IN4080 - 2022 FALL
 NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

Today (and next week)

\square Feedforward Neural Networks
\square Computational graphs
\square Training FNN
\square Word embeddings and Word2vec
\square Applying embeddings
\square Neural Language models

Non-linearity

w2=bad	neg	pos
w2=good	pos	neg
	w1 $=$ not	w1 = not

\square Logistic regression is a linear classifier
\square What to do with data that are far from linearly separable?

Alt. 1: Feature engineering

$\square \ln$ addition to x_{1} and x_{2} add e.g., the features
$\square x_{1}{ }^{2}, x_{2}{ }^{2}, x_{1} x_{2}, x_{1}{ }^{3}, \ldots$

w2=bad	neg	pos
w2=good	pos	neg
	w1F not	w1 = not

$\square \ln$ addition to

- $f_{1}=w_{1}$ and $f_{2}=w_{2}$
\square Add $f_{3}=w_{1} w_{2}$

Artificial neural networks (= alt. 2)

\square Inspired by the brain
\square neurons, synapses
\square Does not pretend to be a model of the brain
\square The simplest model is the

- Feed forward network, also called
- Multi-Iayer Perceptron

Input Layer

Feed forward network

\square An input layer
\square An output layer: the predictions
\square One or more hidden layers
\square Connections from one layer to the next (from left to right)
\square A weight at each connection

Input Layer

The output layer - as with no hidden layers

Alternatives
\square Regression:
\square One node

- No activation function
\square Binary classifier:
\square One node
\square Logistic activation function
\square Multinomial classifier
\square Several nodes
- Softmax
$\square+$ more alternatives
\square Choice of loss function depends on task

What is new

One or more hidden layers
What happens in the hidden layers

The hidden nodes

\square Each hidden node is like a small logistic regression:
\square First sum of weighted inputs :
$\mathrm{z}=\sum_{i=0}^{m} w_{i} x_{i}=\boldsymbol{w} \cdot \boldsymbol{x}$
\square Then the result is run through an activation function, e.g. σ
$y=\sigma(z)=\frac{1}{1+e^{-\vec{w} \cdot \vec{x}}}$

It is the non-linearity of the activation function which makes it possible for MLP to predict non-linear decision boundaries

Forward

\square Applying the network:
\square Start with the input vector
\square Run it step-by-step through the network

Input Layer

Input Layer

Example network:
$\square \boldsymbol{h}=\sigma(W \boldsymbol{x}+\boldsymbol{b} \mathbf{1})$
$\square \mathbf{z 2}=U h+b 2$
$\boldsymbol{y}=\operatorname{softmax}(\mathbf{z 2})$

Alternative activation functions

\square There are alternative activation functions:
$\square \tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
$\square \operatorname{ReLU}(x)=\max (x, 0)$
$\square \operatorname{ReLU}$ is the preferred method in hidden layers in deep networks

Demo

\square https://playground.tensorflow.o rg

Today (and next week)

\square Feedforward Neural Networks
\square Computational graphs
\square Training FNN
\square Word embeddings and Word2vec
\square Applying embeddings
\square Neural Language models

Computational graphs

From J\&M,
3.ed., 2021

Figure 7.14 Computation graph for the function $L(a, b, c)=c(a+2 b)$, with values for input nodes $a=3, b=1, c=-2$, showing the forward pass computation of L.
\square A convenient tool for describing composite functions
\square And follow the partial derivatives backwards
\square There are tools that let us specify the computations at an high-level as graphs
\square In particular useful for "hiding" vectors, matrices, tensors
\square After you have specified the graph, the tool computes the derivatives

From J\&M,
3.ed., 2021

Figure 7.16 Computation graph for the function $L(a, b, c)=c(a+2 b)$, showing the backward pass computation of $\frac{\partial L}{\partial a}, \frac{\partial L}{\partial b}$, and $\frac{\partial L}{\partial c}$.

Figure 7.17 Sample computation graph for a simple 2-layer neural net (= 1 hidden layer) with two input dimensions and 2 hidden dimensions.

How would you draw this if x has $\operatorname{dim} 100,000$ and there are 3 million parameters (weights)?

Using vector notation

Figure 7.17 Sample computation graph for a simple 2-layer neural net (= 1 hidden layer) with two input dimensions and 2 hidden dimensions.

Today (and next week)

\square Feedforward Neural Networks
\square Computational graphs
\square Training FNN
\square Word embeddings and Word2vec
\square Applying embeddings
\square Neural Language models

Learning

\square Introduce a loss function: $L(\widehat{\boldsymbol{y}}, \boldsymbol{y})$
\square Update each weight in each layer, e.g., $w_{i, j}$ according to its contribution to the loss
$\square w_{i, j} \leftarrow w_{i, j}-\eta \frac{\partial}{\partial w_{i, j}} L(\widehat{\boldsymbol{y}}, \boldsymbol{y})$
\square Calculate the partial derivatives using the chain rule
\square "Follow the network backwards collecting partial derivatives along the path"

Input Layer

Example network:
$\square \boldsymbol{h}=\sigma(W \boldsymbol{x}+b)$
$\square \boldsymbol{z}=U \boldsymbol{h}$
$\square \boldsymbol{y}=\operatorname{softmax}(\mathbf{z})$

Log.Reg. Update one observation (remember?)

$$
\begin{aligned}
& \square \hat{y}=f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\sigma\left(\sum_{i=0}^{n} w_{i} x_{i}\right)=\sigma(\vec{w} \cdot \vec{x})=\frac{1}{1+e^{-\sum_{i=0}^{n} w_{i} x_{i}}} \\
& \square w_{i} \leftarrow\left(w_{i}-\eta \frac{\partial}{\partial w_{i}} L_{C E}(\hat{y}, y)\right) \\
& \square w_{i} \leftarrow\left(w_{i}-\eta(\hat{y}-y) x_{i}\right)
\end{aligned}
$$

Vektor form:
$\square \boldsymbol{w} \leftarrow(\boldsymbol{w}-\eta(\hat{y}-y) \boldsymbol{x})$
$\square \eta>0$ is a learning rate

Warning

\square You don't have to understand the next slide
\square I have included it in case your are interested in how we find the gradient and the update
\square It illustrates the use of the chain rule for (partial) derivatives.

Log.reg. the gradient

$\square \mathrm{z}=\sum_{i=0}^{m} w_{i} x_{i}=\boldsymbol{w} \cdot \boldsymbol{x}$
$\square \hat{y}=\sigma(z)=\frac{1}{1+e^{-z}}$

- $L_{C E}(\vec{w})=-\log \prod_{i=1}^{m} P\left(y^{(i)} \mid \vec{x}^{(i)}\right)=$
$\square=-\sum_{j=1}^{n} \log \left[\hat{y}_{j}^{y_{j}}\left(1-\hat{y}_{j}\right)^{\left(1-y_{j}\right)}\right]$
$\square \frac{\partial}{\partial w_{i}} L_{C E}=\frac{\partial}{\partial \hat{y}} L_{C E} \times \frac{\partial \hat{y}}{\partial z} \times \frac{\partial z}{\partial w_{i}}$
$\square \frac{\partial}{\partial \hat{y}} L_{C E}=-\frac{(y-\hat{y})}{\hat{y}(1-\hat{y})}$
$\square \frac{\partial \hat{y}}{\partial z}=\hat{y}(1-\hat{y})$

To simplify,
$\square \frac{\partial z}{\partial w_{i}}=x_{i}$
$\frac{\partial}{\partial w_{i}} L_{C E}=-\frac{(y-\hat{y})}{\hat{y}(1-\hat{y})} \hat{y}(1-\hat{y}) x_{i}=-(y-\hat{y}) x_{i}$ input nodes

Learning

\square We have considered the last layer update
$\square u_{i, j}=u_{i, j}-\eta \frac{\partial}{\partial u_{i, j}} L(\widehat{\boldsymbol{y}}, \boldsymbol{y})=$

The delta term at this node $\delta_{\text {Out }, i}$

Example network:

$\square \boldsymbol{h}=\sigma(W \boldsymbol{x}+b)$
$\boldsymbol{z}=U \boldsymbol{h}$
$\square \boldsymbol{y}=\operatorname{softmax}(\mathbf{z})$

Learning in multi-layer networks

\square Consider two consecutive layers:
\square Layer M, with $1 \leq i \leq m$ nodes, and a bias node MO
\square Layer N, with $1 \leq j \leq n$ nodes
\square Let $w_{j, i}$ be the weight at the edge going from M_{i} to N_{j}

Learning in multi-layer networks

\square We assume we have calculated the delta terms δ_{j}^{N} at each node N_{j}
\square If M is a hidden layer: Calculate the error term at the nodes combining

- A weighted sum of the error terms at layer N
\square The derivative of the activation function

Learning in multi-layer networks

\square By repeating the process, we get delta terms at all nodes in all the hidden layers.
\square After we have calculated all the error terms at all the layers, we can update the weights between the layers as before:
$\square w_{j, i}=w_{j, i}-x_{i} \delta_{j}^{N}$

Details on training

\square First round
\square Start with random weights.
\square Train the network.
\square Test on dev data
\square Repeat:

- You get a different result
\square Why?
\square The problem is not convex
\square There exist local non-global minima

\square Solution:
\square Run several rounds
\square Repeat
\square Report mean and st.dev.

Details on training

\square There are many hyper-parameters that may be tuned
\square Example: embeddings
\square Context window size

- Dimensions
- "Drop-out"
\square Drop-out
\square A way of regularization
\square Disregard some features during training
\square Different features for each round of training

Today (and next week)

\square Feedforward Neural Networks
\square Computational graphs
\square Training FNN
\square Word embeddings and Word2vec
\square Applying embeddings
\square Neural Language models

Dense vectors

How?

\square Shorter vectors.
\square (length 50-1000)

- "low-dimensional" space
\square Dense (most elements are not 0)
\square Intuitions:
\square Similar words should have similar vectors.
\square Words that occur in similar contexts should be similar.

Properties

\square Generalize better than sparse vectors.
\square Input for deep learning

- Fewer weights (or other weights)
\square Capture semantic similarities better.
\square Better for sequence modelling:
\square Language models, etc.

Constructing embeddings: Idea

\square Instead of counting, use a neural network to learn a LM
\square Simplest form: a bigram model:
\square For a given word w_{i-1}, try to predict the next word w_{i}
\square i.e. try to estimate $P\left(w_{i} \mid w_{i-1}\right)$
\square Use a simple feed-forward network for this task

Model

Figure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov et al. 2013a).

Model

\square Input and output word are represented by sparse onehot vectors
\square Dim d typically 50-300
\square Idea for training:

- Consider all possible next words for w^{\prime} for this word
\square Use softmax to get a probability distribution of all next words

Embeddings from this

\square Idea: Use the weight matrix $W_{|V| \times d}$ as embeddings, i.e.:
\square Represent word j by $\left(w_{j, 1}, w_{j, 2}, \ldots, w_{j, d}\right)=$ the weights that sends this word to the hidden layer
\square Why? since similar words will predict more or less the same words, they will get similar embeddings

Figure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov et al. 2013a).

Model: zoom in

apricot is word 1243\square word-embedding:
$\square \boldsymbol{w}=\left(w_{1,1243}, \ldots w_{d, 1243}\right)$
\square preserves is word 30999
\square context-embedding:
$\square \boldsymbol{C}=\left(c_{30999,1}, \ldots c_{30999, d}\right)$$z=\boldsymbol{w} \cdot \boldsymbol{c}=$
$\sum_{i=1}^{d} w_{i, 1243} c_{i, 30999}$
one-hot
encoding of apricoł

Observations

\square Since two words that are similar are predicted by the same words, there will also be similarities between similar words in $C_{d \times|V|}$
\square This will help the training of $W_{|V| \times d}$
\square We could alternatively use $C_{d \times|V|}$ as the embeddings

et al. 2013a).
\square We could generalize to predicting from a number of preceding words, e.g. 3, as indicated in the figure.
\square Observe this is orderindependent
\square Continuous bag of words model (CBOW):
\square Predict w_{t} from a window

$$
\left(w_{t-k}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+k}\right)
$$

Skip-gram

\square From w_{t} predict all the words in a window

$$
\left(w_{t-k}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+k}\right)
$$

\square Assume independence of the context words, i.e. from w_{t} predict each of the words w in $\left\{w_{t-k}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+k}\right\}$
\square The size of the window will influence which embeddings you get

Skip-gram model

Figure 16.5 The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov et al. 2013a).

Softmax is expensive

\square The use of softmax is expensive
\square For one observation, apricot preserves, one must change all the $c_{i, j}-s$ to
\square increase the probability for preserves
\square decrease the probabilities for predicting other words
$\square d \times|C|$, say $300 \times 50,000$

Prediction as classification

\square To predict preserves from apricot, corresponds to a classification task where
\square class(apricot, preserves)=+
\square class(apricot, w)= for all other w

Skip-gram with negative sampling

1. Treat the target word and a neighboring context word as a positive example.
2. Randomly sample other words in the lexicon to get negative samples

- sample accordance to frequency
- adjusted for high-frequent and low-frequent words: $\quad P_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime}} \operatorname{count}\left(w^{\prime}\right)^{\alpha}}$

3. Use logistic regression to train a classifier to distinguish between a positive example and the corresponding negative examples
4. Use the weights as the embeddings

Skip-Gram Training Data

\square Training sentence:

- ... lemon,
a tablespoon of apricot preserves
or
$\begin{array}{lllll}c 1 & c 2 & \text { t } & \text { c3 }\end{array}$
\square Training data: input/output pairs centering on apricot
\square Asssume a $+/-2$ word window

Skip-Gram Training Data

- ... lemon, a tablespoon of apricot preserves or a ...
t
c3
c4
\square For each positive example, we'll create k negative examples.
\square Using noise words: Any random word that isn't t

positive examples + t$\quad \mathrm{c}$
apricot
apricot of
apricot
apreserses
apricot or

negative examples -			
t	c	t	c
apricot	aardvark	apricot	twelve
apricot	puddle	apricot	hello
apricot	where	apricot	dear
apricot	coaxial	apricot	forever

Learning

\square Like Logistic Regression
\square Start with randomly initialized weights for W and C
\square For the training items (w, c), calculate $\hat{y}=\sigma(\boldsymbol{c} \cdot \boldsymbol{w})=\frac{1}{1+e^{-c \cdot w}}$
\square Compare to the gold labels using cross-entropy loss
\square The gold label is 1 if c is a context word and 0 if c is a negative example
\square This is like Logistic regression
\square Use the derivative of the loss with respect to $\mathbf{c}: \frac{\partial}{\partial c} L c e$ to update \mathbf{c}
\square and the derivative of the loss with respect to \mathbf{w} to update \mathbf{w}

Update equations in SGD

\square We skip the derivation, but these are the resulting update equations

$$
\begin{aligned}
\mathbf{c}_{\text {pos }}^{t+1} & =\mathbf{c}_{\text {pos }}^{t}-\eta\left[\sigma\left(\mathbf{c}_{\text {pos }}^{t} \cdot \mathbf{w}^{t}\right)-1\right] \mathbf{w}^{t} \\
\mathbf{c}_{\text {neg }}^{t+1} & =\mathbf{c}_{\text {neg }}^{t}-\eta\left[\sigma\left(\mathbf{c}_{\text {neg }}^{t} \cdot \mathbf{w}^{t}\right)\right] \mathbf{w}^{t} \\
\mathbf{w}^{t+1} & =\mathbf{w}^{t}-\eta\left[\left[\sigma\left(\mathbf{c}_{\text {pos }} \cdot \mathbf{w}^{t}\right)-1\right] \mathbf{c}_{p o s}+\sum_{i=1}^{k}\left[\sigma\left(\mathbf{c}_{n e g_{i}} \cdot \mathbf{w}^{t}\right)\right] \mathbf{c}_{n e g_{i}}\right]
\end{aligned}
$$

$\square \hat{y}=\sigma(\boldsymbol{c} \cdot \boldsymbol{w})$
\square Similar to the logistic regression, where we update weights
\square Her we update both the w-s and the c-s.

Result

\square We learn two separate embedding matrices W and C
\square We can use W as representations for the words
\square (or combine with C in some ways)
\square What have we learned:

- If two words w1 and w2 occur in similar contexts
- = with the same (or similar) context words, e.g. c,
\square then both $w 1$ and $w 2$ should have a large cosine with c,
- hence get similar vectors.

Use of embeddings

\square Embeddings are used as representations for words as input in all kinds of NLP tasks using deep learning:
\square Text classification
\square Language models
\square Named-entity recognition
\square Machine translation
\square etc.
\square These embeddings are nowadays called static
\square Since 2018 , Transformers:
\square The embedding of each word depends on the context
\square Superior results in all tasks
\square IN5550, Spring

Resources

\square gensim
\square Easy-to-use tool for training own models
\square Word2wec

- https://code.google.com/archive/p/word2vec/
\square https://fasttext.cc/
\square https://nlp.stanford.edu/projects/glove/
\square http://vectors.nlpl.eu/repository/
\square Pretrained embeddings, also for Norwegian

Today (and next week)

\square Feedforward Neural Networks
\square Computational graphs
\square Training FNN
\square Word embeddings and Word2vec
\square Applying embeddings
\square Neural Language models

Classification

Figure 7.11 Feedforward sentiment analysis using a pooled embedding of the input words.

Today (and next week)

\square Feedforward Neural Networks
\square Computational graphs
\square Training FNN
\square Word embeddings and Word2vec
\square Applying embeddings
\square Neural Language Models

n-gram language models - remember?

\square Goal: Ascribe probabilities to word sequences
$\square P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \approx$
$\square \prod_{i}^{n} P\left(w_{i} \mid w_{i-k}, w_{i+1-k}, \ldots, w_{i-1}\right)=\prod_{i}^{n} P\left(w_{i} \mid w_{i-k}^{i-1}\right)$
\square The probabilities are estimated by counting occurrences over a corpus.

Challenges

\square There might be words that is never observed during training.
$\square \mathrm{N}$-grams which are seen no - or only a few - times during training
\square Add-k smoothing is not appropriate
\square Possibilities:
\square Back-off
\square Interpolation
\square Kneser-Ney (best)
\square Short-comings of all n-gram models
\square The smoothing is not optimal
\square The context are restricted to a limited number of preceding words

Neural Language Models

\square Neural language model (k gram)
$\square P\left(w_{i} \mid w_{i-k}^{i-1}\right)$
\square Use embeddings for representing the $w_{i}-s$
\square Use neural network for estimating $P\left(w_{i} \mid w_{i-k}^{i-1}\right)$

Neural Language Models

At each timestep t :
\square Each of the words $w_{j}, j=t-1, t-2, t-3$
\square is represented by a one-hot-vector \boldsymbol{x}_{j}

- which is multiplied with the same matrix E to a d-dimensional embedding $\boldsymbol{e}_{\boldsymbol{j}}=E \boldsymbol{x}_{\boldsymbol{j}}$
\square They are concatenated to get the embedding layer \mathbf{e}.
$\square \mathbf{e}$ is multiplied by a weight matrix \mathbf{W} and
\square An activation function is applied element-wise to produce the hidden layer \mathbf{h}, which is
\square multiplied by another weight matrix \mathbf{U}.
\square Finally, a softmax output layer predicts at each node i the probability that the next word w_{t} will be vocabulary word V_{i}.

Training the language models

Figure 7.18 Learning all the way back to embeddings. Again, the embedding matrix E is shared among the 3 context words.

Training the language models, alt. 1

\square We may use pretrained embeddings
\square Trained with some method, SkipGram, CBOW, Glove, ...
\square On some specific corpus

- Can be downloaded from the web
\square This means that the matrix E is fixed and that we update W and U during training

Training the embeddings

\square Alternatively:
\square Start with one-hot representations of words and train the embeddings as the first layer in our models

- (=the original model for training the embeddings)
\square Start with pre-trained embeddings, but update them during training
\square Use two set of embeddings for each word - one pretrained and one which is trained during the task.
\square If the goal is a task different from language modeling, this may result in embeddings better suited for the specific tasks.

Computational graph

> This picture is if we train the embeddings E
> With pretrained embeddings, we look up $u_{1}^{[1]}$ in a table for each word

