
IN4080 – 2022 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 12, part 2, 10 Nov.

2

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

3

Non-linearity

 Logistic regression is a linear classifier

 What to do with data that are far from linearly separable?

4 w2=bad neg pos

w2=good pos neg

w1≠ not w1 = not

Alt. 1: Feature engineering

 In addition to 𝑥1 and 𝑥2 add

e.g., the features

 𝑥1
2, 𝑥2

2, 𝑥1𝑥2, 𝑥1
3, …

 In addition to

 𝑓1 = 𝑤1 and 𝑓2 = 𝑤2

 Add 𝑓3 = 𝑤1𝑤2

5

w2=bad neg pos

w2=good pos neg

w1≠ not w1 = not

Artificial neural networks (= alt. 2)

 Inspired by the brain

 neurons, synapses

 Does not pretend to be a

model of the brain

 The simplest model is the

 Feed forward network, also

called

 Multi-layer Perceptron

6

11

Feed forward network

 An input layer

 An output layer: the predictions

 One or more hidden layers

 Connections from one layer to

the next (from left to right)

 A weight at each connection

7

11

The output layer – as with no hidden layers

Alternatives

 Regression:

 One node

 No activation function

 Binary classifier:

 One node

 Logistic activation function

 Multinomial classifier

 Several nodes

 Softmax

 + more alternatives

 Choice of loss function depends on task

8

1 1

What is new

One or more hidden layers

What happens in the hidden layers

9

1 1

The hidden nodes

 Each hidden node is like a
small logistic regression:

 First sum of weighted inputs :

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 Then the result is run through an
activation function, e.g. σ

 𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥

10

x1

x2

x3

1

Σ

w1

w2

w3

z y

It is the non-linearity of the activation

function which makes it possible for MLP to

predict non-linear decision boundaries

w0 (=b in J&M)

Forward

 Applying the network:

 Start with the input vector

 Run it step-by-step through the

network

11

1 1

Forward

 Each layer can be considered a vector

 The connections between the layers:
a matrix

 Running it through the connections:
matrix multiplication

Example network:

 𝒉 = 𝜎 𝑊𝒙 + 𝒃𝟏

 𝒛𝟐 = 𝑈𝒉 + 𝒃𝟐

 𝒚 = softmax(𝒛𝟐)

12

1

Beware: Jurafsky and Martin use 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖
Marsland, and Goldberg (IN5550): 𝒉 = 𝜎 𝒙𝑊 + 𝒃 , where 𝒙 is a row vector

1 1

W Ux
Soft

max

Alternative activation functions

 There are alternative activation functions:

 tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

 ReLU is the preferred method in hidden layers
in deep networks

13

Demo

 https://playground.tensorflow.o

rg

14

https://playground.tensorflow.org/

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

15

Computational graphs

 A convenient tool for describing composite functions

 And follow the partial derivatives backwards

 There are tools that let us specify the computations at an high-level as graphs

 In particular useful for "hiding" vectors, matrices, tensors

 After you have specified the graph, the tool computes the derivatives
16

From J&M,

3.ed., 2021

17

From J&M,

3.ed., 2021

18

How would you draw this if x has dim 100,000 and there are

3 million parameters (weights)?

From J&M,

3.ed., 2021

Using vector notation
19

𝒙

𝑊[1] 𝑊[2]𝒃[1] 𝒃[2]

𝒖[1] =
𝑊[1]𝒙

𝒛[1] =
𝒖[1]+𝒃[1]

𝒙[2] =

𝑅𝑒𝑙𝑈(𝒛 1)
𝒖[2] =
𝑊[2]𝒙[2]

𝒛[2] =
𝒖[2]+𝒃[2]

𝒂[2] =

σ(𝒛 2)
𝐿(𝒂 2 , 𝑦)

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

20

Learning

As we have seen for logistic regression

 Introduce a loss function: 𝐿 ෝ𝒚 , 𝒚

 Update each weight in each layer, e.g., 𝑤𝑖,𝑗

according to its contribution to the loss

 𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 − 𝜂
𝜕

𝜕𝑤𝑖,𝑗
𝐿 ෝ𝒚 , 𝒚

 Calculate the partial derivatives using the
chain rule

 "Follow the network backwards collecting
partial derivatives along the path"

Example network:

 𝒉 = 𝜎 𝑊𝒙 + 𝑏

 𝒛 = 𝑈𝒉

 𝒚 = softmax(𝒛)

21

1 1

W Ux
Soft

max

Log.Reg. Update one observation (remember?)

 ො𝑦 = 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 = 𝜎(σ𝑖=0
𝑛 𝑤𝑖𝑥𝑖) = 𝜎 𝑤 ∙ Ԧ𝑥 =

1

1+𝑒
− σ𝑖=0

𝑛 𝑤𝑖𝑥𝑖

 𝑤𝑖 ← (𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 ො𝑦, 𝑦)

 𝑤𝑖 ← (𝑤𝑖 − 𝜂 ො𝑦 − 𝑦 𝑥𝑖)

Vektor form:

 𝒘 ← (𝒘 − 𝜂 ො𝑦 − 𝑦 𝒙)

 𝜂 > 0 is a learning rate

22

Warning

 You don't have to understand

the next slide

 I have included it in case your

are interested in how we find

the gradient and the update

 It illustrates the use of the chain

rule for (partial) derivatives.

23

Log.reg. the gradient

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 ො𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑧

 𝐿𝐶𝐸 𝑤 = − logς𝑖=1
𝑚 𝑃(𝑦 𝑖 | 𝑥(𝑖)) =

 = −σ𝑗=1
𝑛 log ො𝑦𝑗

𝑦𝑗 1 − ො𝑦𝑗
1−𝑦𝑗



𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 =

𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 ×

𝜕 ො𝑦

𝜕𝑧
×

𝜕𝑧

𝜕𝑤𝑖



𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 = −

𝑦− ො𝑦

ො𝑦 1− ො𝑦



𝜕 ො𝑦

𝜕𝑧
= ො𝑦 1 − ො𝑦



𝜕𝑧

𝜕𝑤𝑖
= 𝑥𝑖



𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 = −

𝑦− ො𝑦

ො𝑦 1− ො𝑦
ො𝑦 1 − ො𝑦 𝑥𝑖 = − 𝑦 − ො𝑦 𝑥𝑖

24

x1

x2

x3

1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦

To simplify,

consider only one

observation, 𝑦𝑗

Learning

 We have considered the last layer update

 𝑢𝑖,𝑗 = 𝑢𝑖,𝑗 − 𝜂
𝜕

𝜕𝑢𝑖,𝑗
𝐿 ෝ𝒚, 𝒚 =

𝑢𝑖,𝑗 − 𝜂
𝜕

𝜕𝑧𝑖
𝐿 ෝ𝒚, 𝒚 ×

𝜕

𝜕𝑢𝑖,𝑗
𝑧𝑖

Example network:

 𝒉 = 𝜎 𝑊𝒙 + 𝑏

 𝒛 = 𝑈𝒉

 𝒚 = softmax(𝒛)

25

1 1

W Ux
Soft

max

The delta term at

this node

𝛿𝑂𝑢𝑡,𝑖

Learning in multi-layer networks
26

 Consider two consecutive layers:

 Layer M, with 1 ≤ 𝑖 ≤ 𝑚 nodes, and a bias

node M0

 Layer N, with 1 ≤ 𝑗 ≤ 𝑛 nodes

 Let 𝑤𝑗,𝑖 be the weight at the edge going

from 𝑀𝑖 to 𝑁𝑗

M1

M2

M3

M0

N3

N1

N2

N4

Learning in multi-layer networks
27

 We assume we have
calculated the delta terms

𝛿𝑗
𝑁 at each node 𝑁𝑗

 If M is a hidden layer:
Calculate the error term at
the nodes combining

 A weighted sum of the error
terms at layer N

 The derivative of the
activation function

 𝛿𝑖
𝑀 = σ𝑗=1

𝑛 𝑤𝑗,𝑖𝛿𝑗
𝑁 𝑑

𝑑𝑧
𝜎(𝑧)

M1

M2

M3

M0

N3

N1

N2

N4

𝑤2,1

𝑤3,1

𝑤4,1

x1

x2

x3

1

Σ
z

𝑢1,0
𝑢1,1

𝑢1,2

𝑢1,3

𝑤1,1

y

Learning in multi-layer networks
28

 By repeating the process, we get delta

terms at all nodes in all the hidden layers.

 After we have calculated all the error

terms at all the layers, we can update the

weights between the layers as before:

𝑤𝑗,𝑖 = 𝑤𝑗,𝑖 − 𝑥𝑖𝛿𝑗
𝑁

 where 𝑥𝑖 is the value going out of node 𝑀𝑖

 This is a sketch of the Backpropagation

algorithm

M1

M2

M3

M0

N3

N1

N2

N4

𝑤2,1

𝑤3,1

𝑤4,1

𝑤1,1

Details on training

 First round

 Start with random weights.

 Train the network.

 Test on dev data

 Repeat:

 You get a different result

 Why?

 The problem is not convex

 There exist local non-global
minima

29

https://www.fromthegenesis.com/gradient-descent-part-2/

 Solution:

 Run several rounds

 Repeat

 Report mean and st.dev.

Details on training

 There are many hyper-parameters that may be tuned

 Example: embeddings

 Context window size

 Dimensions

 "Drop-out"

 Drop-out

 A way of regularization

 Disregard some features during training

 Different features for each round of training

30

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

31

Dense vectors

 Shorter vectors.

 (length 50-1000)

 ``low-dimensional’’ space

 Dense (most elements are not 0)

 Intuitions:

 Similar words should have similar
vectors.

 Words that occur in similar contexts
should be similar.

 Generalize better than sparse
vectors.

 Input for deep learning

 Fewer weights (or other weights)

 Capture semantic similarities
better.

 Better for sequence modelling:

 Language models, etc.

32

How? Properties

Constructing embeddings: Idea
33

 Instead of counting, use a neural network to learn a LM

 Simplest form: a bigram model:

 For a given word 𝑤𝑖−1, try to predict the next word 𝑤𝑖

 i.e. try to estimate 𝑃 𝑤𝑖| 𝑤𝑖−1

 Use a simple feed-forward network for this task

Model
34

From J&M 3.ed. 2018 Ch. 16

Model
35

 Input and output word are
represented by sparse one-
hot vectors

 Dim d typically 50-300

 Idea for training:

 Consider all possible next
words for 𝑤′ for this word

 Use softmax to get a
probability distribution of all
next words

0
0

0

0
1
0

0

one-hot

encoding of

apricot

apricot
aprés

april
z preserves

preservative

press

𝑤1,1243

𝑤2,1243

𝑤3,1243

𝑐30999,1

𝑐30999,2

𝑐30999,3

0
0

0

0
1
0

0
one-hot

enco-

ding of

pre-

serves

s

o

f

t

m

a

x

𝒛 ෝ𝒚 𝒚

Embeddings from this

 Idea: Use the weight matrix

𝑊|𝑉|×𝑑 as embeddings, i.e.:

 Represent word 𝑗 by

(𝑤𝑗,1, 𝑤𝑗,2, … , 𝑤𝑗,𝑑) = the

weights that sends this word to
the hidden layer

 Why? since similar words will
predict more or less the same
words, they will get similar
embeddings

36

Model: zoom in
37

 apricot is word 1243

 word-embedding:

𝒘 = (𝑤1,1243, …𝑤𝑑,1243)

 preserves is word 30999

 context-embedding:

 𝒄 = (𝑐30999,1, … 𝑐30999,𝑑)

 𝑧 = 𝒘 ∙ 𝒄 =
σ𝑖=1
𝑑 𝑤𝑖,1243𝑐𝑖,30999

0
0

0

0
1
0

0

one-hot

encoding of

apricot

apricot
aprés

april
z preserves

preservative

press

𝑤1,1243

𝑤2,1243

𝑤3,1243

𝑐30999,1

𝑐30999,2

𝑐30999,3

0
0

0

0
1
0

0

one-hot

encoding of

preserves

Observations

 Since two words that are similar

are predicted by the same

words, there will also be

similarities between similar

words in 𝐶𝑑×|𝑉|

 This will help the training of

𝑊|𝑉|×𝑑

 We could alternatively use

𝐶𝑑×|𝑉| as the embeddings

38

CBOW

 We could generalize to
predicting from a number of
preceding words, e.g. 3, as
indicated in the figure.

 Observe this is order-
independent

 Continuous bag of words model
(CBOW):

 Predict 𝑤𝑡 from a window

(𝑤𝑡−𝑘 , … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘)

39

https://commons.wikimedia.org/wiki/File:Cbow.png

Skip-gram

 From 𝑤𝑡 predict all the words in
a window

(𝑤𝑡−𝑘, … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘)

 Assume independence of the
context words, i.e. from 𝑤𝑡
predict each of the words w in

{𝑤𝑡−𝑘, … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘}

 The size of the window will
influence which embeddings
you get

40

https://commons.wikimedia.org/wiki/File:Skip-gram.png

Skip-gram model
41

From J&M 3.ed. 2018 Ch. 16

Softmax is expensive
42

 The use of softmax is
expensive

 For one observation, apricot
preserves, one must change

all the 𝑐𝑖,𝑗-s to

 increase the probability for
preserves

 decrease the probabilities
for predicting other words

 𝑑 × |𝐶|, say 300 × 50,000

0
0

0

0
1
0

0

one-hot

encoding of

apricot

apricot
aprés

april
z

𝑤1,1243

𝑤2,1243

𝑤3,1243

𝑐30999,1

𝑐30999,2

𝑐30999,3

0
0

0

0
1
0

0
one-hot

enco-

ding of

pre-

serves

s

o

f

t

m

a

x

𝒛 ෝ𝒚 𝒚

preserves
preservative

press

Prediction as classification
43

 To predict preserves

from apricot,

corresponds to a

classification task

where

 class(apricot,

preserves)=+

 class(apricot, w)= –

for all other w
0 0 0…0 1 0…0 0 0 0 0 0 0 0 0 0 0…0 1 0… 0 0 0 0

apricot preserves

𝒘 𝒄

𝒛 = 𝒘 ∙ 𝒄

𝝈(𝒘 ∙ 𝒄)

𝑾 𝑪

Skip-gram with negative sampling
44

1. Treat the target word and a neighboring context word as a positive

example.

2. Randomly sample other words in the lexicon to get negative samples

 sample accordance to frequency

 adjusted for high-frequent and low-frequent words:

3. Use logistic regression to train a classifier to distinguish between a

positive example and the corresponding negative examples

4. Use the weights as the embeddings

Skip-Gram Training Data

 Training sentence:

 ... lemon, a tablespoon of apricot preserves or a ...

 c1 c2 t c3 c4

 Training data: input/output pairs centering on apricot

 Asssume a +/- 2 word window

11/7/2022

45

Skip-Gram Training Data

 ... lemon, a tablespoon of apricot preserves or a ...

 c1 c2 t c3 c4

 For each positive example, we'll create k negative examples.

 Using noise words: Any random word that isn't 𝑡

46

Learning
47

 Like Logistic Regression

 Start with randomly initialized weights for W and C

 For the training items (w, c), calculate ො𝑦 = 𝜎 𝒄 ∙ 𝒘 =
1

1+𝑒−𝒄∙𝒘

 Compare to the gold labels using cross-entropy loss

 The gold label is 1 if c is a context word and 0 if c is a negative example

 This is like Logistic regression

 Use the derivative of the loss with respect to c:
𝜕

𝜕𝒄
𝐿𝑐𝑒 to update c

 and the derivative of the loss with respect to w to update w

Update equations in SGD
48

 We skip the derivation, but these are the resulting update equations

 ො𝑦 = 𝜎 𝒄 ∙ 𝒘

 Similar to the logistic regression, where we update weights

 Her we update both the 𝑤-s and the 𝑐-s.

Result
49

 We learn two separate embedding matrices W and C

 We can use W as representations for the words

 (or combine with C in some ways)

 What have we learned:

 If two words w1 and w2 occur in similar contexts

 = with the same (or similar) context words, e.g. c,

 then both w1 and w2 should have a large cosine with c,

 hence get similar vectors.

Use of embeddings

 Embeddings are used as

representations for words as

input in all kinds of NLP tasks

using deep learning:

 Text classification

 Language models

 Named-entity recognition

 Machine translation

 etc.

 These embeddings are

nowadays called static

 Since 2018, Transformers:

 The embedding of each word

depends on the context

 Superior results in all tasks

 IN5550, Spring

50

Resources

 gensim

 Easy-to-use tool for training own models

 Word2wec

 https://code.google.com/archive/p/word2vec/

 https://fasttext.cc/

 https://nlp.stanford.edu/projects/glove/

 http://vectors.nlpl.eu/repository/

 Pretrained embeddings, also for Norwegian

51

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://vectors.nlpl.eu/repository/

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

52

Classification
53

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language Models

54

n-gram language models – remember?
55

 Goal: Ascribe probabilities to word sequences

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘, 𝑤𝑖+1−𝑘, … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 The probabilities are estimated by counting occurrences over a corpus.

Challenges
56

 There might be words that is never observed during training.

 N-grams which are seen no – or only a few – times during training

 Add-k smoothing is not appropriate

 Possibilities:

 Back-off

 Interpolation

 Kneser-Ney (best)

 Short-comings of all n-gram models

 The smoothing is not optimal

 The context are restricted to a limited number of preceding words

Neural Language Models
57

 Neural language model (k-

gram)

 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 Use embeddings for

representing the 𝑤𝑖-s

 Use neural network for

estimating 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

Neural Language Models
58

At each timestep 𝑡:

 Each of the words 𝑤𝑗 , 𝑗 = 𝑡 − 1, 𝑡 − 2, 𝑡 − 3

 is represented by a one-hot-vector 𝒙𝑗
 which is multiplied with the same matrix 𝐸 to a
d-dimensional embedding 𝒆𝒋 = 𝐸𝒙𝑗

 They are concatenated to get the embedding
layer e.

 e is multiplied by a weight matrix W and

 An activation function is applied element-wise
to produce the hidden layer h, which is

 multiplied by another weight matrix U.

 Finally, a softmax output layer predicts at
each node 𝑖 the probability that the next
word 𝑤𝑡 will be vocabulary word 𝑉𝑖 .

Training the language models
59

Training the language models, alt. 1

 We may use pretrained embeddings

 Trained with some method, SkipGram, CBOW, Glove, …

 On some specific corpus

 Can be downloaded from the web

 This means that the matrix 𝐸 is fixed and that we update 𝑊 and 𝑈
during training

60

Training the embeddings

 Alternatively:

 Start with one-hot representations of words and train the embeddings as the

first layer in our models

 (=the original model for training the embeddings)

 Start with pre-trained embeddings, but update them during training

 Use two set of embeddings for each word – one pretrained and one which

is trained during the task.

 If the goal is a task different from language modeling, this may result

in embeddings better suited for the specific tasks.

61

Computational graph
62

𝒙2

E
W 𝒃[1] 𝒃[2]

𝒖 = 𝑐𝑜𝑛𝑐𝑎𝑡(

𝒖1
[1]

, 𝒖1
[1]

, 𝒖1
[1]

)

𝑎 =
𝑅𝑈(𝒛)

𝒗 =
𝑊𝒖

𝒛 =
𝒗 + 𝒃[1]

ෝ𝒚 = 𝑠𝑜𝑓𝑡−
𝑚𝑎𝑥(𝒛𝟐)

𝒙𝟑

𝒙𝟏

U

𝒘
= 𝑈𝒂

𝒖1
[1]

=𝐸𝒙𝟏

𝒖2
[1]

=𝐸𝒙𝟐

𝒖3
[1]

=𝐸𝒙𝟑

𝒛𝟐 =
𝒘+ 𝒃[2]

This picture is if we train the

embeddings E

With pretrained embeddings,

we look up 𝒖1
[1]

in a table for

each word

