IN4080 – 2022 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Lecture 12, part 2, 10 Nov.

Today (and next week)

- Feedforward Neural Networks
- Computational graphs
- Training FNN
- Word embeddings and Word2vec
- Applying embeddings
- Neural Language models

Non-linearity

w2=bad	neg	pos
w2=good	pos	neg
	w1≠ not	w1 = not

□ Logistic regression is a linear classifier

□ What to do with data that are far from linearly separable?

Alt. 1: Feature engineering

w2=bad	neg	pos
w2=good	pos	neg
	w1≠ not	w1 = not

In addition to x₁ and x₂ add
e.g., the features
x₁², x₂², x₁x₂, x₁³, ...

In addition to
f₁ = w₁ and f₂ = w₂
Add f₃ = w₁w₂

Artificial neural networks (= alt. 2)

- Inspired by the brain
 - neurons, synapses
- Does not pretend to be a model of the brain
- The simplest model is the
 - Feed forward network, also called
 - Multi-layer Perceptron

Feed forward network

- □ An input layer
- An output layer: the predictions
- One or more hidden layers
- Connections from one layer to the next (from left to right)
- □ A weight at each connection

The output layer – as with no hidden layers

Alternatives

□ Regression:

- One node
- No activation function
- Binary classifier:
 - One node
 - Logistic activation function
- Multinomial classifier
 - Several nodes
 - Softmax
- □ + more alternatives
- □ Choice of loss function depends on task

What is new

One or more hidden layers What happens in the hidden layers

The hidden nodes

- Each hidden node is like a small logistic regression:
 - First sum of weighted inputs :

$$\mathbf{z} = \sum_{i=0}^{m} w_i x_i = \mathbf{w} \cdot \mathbf{x}$$

Then the result is run through an activation function, e.g. σ

•
$$y = \sigma(z) = \frac{1}{1 + e^{-\overrightarrow{w} \cdot \overrightarrow{x}}}$$

It is the non-linearity of the activation function which makes it possible for MLP to predict non-linear decision boundaries

Forward

- □ Applying the network:
 - Start with the input vector
 - Run it step-by-step through the network

- Each layer can be considered a vector
- The connections between the layers: a matrix
- Running it through the connections: matrix multiplication

Example network: $h = \sigma(Wx + b1)$ z2 = Uh + b2 y = softmax(z2)

Beware: Jurafsky and Martin use $W_{i,j}$ where Marsland, IN3050, uses $W_{j,i}$ Marsland, and Goldberg (IN5550): $h = \sigma(xW + b)$, where x is a row vector

Alternative activation functions

□ There are alternative activation functions:

■
$$tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

■ $ReLU(x) = max(x, 0)$

ReLU is the preferred method in hidden layers in deep networks

Demo

https://playground.tensorflow.o rg

Today (and next week)

- Feedforward Neural Networks
- Computational graphs
- Training FNN
- Word embeddings and Word2vec
- Applying embeddings
- Neural Language models

Computational graphs

From J&M, 3.ed., 2021

Figure 7.14 Computation graph for the function L(a, b, c) = c(a+2b), with values for input nodes a = 3, b = 1, c = -2, showing the forward pass computation of L.

- □ A convenient tool for describing composite functions
- □ And follow the partial derivatives backwards
- □ There are tools that let us specify the computations at an high-level as graphs
- In particular useful for "hiding" vectors, matrices, tensors
- □ After you have specified the graph, the tool computes the derivatives

From J&M, 3.ed., 2021

Figure 7.16 Computation graph for the function L(a,b,c) = c(a+2b), showing the backward pass computation of $\frac{\partial L}{\partial a}$, $\frac{\partial L}{\partial b}$, and $\frac{\partial L}{\partial c}$.

From J&M, 3.ed., 2021

Figure 7.17 Sample computation graph for a simple 2-layer neural net (= 1 hidden layer) with two input dimensions and 2 hidden dimensions.

How would you draw this if x has dim 100,000 and there are 3 million parameters (weights)?

Figure 7.17 Sample computation graph for a simple 2-layer neural net (= 1 hidden layer) with two input dimensions and 2 hidden dimensions.

Today (and next week)

- Feedforward Neural Networks
- Computational graphs
- Training FNN
- Word embeddings and Word2vec
- Applying embeddings
- Neural Language models

Learning

As we have seen for logistic regression

- \square Introduce a loss function: $L(\widehat{m{y}}, m{y})$
- Update each weight in each layer, e.g., $W_{i,j}$ according to its contribution to the loss

$$w_{i,j} \leftarrow w_{i,j} - \eta \frac{\partial}{\partial w_{i,j}} L(\hat{y}, y)$$

- Calculate the partial derivatives using the chain rule
 - Follow the network backwards collecting partial derivatives along the path"

Example network: $h = \sigma(Wx + b)$ z = Uh y = softmax(z)

Log.Reg. Update one observation (remember?)

$$\widehat{y} = f(x_0, x_1, \dots, x_n) = \sigma(\sum_{i=0}^n w_i x_i) = \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) = \frac{1}{1 + e^{-\sum_{i=0}^n w_i x_i}}$$
$$w_i \leftarrow (w_i - \eta \frac{\partial}{\partial w_i} L_{CE}(\widehat{y}, y))$$
$$w_i \leftarrow (w_i - \eta (\widehat{y} - y) x_i)$$
Vektor form:

$$\square \boldsymbol{w} \leftarrow (\boldsymbol{w} - \eta(\hat{y} - y)\boldsymbol{x})$$

 $\square \eta > 0$ is a learning rate

Warning

- You don't have to understand the next slide
- I have included it in case your are interested in how we find the gradient and the update
- It illustrates the use of the chain rule for (partial) derivatives.

Log.reg. the gradient

24

Learning

25

We have considered the last layer update

Example network: $h = \sigma(Wx + b)$ z = Uh y = softmax(z)

Learning in multi-layer networks

- Consider two consecutive layers:
 - \blacksquare Layer M, with $1 \leq i \leq m$ nodes, and a bias node MO
 - **D** Layer N, with $1 \le j \le n$ nodes
 - Let $w_{j,i}$ be the weight at the edge going from M_i to N_j

Learning in multi-layer networks

- 27
- We assume we have calculated the delta terms δ_i^N at each node N_i
- If M is a hidden layer:
 Calculate the error term at the nodes combining
 - A weighted sum of the error terms at layer N
 - The derivative of the activation function

•
$$\delta_i^M = \left(\sum_{j=1}^n w_{j,i} \delta_j^N\right) \frac{d}{dz} \sigma(z)$$

Learning in multi-layer networks

- By repeating the process, we get delta terms at all nodes in all the hidden layers.
- After we have calculated all the error terms at all the layers, we can update the weights between the layers as before:

$$\square w_{j,i} = w_{j,i} - x_i \delta_j^N$$

- \square where x_i is the value going out of node M_i
- This is a sketch of the Backpropagation algorithm

Details on training

- □ First round
 - Start with random weights.
 - Train the network.
 - Test on dev data
- Repeat:
 - You get a different result
 - Why?
 - The problem is not convex
 - There exist local non-global minima

https://www.fromthegenesis.com/gradient-descent-part-2/

□ Solution:

- Run several rounds
- Repeat
- Report mean and st.dev.

Details on training

- □ There are many hyper-parameters that may be tuned
 - Example: embeddings
 - Context window size
 - Dimensions
 - "Drop-out"
- Drop-out
 - A way of regularization
 - Disregard some features during training
 - Different features for each round of training

Today (and next week)

- Feedforward Neural Networks
- Computational graphs
- Training FNN
- Word embeddings and Word2vec
- Applying embeddings
- Neural Language models

Dense vectors

How?

- □ Shorter vectors.
 - (length 50-1000)
 - ``low-dimensional'' space
- Dense (most elements are not 0)
- Intuitions:
 - Similar words should have similar vectors.
 - Words that occur in similar contexts should be similar.

Properties

- Generalize better than sparse vectors.
- Input for deep learning
 - Fewer weights (or other weights)
- Capture semantic similarities better.
- Better for sequence modelling:
 - Language models, etc.

Constructing embeddings: Idea

- □ Instead of counting, use a neural network to learn a LM
- □ Simplest form: a bigram model:
 - **D** For a given word W_{i-1} , try to predict the next word W_i
 - i.e. try to estimate $P(w_i | w_{i-1})$
- □ Use a simple feed-forward network for this task

Model

From J&M 3.ed. 2018 Ch. 16

Model

- Input and output word are represented by sparse onehot vectors
- Dim d typically 50-300
- Idea for training:
 - Consider all possible next words for w' for this word
 - Use softmax to get a probability distribution of all next words

Embeddings from this

- □ Idea: Use the weight matrix $W_{|V| \times d}$ as embeddings, i.e.:
- Represent word j by (w_{j,1}, w_{j,2}, ..., w_{j,d}) = the weights that sends this word to the hidden layer
- Why? since similar words will predict more or less the same words, they will get similar embeddings

Model: zoom in

- □ apricot is word 1243
 - word-embedding:
 - $\square w = (w_{1,1243}, \dots w_{d,1243})$
- □ preserves is word 30999
 - context-embedding:
 - **c** = $(c_{30999,1}, \dots c_{30999,d})$
- $\Box \ z = w \cdot c = \\ \sum_{i=1}^{d} w_{i,1243} c_{i,30999}$

Observations

- Since two words that are similar are predicted by the same words, there will also be similarities between similar words in C_{d×|V|}
- □ This will help the training of $W_{|V| \times d}$
- We could alternatively use $C_{d \times |V|} \text{ as the embeddings}$

CBOW

- We could generalize to predicting from a number of preceding words, e.g. 3, as indicated in the figure.
- Observe this is orderindependent
- Continuous bag of words model (CBOW):
 - Predict W_t from a window $(W_{t-k}, \dots, W_{t-1}, W_{t+1}, \dots, W_{t+k})$

Skip-gram

From w_t predict all the words in a window

$$(W_{t-k}, \dots, W_{t-1}, W_{t+1}, \dots, W_{t+k})$$

- □ Assume independence of the context words, i.e. from W_t predict each of the words w in $\{w_{t-k}, ..., w_{t-1}, w_{t+1}, ..., w_{t+k}\}$
- The size of the window will influence which embeddings you get

Skip-gram model

From J&M 3.ed. 2018 Ch. 16

Softmax is expensive

- The use of softmax is expensive
- For one observation, apricot preserves, one must change all the C_{i,j}-s to
 - increase the probability for preserves
 - decrease the probabilities
 for predicting other words
- $\square d \times |C|, say 300 \times 50,000$

Prediction as classification

□ To predict preserves from apricot, corresponds to a classification task where □ class(apricot, preserves)=+ \Box class(apricot, w)= for all other w

Skip-gram with negative sampling

- 1. Treat the target word and a neighboring context word as a positive example.
- 2. Randomly sample other words in the lexicon to get negative samples
 - sample accordance to frequency
 - adjusted for high-frequent and low-frequent words: $P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w'} count(w')^{\alpha}}$
- 3. Use logistic regression to train a classifier to distinguish between a positive example and the corresponding negative examples
- 4. Use the weights as the embeddings

Skip-Gram Training Data

□ Training sentence:

Training data: input/output pairs centering on apricot Asssume a +/- 2 word window

Skip-Gram Training Data

... lemon, a tablespoon of apricot preserves or a ...
 c1 c2 t c3 c4
 For each positive example, we'll create k negative examples.
 Using noise words: Any random word that isn't t

positive examples +tcapricottablespoonapricotofapricotpreservesapricotor

negative examples -					
t	C	t	c		
apricot	aardvark	apricot	twelve		
apricot	puddle	apricot	hello		
apricot	where	apricot	dear		
apricot	coaxial	apricot	forever		

Learning

- □ Like Logistic Regression
- □ Start with randomly initialized weights for W and C
- \Box For the training items (w, c), calculate $\hat{y} = \sigma(\boldsymbol{c} \cdot \boldsymbol{w}) = \frac{1}{1 + e^{-c \cdot \boldsymbol{w}}}$
- Compare to the gold labels using cross-entropy loss
 The gold label is 1 if c is a context word and 0 if c is a negative example
 This is like Logistic regression
- \Box Use the derivative of the loss with respect to **c**: $\frac{\partial}{\partial c}Lce$ to update **c**
- \Box and the derivative of the loss with respect to w to update w

Update equations in SGD

48

We skip the derivation, but these are the resulting update equations

$$\begin{aligned} \mathbf{c}_{pos}^{t+1} &= \mathbf{c}_{pos}^{t} - \eta \left[\sigma(\mathbf{c}_{pos}^{t} \cdot \mathbf{w}^{t}) - 1 \right] \mathbf{w}^{t} \\ \mathbf{c}_{neg}^{t+1} &= \mathbf{c}_{neg}^{t} - \eta \left[\sigma(\mathbf{c}_{neg}^{t} \cdot \mathbf{w}^{t}) \right] \mathbf{w}^{t} \\ \mathbf{w}^{t+1} &= \mathbf{w}^{t} - \eta \left[\left[\sigma(\mathbf{c}_{pos} \cdot \mathbf{w}^{t}) - 1 \right] \mathbf{c}_{pos} + \sum_{i=1}^{k} \left[\sigma(\mathbf{c}_{neg_{i}} \cdot \mathbf{w}^{t}) \right] \mathbf{c}_{neg_{i}} \right] \end{aligned}$$

 $\Box \ \hat{y} = \sigma(\boldsymbol{c} \cdot \boldsymbol{w})$

Similar to the logistic regression, where we update weights
Her we update both the *w*-s and the *c*-s.

Result

- We learn two separate embedding matrices W and C
- We can use W as representations for the words
 - (or combine with C in some ways)

- □ What have we learned:
 - If two words w1 and w2 occur in similar contexts
 - with the same (or similar) context words, e.g. c,
 - \square then both w1 and w2 should have a large cosine with c,
 - hence get similar vectors.

Use of embeddings

- Embeddings are used as representations for words as input in all kinds of NLP tasks using deep learning:
 - Text classification
 - Language models
 - Named-entity recognition
 - Machine translation
 - etc.

- These embeddings are nowadays called static
- □ Since 2018, Transformers:
 - The embedding of each word depends on the context
 - Superior results in all tasks
- □ IN5550, Spring

Resources

Easy-to-use tool for training own models

Word2wec

<u>https://code.google.com/archive/p/word2vec/</u>

https://fasttext.cc/

https://nlp.stanford.edu/projects/glove/

http://vectors.nlpl.eu/repository/

Pretrained embeddings, also for Norwegian

Today (and next week)

- Feedforward Neural Networks
- Computational graphs
- Training FNN
- Word embeddings and Word2vec
- Applying embeddings
- Neural Language models

Classification

Feedforward sentiment analysis using a pooled embedding of the input words.

Today (and next week)

- Feedforward Neural Networks
- Computational graphs
- Training FNN
- Word embeddings and Word2vec
- Applying embeddings
- Neural Language Models

n-gram language models – remember?

55

□ Goal: Ascribe probabilities to word sequences

 $\square P(w_1, w_2, w_3, \dots, w_n) \approx$

 $\Box \prod_{i=1}^{n} P(w_{i} | w_{i-k}, w_{i+1-k}, \dots, w_{i-1}) = \prod_{i=1}^{n} P(w_{i} | w_{i-k}^{i-1})$

□ The probabilities are estimated by counting occurrences over a corpus.

Challenges

- □ There might be words that is never observed during training.
- □ N-grams which are seen no or only a few times during training
- \Box Add-k smoothing is not appropriate
- Possibilities:
 - Back-off
 - Interpolation
 - Kneser-Ney (best)
- Short-comings of all n-gram models
 - The smoothing is not optimal
 - The context are restricted to a limited number of preceding words

Neural Language Models

- Neural language model (k-gram)
 P(w_i | wⁱ⁻¹_{i-k})
- Use embeddings for representing the W_i-s
- □ Use neural network for estimating $P(w_i | w_{i-k}^{i-1})$

Neural Language Models

At each timestep t:

- $\Box \quad \text{Each of the words } w_j, j = t 1, t 2, t 3$
 - \square is represented by a one-hot-vector x_i
 - which is multiplied with the same matrix E to a d-dimensional embedding $e_i = Ex_i$
- They are concatenated to get the embedding layer e.
- □ e is multiplied by a weight matrix W and
- An activation function is applied element-wise to produce the hidden layer h, which is
- multiplied by another weight matrix U.
- Finally, a softmax output layer predicts at each node i the probability that the next word w_t will be vocabulary word V_i .

Training the language models

Figure 7.18 Learning all the way back to embeddings. Again, the embedding matrix *E* is shared among the 3 context words.

Training the language models, alt. 1

- □ We may use pretrained embeddings
 - Trained with some method, SkipGram, CBOW, Glove, ...
 - On some specific corpus
 - Can be downloaded from the web
- $\hfill This means that the matrix <math display="inline">E$ is fixed and that we update W and U during training

Training the embeddings

Alternatively:

Start with one-hot representations of words and train the embeddings as the first layer in our models

- (=the original model for training the embeddings)
- Start with pre-trained embeddings, but update them during training
- Use two set of embeddings for each word one pretrained and one which is trained during the task.
- If the goal is a task different from language modeling, this may result in embeddings better suited for the specific tasks.

