial NB in scikit

 We can construct the data to scikit directly

 Scikit has methods for converting text to bag of words arrays

 Positions corresponds to [anta, en, er, fiol, rose]

» train_data=["en rose er en rose",
"anta en rose er en fiol"]

» v = CountVectorizer()

» X_train=v.fit_transform(train_data)

» print(X_train.toarray())
[[0 2 1 0 2]
[1 2 1 1 1]]

21

Sparse vectors

 One hot encoding uses space

 26 English characters:

 Each is represented as a vector

with 25 ‘0’-s and a single ‘1’

 Bernoulli NB text. classifier with

2000 most frequent words

 Each word represented by a

vector with 1999 ‘0’-s and a

single ‘1’.

 scikit-learn uses internally a

dictionary-like representation

for these vectors, called ’’sparse

vectors’’

22

Naïve Bayes vs. Logistic Regression

23

Naïve Bayes vs. Logistic Regression

 Both are probability-based and make a hard decision by choosing

 argmax
𝐶𝑖∈𝒞

𝑃(𝐶𝑖|𝒙)

 For Naïve Bayes:

 argmax
𝐶𝑖∈𝒞

𝑃(𝐶𝑖|𝒙) = argmax
𝐶𝑖∈𝒞

𝑃 𝐶𝑖 ς𝑗=1
𝑛 𝑃 𝑣𝑗 = 𝑥𝑗|𝐶𝑖 =

argmax
𝐶𝑖∈𝒞

(log 𝑃 𝐶𝑖 + σ𝑖=1
𝑛 log(𝑃 𝑣𝑗 = 𝑥𝑗|𝐶𝑖))

 a linear expression for each class like the Log.Reg

24

𝑤𝑖,0 𝑤𝑖,𝑗𝑥𝑗

Comparing NB and LogReg

 NB is an instance of LogReg,

 i.e. one possible choice of weights

 LogReg will do at least as well as NB on the training data

 with respect to the cross-entropy loss

 (without any regularization)

 When the independence assumptions holds, NB will do as well as LogReg

 When the independence assumptions does not hold, NB may put too much
weight on some features

 LogReg will not do this: If we add features that depend on other features,
LogReg will put less weight on them

25

Comparing NB and LogReg

 NB is a generative classifier:

 It has a model of how the data are generated

 𝑃 𝐶 𝑃 Ԧ𝑓 𝐶 = 𝑃(Ԧ𝑓, 𝐶)

 LogReg is a discriminative classifier

 It only considers the conditional probability 𝑃 𝐶| Ԧ𝑓

26

Comparing cats and dogs

 Comparing cats and dogs:

 a cat model/distribution

 a dog model

 If we also want to compare
dogs and wolfs

 we use the same dog model:

 features

 weights

 The model is determined by the

classes and the differences

between them

 Consider other features and

weights for dog when

comparing to wolf than to cat.

28

Generative Discriminative

Generating positive movie reviews

 First choose the length of the
review, say n=1000 words

 Then choose the first word

 according to the probability
distribution P(w | 'pos') e.g.

 𝑃 𝑤 = 𝑡ℎ𝑒 𝑝𝑜𝑠) = 0.1

 𝑃 𝑤 = 𝑝𝑖𝑡𝑡 𝑝𝑜𝑠) =
31

798 742

 Then choose word 2, etc. up to
word 1000

 Observation:

 Whether we compare to
negative film reviews or positive
book reviews, we will use the
same features

 Footnote:

 The multinomial text model
tacitly suppress "choose length
of document", and assumes it is
independent of class

29

Discriminative classifiers

 A discriminative classifier considers the probability of the class given

the observation directly.

 E.g. a discriminative text classifier may focus on the features:

 terrible and terrific for pos. vs. neg film review

 director and author for pos. film vs. pos. book review

 The discriminative classifier

 may be more efficient

 but gives less explanation

 and may eventually focus on wrong features

30

Evaluation31

Evaluation measure: Accuracy
32

 What does accuracy 0.81 tell us?

 Given a test set of 500 documents:

 The classifier will classify 405 correctly

 And 95 incorrectly

 A good measure given:

 The 2 classes are equally important

 The 2 classes are roughly equally sized

 Example:

 Woman/man

 Movie reviews: pos/neg

But
33

 For some tasks, the classes aren't equally important

 Worse to loose an important mail than to receive yet another spam mail

 For some tasks the different classes have different sizes.

Information retrieval (IR)
34

 Traditional IR, e.g. a library

 Goal: Find all the documents on a particular topic out of 100 000 documents,

 Say there are 5

 The system delivers 10 documents: all irrelevant

 What is the accuracy?

 For these tasks, focus on

 The relevant documents

 The documents returned by the system

 Forget the

 Irrelevant documents which are not returned

IR - evaluation
35

Confusion matrix

 Beware what the rows

and columns are:

 NLTKs

ConfusionMatrix

swaps them

compared to this

table

36

Evaluation measures

 Accuracy: (tp+tn)/N

 Precision:tp/(tp+fp)

 Recall: tp/(tp+fn)

 F-score combines P and R

 𝐹1 =
2𝑃𝑅

𝑃+𝑅
=

1
1
𝑅+

1
𝑃

2

 F1 called ‘’harmonic mean’’

 General form

 𝐹 =
1

𝛼
1

𝑃
+(1−𝛼)

1

𝑅

 for some 0 < 𝛼 < 1

37

Is in C

Yes NO

Class

ifier

Yes tp fp

No fn tn

Confusion matrix

 Precision, recall and

f-score can be

calculated for each

class against the rest

38

Language Models

39

Probabilistic Language Models
40

 Goal: Ascribe probabilities to word sequences.

 Motivation:

 Translation:

 P(she is a tall woman) > P(she is a high woman)

 P(she has a high position) > P(she has a tall position)

 Spelling correction:

 P(She met the prefect.) > P(She met the perfect.)

 P(She met the prefect match.) < P(She met the perfect match.)

 Speech recognition:

 P(I saw a van) > P(eyes awe of an)

Probabilistic Language Models
41

 Goal: Ascribe probabilities to word sequences.

 𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛)

 Related: the probability of the next word

 𝑃(𝑤𝑛 | 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛−1)

 A model which does either is called a Language Model, LM

 Comment: The term is somewhat misleading

 (Probably origin from speech recognition where it is combined with an acoustic

model)

Chain rule
42

 The two definitions are related by the chain rule for probability:

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 =

 𝑃 𝑤1 × 𝑃 𝑤2 𝑤1 × 𝑃 𝑤3|𝑤1, 𝑤2 ×∙∙∙× 𝑃 𝑤𝑛|𝑤1, 𝑤2, … , 𝑤𝑛−1 =

 ς𝑖
𝑛𝑃 𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖|𝑤1
𝑖−1

 P(“its water is so transparent”) =
P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is so)

 But this does not work for long sequences
 (we may not even have seen before)

Markov assumption
43

 A word depends only on the immediate preceding word

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 𝑃 𝑤1 × 𝑃 𝑤2 𝑤1 × 𝑃 𝑤3|𝑤2 ×∙∙∙× 𝑃 𝑤𝑛| 𝑤𝑛−1 =

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−1

 P(“its water is so transparent”) ≈

P(its) × P(water|its) × P(is| water) × P(so|is) × P(transparent| so)

 This is called a bigram model

Estimating bigram probabilities
44

 The probabilities can be estimated by counting

 This yields maximum likelihood probabilities

 (=maximum probable on the training data)

𝑃 𝑤𝑖 𝑤𝑖−1 =

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−1,𝑤𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−1)

Example from J&M
45

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

𝑃 𝑤𝑖 𝑤𝑖−1 =
𝑐(𝑤𝑖−1, 𝑤𝑖)

𝑐(𝑤𝑖−1)

General ngram models
46

 A word depends only on the k many immediately preceding words

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘 , 𝑤𝑖+1−𝑘, … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 This is called a
 unigram model – no preceding words

 trigram model – two preceding words

 k-gram model – k-1 preceding words

• We can train them similarly to

the bigram model.

• Have to be more careful with

the smoothing for larger k-s.

Generating with n-grams
47

 Goal: Generate a sequence of words

 Unigram:

 Choose the first word according to how probable it is

 Choose the second word according to how probable it is, etc.

 = the generative model for multinomial NB text classification

 Bigram

 Select word k according to 𝑃 𝑤𝑖 𝑤𝑖−1

 k-gram

 Select word 𝑤𝑖 according to how probable it is given the 𝑘 − 1 preceding words

𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

Shakespeare
48

Unknown words
49

 There might be words that is never observed during training.

 Use a special symbol for unseen words during application, e.g. UNK

 Set aside a probability for seeing a new word

 This may be estimated from a held-out corpus

 Adjust

 the probabilities for the other words in a unigram model accordingly

 the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone
50

 Since we might not have seen all possibilities in training data, we might

use Lidstone or, more generally, Laplace smoothing

𝑃 𝑤𝑖 𝑤𝑖−1 =

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1,𝑤𝑖 +𝑘

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1 +𝑘 |𝑉|

 where |𝑉| is the size of the vocabulary 𝑉.

But:

 Shakespeare produced

 N = 884,647 word tokens

 V = 29,066 word types

 Bigrams:

 Possibilities:

 𝑉2 = 844,000,000

 Shakespeare,

 bigram tokens: 884,647

 bigram types: 300,000

 Add-k smoothing is not

appropriate

51

Smoothing n-grams

 If you have good evidence, use

the trigram model,

 If not, use the bigram model,

 or even the unigram model

 Combine the models

52

Backoff Interpolation

Use either of this. According to J&M interpolation works better

Interpolation

 Simple interpolation:

 The 𝜆-s can be tuned on a held out corpus

 A more elaborate model will condition the 𝜆-s on the context

 (Brings in elements of backoff)

53

Evaluation of n-gram models
54

 Extrinsic evaluation:

 To compare two LMs, see how well they are doing in an application, e.g.
translation, speech recognition

 Intrinsic evaluation:

 Use a held out-corpus and measure 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛

1

𝑛

 The n-root compensate for different lengths

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘

𝑖−1
1

𝑛 for a k-gram model

 It is normal to use the inverse of this, called the perplexity

 𝑃𝑃 𝑤1
𝑛 =

1

𝑃 𝑤1,𝑤2,𝑤3,…,𝑤𝑛

1
𝑛

=𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛
−
1

𝑛

Properties of LMs

 The best smoothing is achieved with Kneser-Ney smoothing

 Short-comings of all n-gram models

 The smoothing is not optimal

 The context are restricted to a limited number of preceding words.

55

A practical advice: Use

logarithms when working with n-

grams

