
IN4080 – 2022 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 6, 29 Sept.

2

Today

 N-gram language models

 (hangover from last week)

 POS-tagging

 HMM-tagging

 Discriminative tagging

 Named-entity recognition (NER)

 Evaluation of NER

3

Probabilistic Language Models
4

 Goal: Ascribe probabilities to word sequences.

 𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛)

 Related: the probability of the next word

 𝑃(𝑤𝑛 | 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛−1)

 A model which does either is called a Language Model, LM

Markov assumption
5

 A word depends only on the immediate preceding word

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 𝑃 𝑤1 × 𝑃 𝑤2 𝑤1 × 𝑃 𝑤3|𝑤2 ×∙∙∙× 𝑃 𝑤𝑛| 𝑤𝑛−1 =

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−1

 P(“its water is so transparent”) ≈

P(its) × P(water|its) × P(is| water) × P(so|is) × P(transparent| so)

 This is called a bigram model

General n-gram models
6

 A word depends only on the k many immediately preceding words

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘 , 𝑤𝑖+1−𝑘 , … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 This is called a
 unigram model – no preceding words

 trigram model – two preceding words

 k-gram model – k-1 preceding words

Markov assumption:

A word depends only on the

immediate preceding word

Generating with n-grams
7

 Goal: Generate a sequence of words

 Unigram:

 Choose the first word according to how probable it is

 Choose the second word according to how probable it is, etc.

 = the generative model for multinomial NB text classification

 Bigram

 Pick a word k according to ෠𝑃 𝑤𝑖 𝑤𝑖−1

 k-gram

 Pick a word 𝑤𝑖 according to its probability given the 𝑘 − 1 preceding words
෠𝑃 𝑤𝑖| 𝑤𝑖−𝑘

𝑖−1

Shakespeare
8

Unknown words
9

 There might be words that is never observed during training.

 Use a special symbol for unseen words during application, e.g. UNK

 Set aside a probability for seeing a new word

 This may be estimated from a held-out corpus

 Adjust

 the probabilities for the other words in a unigram model accordingly

 the conditional probabilities of the k-gram model

Smoothing, Laplace, Lidstone
10

(The words in the vocabulary, words we have seen)

 Since we might not have seen all possibilities in training data, we might

use Lidstone or, more generally, Laplace smoothing


෠𝑃 𝑤𝑖 𝑤𝑖−1 =

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1,𝑤𝑖 +𝑘

𝑐𝑜𝑢𝑛𝑡 𝑤𝑖−1 +𝑘 |𝑉|

 where |𝑉| is the size of the vocabulary 𝑉.

But:

 Shakespeare produced

 N = 884,647 word tokens

 V = 29,066 word types

 Bigrams:

 Possibilities:

 𝑉2 = 844,000,000

 Shakespeare,

 bigram tokens: 884,647

 bigram types: 300,000

 Add-k smoothing is not

appropriate for n-grams

11

Smoothing n-grams

 If you have good evidence, use

the trigram model,

 If not, use the bigram model,

 or even the unigram model

 Combine the models

12

Backoff Interpolation

Use either of this. According to J&M interpolation works better

Interpolation

 Simple interpolation:

 The 𝜆-s can be tuned on a held out corpus

 A more elaborate model will condition the 𝜆-s on the context

 (Brings in elements of backoff)

13

Evaluation of n-gram models
14

 Extrinsic evaluation:

 To compare two LMs, see how well they are doing in an application, e.g.
translation, speech recognition

 Intrinsic evaluation:

 Use a held out-corpus and measure 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛
1

𝑛

 The n-root compensate for different lengths

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘

𝑖−1
1

𝑛 for a k-gram model

 It is normal to use the inverse of this, called the perplexity

 𝑃𝑃 𝑤1
𝑛 =

1

𝑃 𝑤1,𝑤2,𝑤3,…,𝑤𝑛

1
𝑛

=𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛
−
1

𝑛

Properties of LMs

 The best smoothing is achieved with Kneser-Ney smoothing

 Short-comings of all n-gram models

 The smoothing is not optimal

 The context are restricted to a limited number of preceding words.

15

A practical advice: Use

logarithms when working with n-

grams

Today

 N-gram language models

 (hangover from last week)

 POS-tagging

 HMM-tagging

 Discriminative tagging

 Named-entity recognition (NER)

 Evaluation of NER

16

Tagged text and tagging

 In tagged text each token is assigned a “part of speech” (POS) tag

 A tagger is a program which automatically ascribes tags to words in text

 From the context we are (most often) able to determine the tag.

 But some sentences are genuinely ambiguous and hence so are the tags.

17

[('They', 'PRP'), ('saw', 'VBD'), ('a', 'DT'), ('saw', 'NN'), ('.', '.')]

[('They', 'PRP'), ('like', 'VBP'), ('to', 'TO'), ('saw', 'VB'), ('.', '.')]

[('They', 'PRP'), ('saw', 'VBD'), ('a', 'DT'), ('log', 'NN')]

Various POS tag sets
18

 A tagged text is tagged according to a fixed small set of tags.

 There are various such tag sets.

 Brown tagset:

 Original: 87 tags

 Versions with extended tags <original>-<more>

 Comes with the Brown corpus in NLTK

 Penn treebank tags: 35+9 punctuation tags

 Universal POS Tagset, 12 tags,

Brown vs. Penn: Nouns
19

Penn treebank

Brown, original

Different tagsets - example

Brown Penn

treebank

(‘wsj’)

Universal

he she PPS PRP PRON

I PPSS PRP PRON

me him her PPO PRP PRON

my his her PP$ PRP$ DET

mine his hers PP$$? PRON

20

Ambiguity rate
21

How ambiguous are tags (J&M, 2.ed)
22

BUT: Not directly

comparable because of

different tokenization

Tagging as Sequence Classification

 Classification (earlier):

 a well-defined set of observations, O

 a given set of classes,

S={s1, s2, …, sk}

 Goal: a classifier, , a mapping from O to S

 Sequence classification:

 Goal: a classifier, , a mapping from sequences of elements from O to

sequences of elements from S:

 𝛾(𝑜1, 𝑜2,…𝑜𝑛) = (𝑠𝑘1, 𝑠𝑘2,…𝑠𝑘𝑛)

23

Baseline tagger

 In all classification tasks establish a baseline classifier.

 Compare the performance of other classifiers you make to the

baseline.

 For tagging, a natural baseline is the Most Frequent Class Baseline:

 Assign each word the tag to which is occurred most frequent in the training

set

 For words unseen in the training set, assign the most frequent tag in the

training set.

24

Today

 N-gram language models

 (hangover from last week)

 POS-tagging

 HMM-tagging

 Discriminative tagging

 Named-entity recognition (NER)

 Evaluation of NER

25

Hidden Markov Model (HMM) tagger

 Two layers:

 Observed: the sequence of

words

 Hidden: the tags/classes where

each word is assigned a class

 NB assigns a class to each

observation

 An HMM is a sequence

classifier:

It assigns a sequence of classes

to a sequence of words

Extension of language model Extension of Naive Bayes

26

HMM is a probabilistic tagger

 The goal is to decide: Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑡1
𝑛|𝑤1

𝑛

 Using Bayes theorem: Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑤1
𝑛|𝑡1

𝑛 𝑃 𝑡1
𝑛

𝑃 𝑤1
𝑛

 This simplifies to: Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑤1
𝑛|𝑡1

𝑛 𝑃 𝑡1
𝑛

because the denominator is the same for all tag sequences

27 Notation:

𝑡1
𝑛 = 𝑡1, 𝑡2,…𝑡𝑛

Simplifying assumption 1

 For the tag sequence, we apply the chain rule

 𝑃 𝑡1
𝑛 = 𝑃 𝑡1 𝑃 𝑡2|𝑡1 𝑃 𝑡3|𝑡1𝑡2 …𝑃 𝑡𝑖|𝑡1

𝑖−1 …𝑃 𝑡𝑛|𝑡1
𝑛−1

 We then assume the Markov (chain) assumption

 𝑃 𝑡1
𝑛 = 𝑃 𝑡1 𝑃 𝑡2|𝑡1 𝑃 𝑡3|𝑡2 …𝑃 𝑡𝑖|𝑡𝑖−1 …𝑃 𝑡𝑛|𝑡𝑛−1

𝑃 𝑡1
𝑛 ≈ 𝑃 𝑡1 ෑ

𝑖=2

𝑛

𝑃 𝑡𝑖|𝑡𝑖−1 =ෑ

𝑖=1

𝑛

𝑃 𝑡𝑖|𝑡𝑖−1

 Assuming a special start tag 𝑡0and 𝑃 𝑡1 = 𝑃 𝑡1 𝑡0

28

Simplifying assumption 2

 Applying the chain rule

𝑃 𝑤1
𝑛|𝑡1

𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑤𝑖|𝑤1
𝑖−1𝑡1

𝑛

i.e., a word depends on all the tags and on all the preceding words

 We make the simplifying assumption: 𝑃 𝑤𝑖|𝑤1
𝑖−1𝑡1

𝑛 ≈ 𝑃 𝑤𝑖|𝑡𝑖
 i.e., a word depends only on the immediate tag, and hence

𝑃 𝑤1
𝑛|𝑡1

𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑤𝑖|𝑡𝑖

29

30

Training

 From a tagged training corpus, we can estimate the probabilities with

Maximum Likelihood (as in Language Models and Naïve Bayes:)

 ෠𝑃 𝑡𝑖 𝑡𝑖−1 =
𝐶 𝑡𝑖−1,𝑡𝑖

𝐶 𝑡𝑖−1

 ෠𝑃 𝑤𝑖 𝑡𝑖 =
𝐶 𝑤𝑖,𝑡𝑖

𝐶 𝑡𝑖

31

Putting it all together

 From a trained model, it is straightforward to calculate the probability of a

sentence with a tag sequence

 𝑃 𝑤1
𝑛, 𝑡1

𝑛 = 𝑃 𝑡1
𝑛 𝑃 𝑤1

𝑛|𝑡1
𝑛 ≈ ς𝑖=1

𝑛 𝑃 𝑡𝑖|𝑡𝑖−1 ς𝑖=1
𝑛 𝑃 𝑤𝑖|𝑡𝑖

=ෑ

𝑖=1

𝑛

𝑃 𝑡𝑖|𝑡𝑖−1 𝑃 𝑤𝑖|𝑡𝑖

 To find the best tag sequence, we could – in principle – calculate this for all

possible tag sequences and choose the one with highest score

 Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑤1
𝑛|𝑡1

𝑛 𝑃 𝑡1
𝑛

 Impossible in practice – There are too many

32

Tag Tag Tag Tag Tag

ADJ ADJ ADJ ADJ ADJ

ADP ADP ADP ADP ADP

ADV ADV ADV ADV ADV

CONJ CONJ CONJ CONJ CONJ

DET DET DET DET DET

NOUN NOUN NOUN NOUN NOUN

NUM NUM NUM NUM NUM

PRT PRT PRT PRT PRT

PRON PRON PRON PRON PRON

VERB VERB VERB VERB VERB

.

X X X X X

Janet will back the bill

Possible tag sequences

 The number of possible tag

sequences =

 The number of paths through

the trellis =

 𝑚𝑛

 m is the number of tags in the set

 n is the number of tokens in the

sentence

 Here: 125 ≈ 250,000.

33

Tag Tag Tag Tag Tag

ADJ ADJ ADJ ADJ ADJ

ADP ADP ADP ADP ADP

ADV ADV ADV ADV ADV

CONJ CONJ CONJ CONJ CONJ

DET DET DET DET DET

NOUN NOUN NOUN NOUN NOUN

NUM NUM NUM NUM NUM

PRT PRT PRT PRT PRT

PRON PRON PRON PRON PRON

VERB VERB VERB VERB VERB

.

X X X X X

Janet will back the bill

Viterbi algorithm (dynamic programming)

 Walk through the word sequence

 For each word keep track of

 all the possible tag sequences up to

this word and the probability of

each sequence

 If two paths are equal from a

point on, then

 The one scoring best at this point

will also score best at the end

 Discard the other one

34

Viterbi algorithm

 A nice example of dynamic programming

 Skip the details:

 Viterbi is covered in IN2110

 We will use preprogrammed tools in this course – not implement ourselves

 HMM is not state of the art taggers

35

HMM trigram tagger

 Take two preceding tags into consideration

 𝑃 𝑡1
𝑛 ≈ ς𝑖=1

𝑛 𝑃 𝑡𝑖|𝑡𝑖−1, 𝑡𝑖−2


𝑃 𝑤1
𝑛, 𝑡1

𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑤𝑖|𝑡𝑖 𝑃 𝑡𝑖|𝑡𝑖−1, 𝑡𝑖−2

 Add two initial special states and one special end state

36

Challenges for the HMM-tagger

 Even with Viterbi, it is

expensive:

 For the trigram, the size of the

trellis: (𝑛 + 2) × 𝑚3

 𝑛 words in the sequence

𝑚 tags in the model

 Example, 6 words

 12 tags: 15,552

 With 45 tags: 820,125

 With 87 tags: 5,926,527

 We have probably not seen all

tag trigrams during training:

 We must use back-off or

interpolation to lower n-grams

 Words not observed during

training:

 How can we include e.g.

morphological features?

 e.g., -ly  Adv

37

Today

 N-gram language models

 (hangover from last week)

 POS-tagging

 HMM-tagging

 Discriminative tagging

 Named-entity recognition (NER)

 Evaluation of NER

38

Discriminative tagging

 The goal of tagging is to decide: Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑡1
𝑛|𝑤1

𝑛

 HMM is generative.

 It estimates 𝑃 𝑤1
𝑛|𝑡1

𝑛 𝑃 𝑡1
𝑛 = 𝑃 𝑤1

𝑛, 𝑡1
𝑛

 As for text classification, we could instead use a discriminative

procedure and try to estimate the tag sequence directly

 𝑃 𝑡1
𝑛|𝑤1

𝑛 = 𝑃 𝑡1|𝑤1
𝑛 𝑃 𝑡2|𝑡1, 𝑤1

𝑛 …𝑃 𝑡𝑖|𝑡1
𝑖−1, 𝑤1

𝑛 … = ς𝑖=1
𝑛 𝑃 𝑡𝑖|𝑡1

𝑖−1, 𝑤1
𝑛

39

Notation:

𝑡1
𝑛 = 𝑡1, 𝑡2,…𝑡𝑛

 Apply the chain rules for probabilities

 𝑃 𝑡1
𝑛|𝑤1

𝑛 = 𝑃 𝑡1|𝑤1
𝑛 𝑃 𝑡2|𝑡1, 𝑤1

𝑛 …𝑃 𝑡𝑖|𝑡1
𝑖−1, 𝑤1

𝑛 … = ς𝑖=1
𝑛 𝑃 𝑡𝑖|𝑡1

𝑖−1, 𝑤1
𝑛

 argmax
𝑡1
𝑛

𝑃 𝑡1
𝑛|𝑤1

𝑛 = argmax
𝑡1
𝑛

ς𝑖=1
𝑛 𝑃 𝑡𝑖|𝑡1

𝑖−1, 𝑤1
𝑛

 Simplifying assumptions:

 Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑡1
𝑛|𝑤1

𝑛 ≈ argmax
𝑡1
𝑛

ς𝑖=1
𝑛 𝑃 𝑡𝑖| 𝑡𝑖−𝑘

𝑖−1𝑤𝑖−𝑚
𝑖+𝑚

40

 Simplifying assumptions:

 Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑡1
𝑛|𝑤1

𝑛 ≈ argmax
𝑡1
𝑛

ς𝑖=1
𝑛 𝑃 𝑡𝑖| 𝑡𝑖−𝑘

𝑖−1𝑤𝑖−𝑚
𝑖+𝑚

 The tag 𝑡𝑖 only depends on

 k preceding tags, typically k=1 or k=2

 the words in a window around 𝑤𝑖 of size m

41

Feature extraction

 We use a template to extract

features from preceding tag(s)

and neighboring words.

 The actual number of features

may be large.

 Observe that properties may

be combined into one feature

 Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑡1
𝑛|𝑤1

𝑛 ≈ argmax
𝑡1
𝑛

ς𝑖=1
𝑛 𝑃 𝑡𝑖| 𝑡𝑖−𝑘

𝑖−1𝑤𝑖−𝑚
𝑖+𝑚

42

Remarks

 The extracted features

corresponds to J&M's "small

features", 𝑓𝑘(𝑦𝑖−1, 𝑦𝑖 , 𝑋, 𝑖)

 J&M includes the tag into the

feature:

 There are alternative ways of

presenting this

 We do not have to include the class

 Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑡1
𝑛|𝑤1

𝑛 ≈ argmax
𝑡1
𝑛

ς𝑖=1
𝑛 𝑃 𝑡𝑖| 𝑡𝑖−𝑘

𝑖−1𝑤𝑖−𝑚
𝑖+𝑚

43

Features (for unknown words)

 We may include features

which inspect properties

of the word

44

Decoding

 Goal: argmax
𝑡1
𝑛

𝑃 𝑡1
𝑛|𝑤1

𝑛 = argmax
𝑡1
𝑛

ς𝑖=1
𝑛 𝑃 𝑡𝑖|𝑡1

𝑖−1, 𝑤1
𝑛

 Simplest alternative: Greedy sequence decoding:

 Choose the best tag for the first word in the sentence argmax
𝑡1

𝑃 𝑡1|𝑤1
𝑛

 Then choose the best tag for the second word in the sentence, given the

choice for the first word, argmax
𝑡2

𝑃 𝑡2|𝑡1, 𝑤1
𝑛

 And so on, tagging one word at a time, argmax
𝑡𝑖

𝑃 𝑡𝑖|𝑡𝑖−1, 𝑤1
𝑛

until we have finished the sentence.

45

Training a greedy classifier

 The training examples are extracted from a tagged corpus

 For each word occurrence in the corpus, one training example:

 The class is the correct tag

 The features are extracted from the context

 One can then

 train any multi-class ML-algorithm, e.g., multinomial logistic regression

 apply greedy tagging on untagged text.

46

Shortcomings of greedy decoding

 Early decisions, considers only one tag at a time

 If Ƹ𝑡1 = argmax
𝑡1

𝑃 𝑡1|𝑤1
𝑛 and Ƹ𝑡2 = argmax

𝑡1

𝑃 Ƹ𝑡1|𝑤1
𝑛 then

argmax
𝑡1𝑡2

𝑃 𝑡1𝑡2|𝑤1
𝑛 does not have to equal Ƹ𝑡1 Ƹ𝑡2

 Compare to HMM which considers whole tag sequences and choose

the most probable sequence.

47

Maximum Entropy Markov Models (MEMM)

 If the model uses a limited history,

 Ƹ𝑡1
𝑛 = argmax

𝑡1
𝑛

𝑃 𝑡1
𝑛|𝑤1

𝑛 ≈ argmax
𝑡1
𝑛

ς𝑖=1
𝑛 𝑃 𝑡𝑖| 𝑡𝑖−𝑘

𝑖−1𝑤𝑖−𝑚
𝑖+𝑚

one may use a form of Viterbi decoding

 We may then find argmax
𝑡1
𝑛

ς𝑖=1
𝑛 𝑃 𝑡𝑖| 𝑡𝑖−𝑘

𝑖−1𝑤𝑖−𝑚
𝑖+𝑚

 This should make better result

48

However

 The greedy sequence decoding does surprisingly well

 And equally surprising: using preceding tags as features does not

improve the tagger that much compared to not including them.

 See mandatory assignment 2

49

Conditional Random Fields

 Even if we use Viterbi decoding and find the most probable overall tag

sequence, we so far trained or model on the greedy task.

 What we ideally should have done was to also train the model on the task

of predicting the optimal whole sequence

 Conditional Random Fields (CRFs) is a generalization compared to MEMM:

 Makes it possible to optimize training for whole tag sequences

 Slow in training

 Considered the best tool for sequence labelling until a few years ago

 Currently, neural networks ("deep learning") are considered the best tool

50

Generative Discriminative

Classification Naive Bayes Logistic regression

Sequence labeling HMM CRF

51

Today

 N-gram language models

 (hangover from last week)

 POS-tagging

 HMM-tagging

 Discriminative tagging

 Named-entity recognition (NER)

 Evaluation of NER

52

IE basics

 Bottom-Up approach

 Start with unrestricted texts, and do the best you can

 The approach was in particular developed by the Message Understanding
Conferences (MUC) in the 1990s

 Select a particular domain and task

53

Information extraction (IE) is the task of

automatically extracting structured information

from unstructured and/or semi-structured

machine-readable documents. (Wikipedia)

A typical pipeline
54

From NLTK

Some example systems
55

 Stanford core nlp (Java): http://corenlp.run/

 Stanza (Python): https://stanfordnlp.github.io/stanza/

 with a wrapper for Stanford Core NLP

 SpaCy (Python): https://spacy.io/docs/api/

http://corenlp.run/
https://stanfordnlp.github.io/stanza/
https://spacy.io/docs/api/

More systems
56

 OpenNLP (Java): https://opennlp.apache.org/docs/

 GATE (Java): https://gate.ac.uk/

 https://cloud.gate.ac.uk/shopfront

 UDPipe: http://ufal.mff.cuni.cz/udpipe

 Online demo: http://lindat.mff.cuni.cz/services/udpipe/

 Collection of tools for NER:

 https://www.clarin.eu/resource-families/tools-named-entity-recognition

https://opennlp.apache.org/docs/
https://gate.ac.uk/
https://cloud.gate.ac.uk/shopfront
http://ufal.mff.cuni.cz/udpipe
http://lindat.mff.cuni.cz/services/udpipe/
https://www.clarin.eu/resource-families/tools-named-entity-recognition

Named entities
57

 Named entity:

 Anything you can refer

to by a proper name

 NE Recognition

 Find the phrases

 Classify them

Citing high fuel prices, [ORG United Airlines]

said [TIME Friday] it has increased fares by

[MONEY $6] per round trip on flights to

some cities also served by lower-cost

carriers. [ORG American Airlines], a unit of

[ORG AMR Corp.], immediately matched the

move, spokesman [PER Tim Wagner] said.

[ORG United], a unit of [ORG UAL Corp.],

said the increase took effect [TIME Thursday]

and applies to most routes where it

competes against discount carriers, such as

[LOC Chicago] to [LOC Dallas] and [LOC

Denver] to [LOC San Francisco].

Types of NE

 The set of types vary between different systems

 Which classes are useful depend on application:

 The first 4 above are most common

 The last two are more for particular applications

 Others: TIME, MONEY,

58

Ambiguities
59

BIO Labels (IOB)

 B-PER:

 First word in

this PER-NE

 I-NP:

 Part of PER-NE

 O:

 Not part of

any NE

 Can code where something

begins and ends without

altering the word sequence

 Applying "CONNL-format"

 one word per line

 info in columns

 we may add more columns, e.g.

for POS-tag

60

Alternatives
61

Named Entity Recognition

Methods (alternatives):

 Hand-written rules

 Regular expressions

 NLTK demonstrates this for NP-chunking

 Supervised machine learning

 Feature-based discriminative sequence labelling

 similarly to (CRF) POS-tagging

 Neural sequence labelling

62

Feature-based NE sequence labeling

 Similar to tagging and chunking

 You will need features from several layers

 Features may include

 Words, POS-tags, Chunk-tags, Graphical prop.

 and more (See J&M, 3.ed)

63

Features
64

Gazetteer

 Useful: List of names,

e.g.

 Gazetteer: list of

geographical names

 But does not remove all

ambiguities

 cf. example

65

Today

 N-gram language models

 (hangover from last week)

 POS-tagging

 HMM-tagging

 Discriminative tagging

 Named-entity recognition (NER)

 Evaluation of NER

66

Evaluating NE Recognition

 Have we found the correct named entities?

 The correct beginning and end of the named entity?

 The right label?

 We might evaluate the BIO-tags, but that is not what we are looking

for

 Observe that since the number of predicted NEs may be different

from the number of gold NEs, we should use Precision and Recall.

67

Evaluation measures

 Accuracy: (tp+tn)/N

 Precision: tp/(tp+fp)

 Recall: tp/(tp+fn)

 F-score combines P and R

 𝐹1 =
2𝑃𝑅

𝑃+𝑅
=

1
1
𝑅
+
1
𝑃

2

 F1 called ‘’harmonic mean’’

 General form

 𝐹 =
1

𝛼
1

𝑃
+(1−𝛼)

1

𝑅

 for some 0 < 𝛼 < 1

68

Is in C

Yes NO

Class

ifier

Yes tp fp

No fn tn

Confusion matrix

 Precision, recall and

f-score can be

calculated for each

class against the rest

 Examples:

 For each tag for a

POS-tagger

 For each entity type

for NE Recognizer

69

Tag accuracy

 2 out of 21 tags are incorrect

 Tag-accuracy: 19/21

70

71 Counting chunks
• Left column: Gold

• Right column: Predicted

Precision: ?

Recall: ?

