

Dialogue systems & chatbots

Pierre Lison

IN4080: Natural Language Processing (Fall 2022)

13.10.2022

The next 3 weeks

What are they? What applications?

How does (human-human) dialogue actually work?

Dialogue systems

What are the core *components* of dialogue systems?
Can they be learned from *data*?

How are dialogue systems *designed*, built and evaluated?

Plan

Lectures:

- ▶ October 13:
- What is dialogue?
- Basic chatbot models
- ► October 18 (<u>∧</u> Tuesday):
 - Chatbots (cont') & NLU
 - Short intro to ASR
- October 27
- Dialogue management
- System design & evaluation

Lab sessions:

- ► October 20:
- Linguistic analysis
- Basics of Numpy
- ➤ October 25 (Thursday):
- Exercises on NLU & ASR
- ► November 1:
 - Exercises on dialogue management & RL
 - Help with assignment

Assignment

- Oblig 3 released soon
 - Deadline: november 11

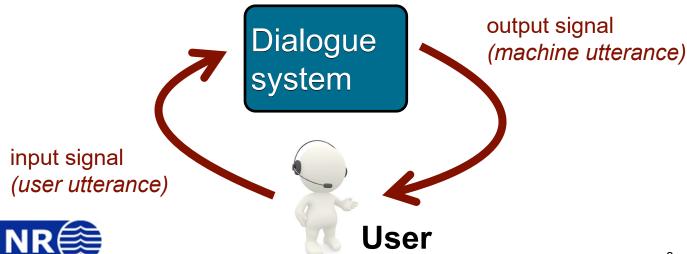
- ► Three parts:
 - Chatbots: data-driven chatbot trained on movie and TV subtitles
 - Speech processing: implement a simple voice activity detector
 - Dialogue management: build a simulated) talking elevator

Material

- The slides from the 3 lectures
- Chapter 24 of the upcoming version (v3) of Jurafsky & Martin's SLP book
 - & part of chapter 25 on phonetics
 - & dialog chapter from previous J&M edition
- + a few additional references listed in the weekly syllabus for the course

Plan for today

- ➤ A short intro to dialogue systems
- ▶ What is human dialogue?
- Basic chatbot models


Plan for today

- ► A short intro to dialogue systems
- ▶ What is human dialogue?
- Basic chatbot models

Dialogue systems?

A dialogue system is an artificial agent designed to interact with humans using (spoken or text-based) natural language

What for?

Highly intuitive: no need for training or expertise: all you need is to talk/write!

- ► Touch-based interfaces may be inadequate, cumbersome or dangerous (car driving)
- Language is the ideal medium to express complex ideas in a flexible and efficient way

Applications

In-car navigation & control

Mobile virtual assistants (Siri, Cortana, etc.)

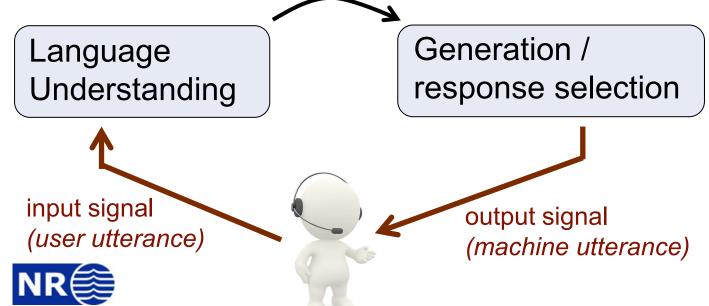
Smart home environments

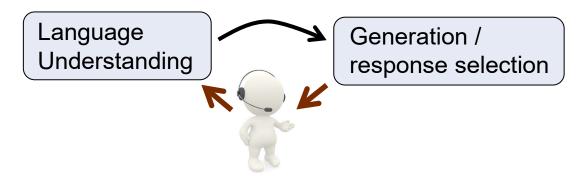
Tutoring systems

Chatbots

Service robots

Why is it interesting?

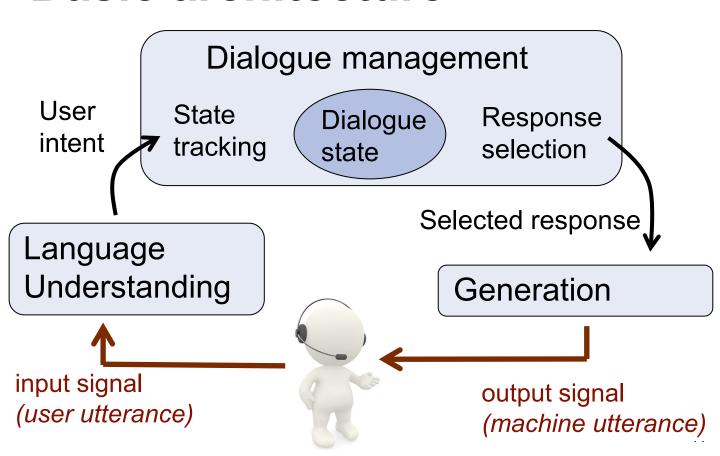

 Major application area for NLP (with large R&D investments)


- Study language «as a whole», as it is used in real interactions
- Playground for key Al problems:
 - Sense, reason and act under uncertainty
 - Capture the context & other agents

Basic architecture

High-level representation of user intent (category, embedding, etc.)

Basic architecture



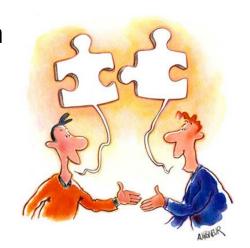
This pipeline is often used for chatbots

- Main limitation: no management of the dialogue itself (beyond current utterance)
- Most appropriate for short interactions

Basic architecture

Outline

- In two weeks, we'll look at dialogue management in more details
 - How to integrate the external «context»?
 - How to handle multiple (i.e. non-verbal) modalities?
 - How to design, build and evaluate dialogue systems?
- But let's first have a look at how human conversation actually works


Plan for today

- A short intro to dialogue systems
- ▶ What is human dialogue?

What is dialogue?

- Spoken ("verbal") + possibly non-verbal interaction between two or more participants
- Dialogue is a joint, social activity, serving one or several purposes for the participants
- What does it mean to view dialogue as a joint activity?

Turn-taking

- Dialogue participants take turns
 - Turn = continuous contribution from one speaker
 - Turn-taking is a resource allocation problem
- Surprisingly fluid in normal conversations:
 - Minimise both gaps (no speaker) and overlaps (more than one speaker)
 - Interval between speakers is around 250 ms

Turn-taking

- How are turns taken or released?
- Markers for turn boundaries:
 - Complete syntactic/semantic unit?
 - Dialogue structure (greetings → greetings, question → answer)
 - Intonation (falling intonation signals that speaker if finished)
 - Non-verbal cues (eye gaze, gestures)
 - Silence & hesitation markers (unfilled pauses ≠ filled pauses)
 - Social conventions

Your Turn

Example of turn-taking

Speaker 1:	han vil bo i skogen ?
Speaker 2:	# altså hvis jeg hadde kommet og sagt " skal vi flytte i skogen ? " så hadde han sagt ja
Speaker 1:	mm
Speaker 2:	men jeg vil ikke bo i skogen
Speaker 1:	nei det skjønner jeg
Speaker 2:	så vi må jo finne et sted som er mellomting og det jeg vil ikke bo utpå landet # i hvilken som helst (uforståelig)
Speaker 1:	* men det kommer jo an på hvor i skogen da

Dialogue acts

- Each utterance is an action performed by the speaker
 - The speaker has a specific goal (which might be only to establish or maintain rapport with the listeners)
 - The utterance produces specific effects upon the listeners, or the world at large
 - «Language as action» perspective

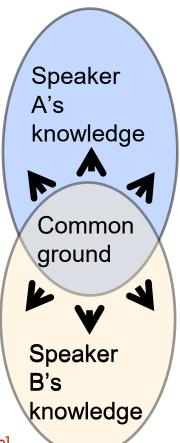
J.L. Austin (1911-1960) philosopher of language

J. Searle (1932, -) philosopher of language

Dialogue acts

- ► The mother reaction has a specific purpose
 - Communicating her suprise/anger, and stop Calvin
- Her question will trigger some effects:
 - A psychological reaction from Calvin (e.g. surprise)
 - Possibly a real-world effect as well (Calvin stopping his action)

22


Searle's taxonomy

- ► Assertives: committing the speaker to the truth of a proposition. E.g.: *«The exam will take place on November 25»*
- ▶ **Directives**: attempts by the speaker to get the addressee to do something. E.g.: *«could you please clean up your room?»*
- ► Commissives: committing the speaker to some future course of action. E.g.: *«I promise I'll clean up my room»*.
- ► **Expressives**: expressing the psychological state of the speaker. E.g.: *«thanks for cleaning up your room».*
- ▶ **Declaratives**: bringing about a different state of the world by the utterance. E.g.: «You're fired».

Grounding

- Dialogue is a joint, collaborative process between the participants
 - Need to ensure mutual understanding
- Gradual expansion and refinement of common ground
 - Common ground = shared knowledge

Grounding

- Grounding is the process of gradually augmenting the common ground during the interaction
 - Variety of signals and strategies

Herbert H. Clark psycholinguist

- Multiple levels:
 - Contact (attention to interlocutor)
 - Perception (detection of utterance)
 - Understanding (comprehension of utterance)
 - Attitudinal reactions

Jens Allwood linguist

[Jens Allwood (1992), «On discourse cohesion», in Gothenburg papers in Theoretical Linguistics.]

Grounding acts

- ► Backchannels: «uh-uh», «mm», «yeah»
- Explicit feedback: «ja det skjønner jeg»
- ► Implicit feedback: A: «I want to fly to Rome» → B: «there are two flights to Rome on Wednesday: ... »
- ► Clarification strategies: «Did you mean to Rome or to Goa?», «could you confirm that ...»
- Repair strategies: «OK, you're not going to Goa. Where do you want to go then?»

Examples of grounding

Speaker 1:	vi vasker den hver dag vi # vi har mopp
Speaker 2:	mm ## ja det er fort og faren til M27 legger nytt teppe han # det er gjort på to timer ## så det er fort gjort
Speaker 1:	ja ## da er ikke noe sak
Speaker 2:	vi har skifta teppe tre ganger allerede han gjør det gratis
Speaker 1:	hæ?
Speaker 2:	vi har skifta teppe tre ganger og # han han
Speaker 1:	* jeg skjønner ikke hvorfor dere har teppe
Speaker 2:	jeg syns det var rart jeg òg # men e # (sibilant)

Examples of grounding

Speaker 1:	e # nei det er ikke mange	
Speaker 2:	ja * nei	
Speaker 1:	men heldigvis så var ikke Petter Rudi tatt ut denne gangen d	la
Speaker 2:	ja # jeg skjønner ikke hva han skal på landslaget å gjøre	
Speaker 1:	* nei han har ingen ting på landslaget	
Speaker 2:	nei # definitivt	
Speaker 1:	å gjøre # han er ubrukelig	
Speaker 2:	* moldensere implicit feedback	
Speaker 1:	hm? (repetition of landslage	et)
Speaker 2:	ja disse moldenserne clarification requests	
Speaker 1:	en gang til?	
Speaker 2:	disse moldenserne	
Speaker 1:	* å ja (fremre klikkelyd) # unnskyld # jeg hørte ikke hva du s	a

Grounding

- Common ground is more than «knowledge that happens to be shared by all participants»
 - The participants must also know that it is shared (i.e. know that the others know it as well)
- Given two speakers A and B, the common ground CG can be defined as :

```
\forall x, \ CG(x) \rightarrow knows(A, x)
\land \ knows(B, x)
\land \ knows(A, knows(B, x))
\land \ knows(B, knows(A, x))
\land \ knows(A, knows(B, knows(A, x)))
\land
```


 Very often, part of the meaning of utterance is not explicitly stated, but only implied

A: «Is William working today?»

B: «He has a cold»

- How can we retrieve this «suggested» meaning, and go beyond literal interpretations?
 - Need to make some assumptions about the speaker to help us infer the hidden part

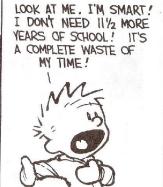
- Same idea again: dialogue as a collaborative process
- ▶ Grice's Cooperative Principle:
 - Maxim of Quality: «be truthful»
 - Maxim of Quantity: «be exactly as informative as required»
 - Maxim of Relation: «be relevant»
 - Maxim of Manner: «be clear»

Paul Grice (1913-1988) philosopher of language

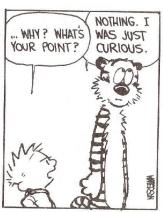
 Based on the cooperative principle, one can draw conversational implicatures

 All participants are assumed to adhere to the maxims

 If an utterance initially seems to deliberately violate a maxim, the listener will then infer additional hypotheses required to make sense of the utterance


A: «Is William working today?»

B: «He has a cold»


- At first glance, B seems to violate the maxim of relevance
 he does not directly answer A's question
- But looking at the utterance more closely, we can read it as implying that (due to his cold) he is probably at home, and thus not working today
- ► This is because we assume that B is cooperative and wouldn't have uttered «he has a cold» if it didn't help answering A's question

Hobbes' question is *suggesting* something about Calvin's need for schooling, without stating it explicitly

We can understand it because we assume that Hobbes' contribution is cooperative and thus relevant to the discussion

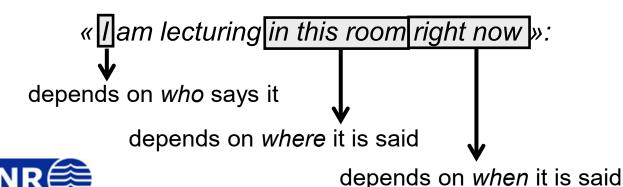
▶ When the cooperative maxims are violated, we can quickly notice it:

Which maxim is violated here?

Shared intentionality

- ► Humans naturally view each other as goal-directed, intentional agents
 - Understand other agents in terms of belief, desires and intentions (theory of mind)
- ► But there's more: humans can jointly attend to external entities and establish shared intentions

Daniel Benett (1942, -) philosopher of mind


Michael Tomasello (1950, -) developmental psychologist

[Dennett, D (1996), *The intentional stance*.] [Tomasello, M (2018), *Becoming Human: A Theory of Ontogeny*]

Deixis

- Dialogue often referential to a spatio-temporal context
- Such references are called deictics
 - Related concepts: indexicals, anaphora
- The meaning of a deictic depends on the context in which it is uttered (including the speaker perspective)

Deictic markers

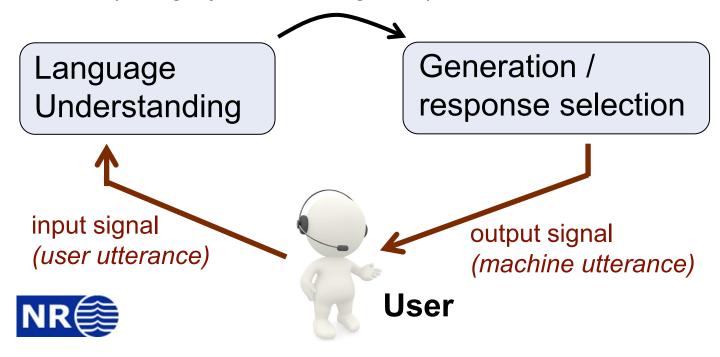
- Pronouns: «I», «you», «my», «yours»
- Adverbs of time and place: «now», «yesterday», «here», «there»
- Demonstratives: «this», «that»
- Tense markers: «he just left»
- Others: «the mug to your right», «go away!»,
 «the other one»
- Non-verbal signs, based on gestures, gaze, etc.

Deixis

- ▶ Deictics can refer to virtually anything:
 - Objects: «take that mug»
 - Events: «don't do that», «this car accident was awful»
 - Persons: «You're being an idiot»
 - Abstract entities: «This methodology is flawed»
- ► Perspective is important:

Alignment

- Participants in a dialogue continuously align their mental representations
 - Notion of common ground discussed earlier
- ▶ But dialogue participants also align at a deeper level, by unconsciously *imitating* each other
- ► As the interaction unfolds, the participants automatically align their wording, pronunciation, speech rate, and gestures


Plan for today

- A short intro to dialogue systems
- ▶ What is human dialogue?
- Basic chatbot models

Chatbots

High-level representation of user intent (category, embedding, etc.)

Rule-based models

Pattern-action rules

```
(0 YOU 0 ME) [pattern]

→
(WHAT MAKES YOU THINK I 3 YOU) [transform]
```

For instance:

You hate me
WHAT MAKES YOU THINK I HATE YOU

IR models

- ► Alternatively, one can adopt a data-driven approach and learn how to respond to the user based on a *dialogue corpus*
- Key idea:
 - Given a user input q, find the utterance t in the dialogue corpus that is most similar to q
 - Then return as response the utterance r
 following t in the corpus

IR models

$$r = response \left(\underset{t \in C}{\operatorname{argmax}} \frac{q^T t}{||q||t||} \right)$$

- How to determine which utterance is «most similar» to the actual user utterance?
 - Cosine similarity over some vectors
 - The vectors can be TF-IDF weighted words
 - Or utterance-level embeddings

TF vectors:

Corpus:		ba re	br a	de g	de t	du	ja	ha r	he i	hv a	m ed	sp ist	,	!	?
1.	hei!								1					1	
2.	hei ! har du det bra 📝		1		1	1		1	1					1	1
3.	ja , hva med deg ? →			1			1			1	1		1		1
4.	bare bra	1	1												
5.	har du spist ?					1		1				1			
6.	ja						1								

 $\log(6) \approx 0.78$ $\log\left(\frac{6}{2}\right) \approx 0.48$

TF-IDF vectors:

Corpus:		ba re	br a	de g	de t	du	ja	ha r	he i	hv a	m ed	sp ist	,	!	?
1.	hei!								.48					.48	
2.	hei ! har du det bra 📝		.48		.78	.48		.48	.48					.48	.48
3.	ja , hva med deg ? →			.78			.48			.78	.78		.78		.48
4.	bare bra	.78	.48												
5.	har du spist ?					.48		.48				.78			
6.	ja						.48								

New user utterance q: "går det bra med deg?"

TF-IDF vector:	.48	.78	.78			.78		.48

L	LAdilipie														-	$q^T t$		
	ba re	br a	de g	de t	du	ja	ha r	he i	hv a	m ed	sp ist	,	į.	?		$q^T t$		q t
1.								.48					.48		\longrightarrow	0	\rightarrow	0
2.		.48		.78	.48		.48	.48					.48	.48		1.07		0.50
3.			.78			.48			.78	.78		.78		.48		1.45		0.56
4.	.78	.48														0.23		0.17
5.					.48		.48				.78					0		0
6.						.48										0		0

.48 .78 .78 .48 .78 .48		.48 .78	.78		.78		.48
-----------------------------------	--	---------	-----	--	-----	--	-----

$$\frac{q^T t}{\|q\| \|t\|}$$

Corpus:

1.	hei!	0
2.	hei ! har du det bra ?→	0.50
3.	ja , hva med deg ?──→	0.56
4.	bare bra ———>	0.17
5.	har du spist ?>	0
6.	ja	0

→ The utterance closest to q in our corpus is utterance 3: "ja, hva med deg?"

→ the system should choose as response utterance 4

New user utterance q: "går det bra med deg?"

→ System response: "bare bra"

Plan for today

- A short intro to dialogue systems
- ▶ What is human dialogue?
- Basic chatbot models
- ▶ Wrap up

Summary (1)

Dialogue = joint social activity

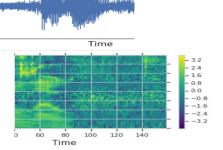
- ► Dialogue participants take *turns*
- ► Each turn is composed of one or several *dialogue acts*

- ▶ Cooperation to ensure mutual understanding (gradual expansion of common ground)
- ► Cooperative interpretation of each other's utterances (conversational implicatures)
- ► Takes place in a *context* which is crucial for making sense of the interaction (cf. *deictics*)

Summary (2)

Language Understanding Response selection

We also looked at basic models for chatbots:


- Rule-based systems, which map conditions (e.g. surface patterns on the user utterance) to responses
- IR-based systems searching for the most similar utterance in a dialogue corpus, and then selecting the utterance after it

Next week

- In the next lecture, we'll look at more advanced chatbot models
 - Other corpus-based approaches: dual encoders, sequence-to-sequence
 - NLU-based approaches (intent & slot recognition)
- + short intro to phonetics& speech recognition!

