INAO80 — 2022 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lenning

- Lecture 12, part 2, 10 Nov.

Today (and next week)

Feedforward Neural Networks
Computational graphs

Training FNN

Word embeddings and Word2vec
Applying embeddings

Neural Language models

Non-linearity

0.00 1

—0.25 A

—0.50 1

w2=bad | neg pos
w2=good | pos neg
w1# not w1l = not

Logistic regression is a linear classifier

What to do with data that are far from linearly separable?

Alt. 1: Feature engineering

5|
1.001 = w2=bad | neg pos
> w2=good | pos neg
_zz: w1# not w1l = not
7 In addition to x; and x, add 0 In addition to

e.g., the features fi =wjand f, = w,

2 2 3
X171 X277 X1 X2, X177y «-- Add f3 = W1W»

Artificial neural networks (= alt. 2)
.

71 Inspired by the brain

—
—

..............

1 neurons, synapses

............

""""""""

-1 Does not pretend to be o

model of the brain
- The simplest model is the :?f.'f.l_; i

0 Feed forward network, also

£y Hidden Layer Output Layer
called ()

Input Layer

I

0 Multi-layer Perceptron

Feed forward network

71 An input layer
71 An output layer: the predictions
1 One or more hidden layers

1 Connections from one layer to
the next (from left to right)

1 A weight at each connection

|

Al

L7

£

Y

| <
=N

Input Layer

Hidden Layer Output Layer

)

The output layer — as with no hidden layers

Alternatives

1 Regression: .
7 One node L A
o No activation function

0 Binary classifier: f:_"'."'."'_'\
=1 One node L

" .

o1 Logistic activation function p
1 Multinomial classifier
=1 Several nodes

(m | SOmeCIX Input Layer
1 + more alternatives

11 Choice of loss function depends on task

What is new

N
One or more hidden layers

What happens in the hidden layers

1440000,
N

Loy

oy

et

Input Layer

I

The hidden nodes

Each hidden node is like o
small logistic regression: Q
First sum of weighted inputs : w0 (=b in J&M)
m wl
Z=2i—ogWiXi =W-*X Q
Then the result is run through an)
w
activation function, e.g. © Q
1
y = o'(z) — w3

It is the non-linearity of the activation
function which makes it possible for MLP to
predict non-linear decision boundaries

Forward
.

1 Applying the network: : :
o1 Start with the input vector
o1 Run it step-by-step through the

network

Input Layer

I

Forward

i1 Wiz ot Win L1 by z1
7 w2, W22ttt UW2n L2 ba z9
'{T ¥ = : : : . * i —l_ * _ . _,
| Wm1 Wm2 - Wma | |[|*n | i b] | Zm |

Each layer can be considered a vector

The connections between the layers:
a matrix

Running it through the connections:
matrix multiplication

Beware: Jurafsky and Martin use w; ; where Marsland, IN3050, uses w; ;
Marsland, and Goldberg (IN5550): h = a(xW + b), where X is a row vector

X

Hidden Layer Output Layer

Input Layer

Example network:
h=oc(Wx+ b1)
z2 = Uh + b2
y = softmax(z2)

Soft
max

Alternative activation functions
e

100 4

075

050 4

025 4

000 4

-0.25

—0.50 4

=075 A

=1.00 4

o There are alternative activation functions:
eX_o—X
eX+e™%
o ReLU(x) = max(x,0)
1 RelU is the preferred method in hidden layers

in deep networks

o tanh(x) =

/

7 = tanh der

| = reluder

- |ogistic der

Demo

0 https://playground.tensorflow.o
rg

https://playground.tensorflow.org/

Today (and next week)

Feedforward Neural Networks
Computational graphs

Training FNN

Word embeddings and Word2vec
Applying embeddings

Neural Language models

Computational graphs
—

forward pass

From J&M,

3.ed., 2021

DTN EY Computation graph for the function L(a, b, ¢) = c(a+ 2b), with values for input
nodesa=3,b=1, ¢ = -2, showing the forward pass computation of L.

71 A convenient tool for describing composite functions

1 And follow the partial derivatives backwards

1 There are tools that let us specify the computations at an high-level as graphs
7 In particular useful for "hiding" vectors, matrices, tensors

01 After you have specified the graph, the tool computes the derivatives

17

@ a=3

d=2 -
o b=1 ______---"""” 5_9: 'ﬂi_1 dl -
-------------- d_dde _, oa

= - :ﬁ'd N E:—E = . L=-1D
ﬂ_ :ﬁad — A ﬂd_z ad BE Eld ------_____________... aL
b adeb ~ b~ E:_E
c=-2 _-- o
- o= oL :5
0' ok backward pn55|
dc =
3L Computation graph for the function L{a, b,c) = ¢(a+ 2b), showing the backward pass computa-
tion of g—ﬁ, %1 and %

From J&M,

3.ed., 2021

18

From J&M,
3.ed., 2021

Sample computation graph for a simple 2-layer neural net (= 1 hidden layer) with two input
dimensions and 2 hidden dimensions.

How would you draw this if x has dim 100,000 and there are

3 million parameters (weights)?

Using vector notation
o

gyl Sample computation graph for a simple 2-layer neural net (= 1 hidden layer) with two input
dimensions and 2 hidden dimensions.

Today (and next week)

Feedforward Neural Networks
Computational graphs

Training FNN

Word embeddings and Word2vec
Applying embeddings

Neural Language models

Learning

As we have seen for logistic regression
Introduce a loss function: L(y ,y)
Update each weight in each layer, e.g., w; ;
according to its contribution to the loss

0 ~
Ly,y)

an',j
Calculate the partial derivatives using the
chain rule

Wij < Wij =1

"Follow the network backwards collecting
partial derivatives along the path"

X

Input Layer

Hidden Layer Output Layer

4

Example network:

h=ocWx+b)
z=Uh
y = softmax(z)

Soft
max

Log.Reg. Update one observation (remember?)
i

" N 1
0V = f(xg, X1, ey Xp) =0 Qi oWix;) =0o(W-X) =

1+e™ Limo Wik
? "
Jwp < (Wi =5 Lee(,)

ow; < (wp =@ —y)x;)

Vektor form:

owe (w=—n@ —y)x)

o 1 > 0is alearning rate

Warning
i

= You don't have to understand
the next slide

o | have included it in case your
are interested in how we find
the gradient and the update

1 It illustrates the use of the chain
rule for (partial) derivatives.

Log.reg. the gradient

To simplify,
VA %noWixi —W-X consider only one
observation, y;

- - O-(Z) 1+e7Z

O LCE(W) = —log Hi=1 P()’(i)ﬁf(i)) =
~ Vi ~Y1-Yj
0 = —Xj=1log [)’jy’(l — J’j)(])]

0 0 ay 0z
O =—Lcg X=X
aWt Lee y LCE 0z dw;
(y—?)
O L <
09 CE = T 531-9)
ay
0 =—=31-79)
- ﬂ = x
aWi A

[input nodes J

: v=9) X
0 gurker = =55 A= P = =y = 9)x;

Learning

s (=
1 We have considered the last layer update -
a =
O Ui 3 = U + — L A' — Input Layer
i, i,j — 1 o 0.y) | >
d o d
u i —n=—L®,y) X Z;
ij —N 7 y aui,j i
Example network:
: The delta term at - ©h= O-(Wx T b)
this node 0 z=Uh

\ Oout, y 7 y = softmax(z)

Learning in multi-layer networks

11 Consider two consecutive layers:

O Layer M, with 1 < i < m nodes, and a bias
node MO

0 Layer N, with 1 < j < 1 nodes

O Let w; ; be the weight at the edge going
from M; to N;

Learning in multi-layer networks

1 We assume we have
calculated the delta terms
5]N at each node N; *
o If M is a hidden layer:

Calculate the error term at
the nodes combining

o A weighted sum of the error
terms at layer N

1 The derivative of the
activation function

d
o &M = (Z] 1 W;,i6; EU(Z)

Learning in multi-layer networks

01 By repeating the process, we get delta
terms at all nodes in all the hidden layers.

o1 After we have calculated all the error
terms at all the layers, we can update the
weights between the layers as before:

— N
O Wj,i = Wj,i — Xl5]
o where x; is the value going out of node M;

0 This is a sketch of the Backpropagation
algorithm

Details on training

- 5 |
o First round |
o1 Start with random weights. :
=1 Train the network.

=1 Test on dev data

-1 Repeat:
7 You get a different result https:/ /www.fromthegenesis.com /gradient-descent-part-2/
1 Why? 0 Solution:
o1 The problem is not convex o1 Run several rounds
o1 There exist local non-global o Repeat

minima o Report mean and st.dev.

Details on training

There are many hyper-parameters that may be tuned

Example: embeddings
Context window size
Dimensions

"Drop-out"

Drop-out
A way of regularization
Disregard some features during training

Different features for each round of training

Today (and next week)

Feedforward Neural Networks
Computational graphs

Training FNN

Word embeddings and Word2vec
Applying embeddings

Neural Language models

Dense vectors

I [

o1 Shorter vectors.
o (length 50-1000)
o “low-dimensional” space
71 Dense (most elements are not 0O)

1 Intuitions:

1 Similar words should have similar
vectors.

21 Words that occur in similar contexts
should be similar.

1 Generalize better than sparse
vectors.

7 Input for deep learning
o1 Fewer weights (or other weights)

1 Capture semantic similarities
better.

71 Better for sequence modelling:

o Language models, etc.

Constructing embeddings: Idea

Instead of counting, use a neural network to learn a LM

Simplest form: a bigram model:
For a given word w;_4, try to predict the next word w;

i.e. try to estimate P(w;| w;_;)

Use a simple feed-forward network for this task

Model

Input layer Projection layer ﬂutpn_t_ l_ﬂfﬂ'
_ _ probabilities of
1-hot input vector embedding for w; context words
% (@ -
20 SRS
w . | L w : . E
L . Vixd . C axvi ® v Wi+l
: ._ o :
Xyie_ —— e _'_'_'—'—-—-—-_._._______________._-—=
. 1xd —
1%V 1|V

The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov

et al. 2013a).
From J&M 3.ed. 2018 Ch. 16

Model

0 Input and output word are
represented by sparse one-
hot vectors

0 Dim d typically 50-300

0 ldea for training:

o1 Consider all possible next
words for W' for this word

o Use softmax to get @ 5%,
probability distribution of all one-hot

next words enco-
one-hot ding of
encoding of pre-

apricot serves

Embeddings from this

ldea: Use the weight matrix

Input laver Projection layer Output layer

Wy |xa as embeddings, i.e.: it it ector entedding form probabilites of

context words

—

Represent word j by —8
Yt ox e W o

(Wj,ll Wj 2, wen) Wj,d) = the i
weights that sends this word to e
the hidden layer

The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov
et al. 2013a).

Why? since similar words will
predict more or less the same
words, they will get similar
embeddings

Model: zoom in

e 5

71 apricot is word 1243
o1 word-embedding:

Ow = (Wy11243, - Wi 1243)

0 preserves is word 30999

o1 context-embedding:

0 € = (€30999,1s -+ €30999,d)

N Z=W-+'C=
d " "
i=1 Wi 1243€i 30999

preservative
preserves
press

one-hot one-hot

encoding of

encoding of

apricot preserves

Observations

Since two words that are similar
are predicted by the same
words, there will also be
similarities between similar
words in Cgx |y

This will help the training of
l/V|V|><d

We could alternatively use
Cax|v| as the embeddings

Input layer

1-hot input vector

%, ®

5l

Projection layer

embedding for w

—

Output laver

probabilities of
context words

— @ Vs

1 x|V

et al. 2013a).

The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov

CBOW

g Input layer
o\
X1k <.> ~
We could generalize to Wi\
° . 9
predicting from a number of -. - Output layer
. 5 Hidden layer
preceding words, e.g. 3, as o N\ gl
° ° ° ° . 12 .
indicated in the figure. T [Wy X h,~ Wiy [y,
Observe this is order- -
i = /N-dim L
independent , i
° O
Continuous bag of words model AWy,
(CBOW): xer b
Predict w; from a window | /
O/ CxV-dim

(We—kr s W g, Wit 1) oo Weie)

Skip-gram

Output layer

[eXeXs]

O =m

Yij
From w; predict all the words in
a window Input layer

(Wi oo s Wiy Weg 1y s Wetk)
Assume independence of the % o

context words, i.e. from wy
predict each of the words w in

Wity ooy Wi, Weg 1) o) Witk }
The size of the window will

influence which embeddings
you get

== 000

o ¥ 2,j

Skip-gram model

Input layer Projection laver I[:"“tl]“_'_ l_ﬂ}’ﬂl'
_ _ probabilities of
1-hot input vector embedding for w; context words
X @ -
20 SRS
w . | L W : . E
] - Vixd . Caxvi loly %1
: | o
Xyie_ —— e _'_'_'—'—-—-—-_._______________-_-_-—I
y 1xd =
1%V 1|V

The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov

et al. 2013a).
From J&M 3.ed. 2018 Ch. 16

Softmax is expensive

1 The use of softmax is
expensive

-1 For one observation, apricot
preserves, one must change
all the Cij-s fo

o increase the probability for
preserves

o1 decrease the probabilities
for predicting other words

0d X |C],say 300 X 50,000

one-hot

enco-
encoding of pre-

apricot serves

Prediction as classification
o

11 To predict preserves
ow:-C
(T) from apricot,

Z=W-C corresponds to a

classification task
; ; where

o class(apricot,
preserves)=+

W C o class(apricot, w)= -
S for all other w

000.010..000000 00000.010..0000

apricot preserves

Skip-gram with negative sampling

Treat the target word and a neighboring context word as a positive
example.
Randomly sample other words in the lexicon to get negative samples

sample accordance to frequency
count(w)“

adjusted for high-frequent and low-frequent words: Py (W) = S count (W)@
w! - v

Use logistic regression to train a classifier to distinguish between a
positive example and the corresponding negative examples

Use the weights as the embeddings

Skip-Gram Training Data
—

71 Training sentence:

O tablespoon of apricot preserves or
m cl c2 t c3 c4

0 Training data: input /output pairs centering on apricot

7 Asssume a +/- 2 word window

11/7/2022

Skip-Gram Training Data

tablespoon of apricot preserves or
cl c2 t c3 c4d

For each positive example, we'll create k negative examples.

Using noise words: Any random word that isn't t

positive examples + negative examples -

t C t C t C
apricot tablespoon apricot aardvark apricot twelve
apricot of apricot puddle apricot hello
apricot preserves apricot where apricot dear

apricot or apricot coaxial apricot forever

Learning

Like Logistic Regression

Start with randomly initialized weights for W and C
1

1+e=¢W

For the training items (w, c), calculate y = a(c - w) =

Compare to the gold labels using cross-entropy loss
The gold label is 1 if cis a context word and O if ¢ is a negative example
This is like Logistic regression
0
ac
and the derivative of the loss with respect to w to update w

Use the derivative of the loss with respect to ¢: — Lce to update ¢

Update equations in SGD

We skip the derivation, but these are the resulting update equations

]
Cj;,?—r';,t‘ — ;:-u'. — Nl 5(;:rr:- r) R l]wr
+1
C‘:wg — m g ’?[(Cheo 'Wr”wr
wf—l-] = w — 1N [G(cpm W c;:-m +Z O C[‘lr:gir '):CH{’L!;E'
L =1 |
y=o0(c-w)

Similar to the logistic regression, where we update weights

Her we update both the w-s and the c-s.

Result

We learn two separate embedding matrices W and C

We can use W as representations for the words

(or combine with C in some ways)

What have we learned:
If two words wl and w2 occur in similar contexts
= with the same (or similar) context words, e.g. ¢,

then both w1 and w2 should have a large cosine with c,

hence get similar vectors.

Use of embeddings

Embeddings are used as
representations for words as
input in all kinds of NLP tasks
using deep learning:
Text classification
Language models
Named-entity recognition
Machine translation

etc.

These embeddings are
nowadays called static
Since 2018, Transformers:

The embedding of each word
depends on the context

Superior results in all tasks

INS5550, Spring

Resources
BT
[l gensim
o1 Easy-to-use tool for training own models

1 Word2wec
O https: //code.google.com/archive /p /word2vec/

0 https://fasttext.cc/

0 https://nlp.stanford.edu/projects /glove /

0 http://vectors.nlpl.eu/repository /

o1 Pretrained embeddings, also for Norwegian

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://vectors.nlpl.eu/repository/

Today (and next week)

Feedforward Neural Networks
Computational graphs

Training FNN

Word embeddings and Word2vec
Applying embeddings

Neural Language models

Classification
e

embedding for (@
dessert— “dessert” —* 3
embedding for N

was —— “was” — :
__embedding for __| zf

great “oreat” b

Input words X W h U y
[dx1] [dpxd] 4, x1] [3xdp] [3x1]
Input layer Hidden layer Output layer
pooled softmax
embedding

DTyl BE Feedforward sentiment analysis using a pooled embedding of the input words.

Today (and next week)

Feedforward Neural Networks
Computational graphs

Training FNN

Word embeddings and Word2vec
Applying embeddings

Neural Language Models

n-gram language models — remember?

Goal: Ascribe probabilities to word sequences

P(wy,wy, Wy, ..., W,,) =

_ 1
[T} P(Wi| wi—g, Wiz1—ier s Wi—q) = [TFP(w;| wilp

The probabilities are estimated by counting occurrences over a corpus.

Challenges

There might be words that is never observed during training.
N-grams which are seen no — or only a few — times during training
Add-k smoothing is not appropriate
Possibilities:

Back-off

Interpolation

Kneser-Ney (best)
Short-comings of all n-gram models

The smoothing is not optimal

The context are restricted to a limited number of preceding words

Neural Language Models

1 Neural language model (k-
gram)
o P(w;| wioh

1 Use embeddings for
representing the w;-s

1 Use neural network for

and

thanks

for

all |

the

plaardvark]...)

p(do|...)

p(fish]...)

estimating P(Wi| wi e !

dx[v] 3dx1 dpx3d dpxl Vixdy, ¥
[VIx3 [V|x1
inpur laver embedding hidden output layer
one-hot layer layer softmax

vectors

Neural Language Models

At each timestep t:
Each of the words Wj,j =t—1,t—2,t— 3
is represented by a one-hot-vector X;

which is multiplied with the same matrix E to a
d-dimensional embedding e; = Ex;

They are concatenated to get the embedding
layer e.

e is multiplied by a weight matrix W and

An activation function is applied element-wise
to produce the hidden layer h, which is

multiplied by another weight matrix U.

Finally, a softmax output layer predicts at
each node i the probability that the next
word w; will be vocabulary word V.

ok
M- 'F
Le(35
I 3 —_
748 ;@
f Ve W E |
or
ok ®
Ty
o002 . |
al i, T et |
S |+
=\ I
; ®
the :
v {We1 §E) 1 I
S : |
- - :| I:.:l 1
?]“!Lil E @,
W 3 St s e W h
T X axv) 341 dpx3d dyxi
[V]x3
inpur laver embedding hidden
one-hot layer layer

vectors

= p(aardvark]...)

&)

—= p(dol...)

~ p(fish]...)

U » p(zebral...)

[Vixd,

)
= |
[y 0

output layer
softmax

Training the language models
.

p(aardvark]...)",
p(do]...)
: . : B) : Y :
L] [= W e 0, % ; | R
' | g S ~'
: 2 = N N p(fish]..)
[o0 B .
‘ = . , !
' H ¥] 5 &
. S 2 e 5 i 4
"] - | M
1‘ L, “og| e -
’ H 5 U p(zebral...)
X dxv) ddx1 dpx3d dpx1 Vixdy v
WVx3 [Vi=1
input laver embedding hidden output laver
one-hot layer laver softmax
vectors

ITICWNE] [earning all the way back to embeddings. Again, the embedding matrix E is
shared among the 3 context words.

Training the language models, alt. 1

We may use pretrained embeddings
Trained with some method, SkipGram, CBOW, Glove, ...
On some specific corpus
Can be downloaded from the web

This means that the matrix E is fixed and that we update W and U
during training

Training the embeddings

Alternatively:

Start with one-hot representations of words and train the embeddings as the
first layer in our models

(=the original model for training the embeddings)
Start with pre-trained embeddings, but update them during training
Use two set of embeddings for each word — one pretrained and one which

is tfrained during the task.

If the goal is a task different from language modeling, this may result
in embeddings better suited for the specific tasks.

and [/ﬁ-p{aardvarkL..]
- e 7.
Computational graph =
o [< W L p(do]...)
62| . AL | 5
M o B pfish]...
This picture is if we train the - Yo\
' the W K\ | ‘ ,
embeddings E e BB W N
With pretrained embeddings, e) %
[1] Tt S8 E e U p(zebral...)
we look up u; 'in a table for »

1 I dpx3d dyx1 [Vixdy ¥y

1 each word [V]x3 [V]x1
X 1 ug_] :E X 1 input layer embedding hidden output layer
one-hot layer laver softmax

) u = concat(- z2= | y=soft_
u; | =Ex2 [(1] [1]) e J
/ u;,u; o, ug)

w4+ b2l max(z2)

\ 4

