
IN4080 – 2022 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 12, part 2, 10 Nov.

2

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

3

Non-linearity

 Logistic regression is a linear classifier

 What to do with data that are far from linearly separable?

4 w2=bad neg pos

w2=good pos neg

w1≠ not w1 = not

Alt. 1: Feature engineering

 In addition to 𝑥1 and 𝑥2 add

e.g., the features

 𝑥1
2, 𝑥2

2, 𝑥1𝑥2, 𝑥1
3, …

 In addition to

 𝑓1 = 𝑤1 and 𝑓2 = 𝑤2

 Add 𝑓3 = 𝑤1𝑤2

5

w2=bad neg pos

w2=good pos neg

w1≠ not w1 = not

Artificial neural networks (= alt. 2)

 Inspired by the brain

 neurons, synapses

 Does not pretend to be a

model of the brain

 The simplest model is the

 Feed forward network, also

called

 Multi-layer Perceptron

6

11

Feed forward network

 An input layer

 An output layer: the predictions

 One or more hidden layers

 Connections from one layer to

the next (from left to right)

 A weight at each connection

7

11

The output layer – as with no hidden layers

Alternatives

 Regression:

 One node

 No activation function

 Binary classifier:

 One node

 Logistic activation function

 Multinomial classifier

 Several nodes

 Softmax

 + more alternatives

 Choice of loss function depends on task

8

1 1

What is new

One or more hidden layers

What happens in the hidden layers

9

1 1

The hidden nodes

 Each hidden node is like a
small logistic regression:

 First sum of weighted inputs :

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 Then the result is run through an
activation function, e.g. σ

 𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥

10

x1

x2

x3

1

Σ

w1

w2

w3

z y

It is the non-linearity of the activation

function which makes it possible for MLP to

predict non-linear decision boundaries

w0 (=b in J&M)

Forward

 Applying the network:

 Start with the input vector

 Run it step-by-step through the

network

11

1 1

Forward

 Each layer can be considered a vector

 The connections between the layers:
a matrix

 Running it through the connections:
matrix multiplication

Example network:

 𝒉 = 𝜎 𝑊𝒙 + 𝒃𝟏

 𝒛𝟐 = 𝑈𝒉 + 𝒃𝟐

 𝒚 = softmax(𝒛𝟐)

12

1

Beware: Jurafsky and Martin use 𝑤𝑖,𝑗 where Marsland, IN3050, uses 𝑤𝑗,𝑖
Marsland, and Goldberg (IN5550): 𝒉 = 𝜎 𝒙𝑊 + 𝒃 , where 𝒙 is a row vector

1 1

W Ux
Soft

max

Alternative activation functions

 There are alternative activation functions:

 tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

 ReLU is the preferred method in hidden layers
in deep networks

13

Demo

 https://playground.tensorflow.o

rg

14

https://playground.tensorflow.org/

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

15

Computational graphs

 A convenient tool for describing composite functions

 And follow the partial derivatives backwards

 There are tools that let us specify the computations at an high-level as graphs

 In particular useful for "hiding" vectors, matrices, tensors

 After you have specified the graph, the tool computes the derivatives
16

From J&M,

3.ed., 2021

17

From J&M,

3.ed., 2021

18

How would you draw this if x has dim 100,000 and there are

3 million parameters (weights)?

From J&M,

3.ed., 2021

Using vector notation
19

𝒙

𝑊[1] 𝑊[2]𝒃[1] 𝒃[2]

𝒖[1] =
𝑊[1]𝒙

𝒛[1] =
𝒖[1]+𝒃[1]

𝒙[2] =

𝑅𝑒𝑙𝑈(𝒛 1)
𝒖[2] =
𝑊[2]𝒙[2]

𝒛[2] =
𝒖[2]+𝒃[2]

𝒂[2] =

σ(𝒛 2)
𝐿(𝒂 2 , 𝑦)

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

20

Learning

As we have seen for logistic regression

 Introduce a loss function: 𝐿 ෝ𝒚 , 𝒚

 Update each weight in each layer, e.g., 𝑤𝑖,𝑗

according to its contribution to the loss

 𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 − 𝜂
𝜕

𝜕𝑤𝑖,𝑗
𝐿 ෝ𝒚 , 𝒚

 Calculate the partial derivatives using the
chain rule

 "Follow the network backwards collecting
partial derivatives along the path"

Example network:

 𝒉 = 𝜎 𝑊𝒙 + 𝑏

 𝒛 = 𝑈𝒉

 𝒚 = softmax(𝒛)

21

1 1

W Ux
Soft

max

Log.Reg. Update one observation (remember?)

 ො𝑦 = 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 = 𝜎(σ𝑖=0
𝑛 𝑤𝑖𝑥𝑖) = 𝜎 𝑤 ∙ Ԧ𝑥 =

1

1+𝑒
− σ𝑖=0

𝑛 𝑤𝑖𝑥𝑖

 𝑤𝑖 ← (𝑤𝑖 − 𝜂
𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 ො𝑦, 𝑦)

 𝑤𝑖 ← (𝑤𝑖 − 𝜂 ො𝑦 − 𝑦 𝑥𝑖)

Vektor form:

 𝒘 ← (𝒘 − 𝜂 ො𝑦 − 𝑦 𝒙)

 𝜂 > 0 is a learning rate

22

Warning

 You don't have to understand

the next slide

 I have included it in case your

are interested in how we find

the gradient and the update

 It illustrates the use of the chain

rule for (partial) derivatives.

23

Log.reg. the gradient

 z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

 ො𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑧

 𝐿𝐶𝐸 𝑤 = − logς𝑖=1
𝑚 𝑃(𝑦 𝑖 | 𝑥(𝑖)) =

 = −σ𝑗=1
𝑛 log ො𝑦𝑗

𝑦𝑗 1 − ො𝑦𝑗
1−𝑦𝑗

𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 =

𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 ×

𝜕 ො𝑦

𝜕𝑧
×

𝜕𝑧

𝜕𝑤𝑖

𝜕

𝜕 ො𝑦
𝐿𝐶𝐸 = −

𝑦− ො𝑦

ො𝑦 1− ො𝑦

𝜕 ො𝑦

𝜕𝑧
= ො𝑦 1 − ො𝑦

𝜕𝑧

𝜕𝑤𝑖
= 𝑥𝑖

𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 = −

𝑦− ො𝑦

ො𝑦 1− ො𝑦
ො𝑦 1 − ො𝑦 𝑥𝑖 = − 𝑦 − ො𝑦 𝑥𝑖

24

x1

x2

x3

1

Σ

w0
w1

w2

w3

𝑦

input nodes

output

node

target

value

bias

node

z ො𝑦

To simplify,

consider only one

observation, 𝑦𝑗

Learning

 We have considered the last layer update

 𝑢𝑖,𝑗 = 𝑢𝑖,𝑗 − 𝜂
𝜕

𝜕𝑢𝑖,𝑗
𝐿 ෝ𝒚, 𝒚 =

𝑢𝑖,𝑗 − 𝜂
𝜕

𝜕𝑧𝑖
𝐿 ෝ𝒚, 𝒚 ×

𝜕

𝜕𝑢𝑖,𝑗
𝑧𝑖

Example network:

 𝒉 = 𝜎 𝑊𝒙 + 𝑏

 𝒛 = 𝑈𝒉

 𝒚 = softmax(𝒛)

25

1 1

W Ux
Soft

max

The delta term at

this node

𝛿𝑂𝑢𝑡,𝑖

Learning in multi-layer networks
26

 Consider two consecutive layers:

 Layer M, with 1 ≤ 𝑖 ≤ 𝑚 nodes, and a bias

node M0

 Layer N, with 1 ≤ 𝑗 ≤ 𝑛 nodes

 Let 𝑤𝑗,𝑖 be the weight at the edge going

from 𝑀𝑖 to 𝑁𝑗

M1

M2

M3

M0

N3

N1

N2

N4

Learning in multi-layer networks
27

 We assume we have
calculated the delta terms

𝛿𝑗
𝑁 at each node 𝑁𝑗

 If M is a hidden layer:
Calculate the error term at
the nodes combining

 A weighted sum of the error
terms at layer N

 The derivative of the
activation function

 𝛿𝑖
𝑀 = σ𝑗=1

𝑛 𝑤𝑗,𝑖𝛿𝑗
𝑁 𝑑

𝑑𝑧
𝜎(𝑧)

M1

M2

M3

M0

N3

N1

N2

N4

𝑤2,1

𝑤3,1

𝑤4,1

x1

x2

x3

1

Σ
z

𝑢1,0
𝑢1,1

𝑢1,2

𝑢1,3

𝑤1,1

y

Learning in multi-layer networks
28

 By repeating the process, we get delta

terms at all nodes in all the hidden layers.

 After we have calculated all the error

terms at all the layers, we can update the

weights between the layers as before:

𝑤𝑗,𝑖 = 𝑤𝑗,𝑖 − 𝑥𝑖𝛿𝑗
𝑁

 where 𝑥𝑖 is the value going out of node 𝑀𝑖

 This is a sketch of the Backpropagation

algorithm

M1

M2

M3

M0

N3

N1

N2

N4

𝑤2,1

𝑤3,1

𝑤4,1

𝑤1,1

Details on training

 First round

 Start with random weights.

 Train the network.

 Test on dev data

 Repeat:

 You get a different result

 Why?

 The problem is not convex

 There exist local non-global
minima

29

https://www.fromthegenesis.com/gradient-descent-part-2/

 Solution:

 Run several rounds

 Repeat

 Report mean and st.dev.

Details on training

 There are many hyper-parameters that may be tuned

 Example: embeddings

 Context window size

 Dimensions

 "Drop-out"

 Drop-out

 A way of regularization

 Disregard some features during training

 Different features for each round of training

30

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

31

Dense vectors

 Shorter vectors.

 (length 50-1000)

 ``low-dimensional’’ space

 Dense (most elements are not 0)

 Intuitions:

 Similar words should have similar
vectors.

 Words that occur in similar contexts
should be similar.

 Generalize better than sparse
vectors.

 Input for deep learning

 Fewer weights (or other weights)

 Capture semantic similarities
better.

 Better for sequence modelling:

 Language models, etc.

32

How? Properties

Constructing embeddings: Idea
33

 Instead of counting, use a neural network to learn a LM

 Simplest form: a bigram model:

 For a given word 𝑤𝑖−1, try to predict the next word 𝑤𝑖

 i.e. try to estimate 𝑃 𝑤𝑖| 𝑤𝑖−1

 Use a simple feed-forward network for this task

Model
34

From J&M 3.ed. 2018 Ch. 16

Model
35

 Input and output word are
represented by sparse one-
hot vectors

 Dim d typically 50-300

 Idea for training:

 Consider all possible next
words for 𝑤′ for this word

 Use softmax to get a
probability distribution of all
next words

0
0

0

0
1
0

0

one-hot

encoding of

apricot

apricot
aprés

april
z preserves

preservative

press

𝑤1,1243

𝑤2,1243

𝑤3,1243

𝑐30999,1

𝑐30999,2

𝑐30999,3

0
0

0

0
1
0

0
one-hot

enco-

ding of

pre-

serves

s

o

f

t

m

a

x

𝒛 ෝ𝒚 𝒚

Embeddings from this

 Idea: Use the weight matrix

𝑊|𝑉|×𝑑 as embeddings, i.e.:

 Represent word 𝑗 by

(𝑤𝑗,1, 𝑤𝑗,2, … , 𝑤𝑗,𝑑) = the

weights that sends this word to
the hidden layer

 Why? since similar words will
predict more or less the same
words, they will get similar
embeddings

36

Model: zoom in
37

 apricot is word 1243

 word-embedding:

𝒘 = (𝑤1,1243, …𝑤𝑑,1243)

 preserves is word 30999

 context-embedding:

 𝒄 = (𝑐30999,1, … 𝑐30999,𝑑)

 𝑧 = 𝒘 ∙ 𝒄 =
σ𝑖=1
𝑑 𝑤𝑖,1243𝑐𝑖,30999

0
0

0

0
1
0

0

one-hot

encoding of

apricot

apricot
aprés

april
z preserves

preservative

press

𝑤1,1243

𝑤2,1243

𝑤3,1243

𝑐30999,1

𝑐30999,2

𝑐30999,3

0
0

0

0
1
0

0

one-hot

encoding of

preserves

Observations

 Since two words that are similar

are predicted by the same

words, there will also be

similarities between similar

words in 𝐶𝑑×|𝑉|

 This will help the training of

𝑊|𝑉|×𝑑

 We could alternatively use

𝐶𝑑×|𝑉| as the embeddings

38

CBOW

 We could generalize to
predicting from a number of
preceding words, e.g. 3, as
indicated in the figure.

 Observe this is order-
independent

 Continuous bag of words model
(CBOW):

 Predict 𝑤𝑡 from a window

(𝑤𝑡−𝑘 , … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘)

39

https://commons.wikimedia.org/wiki/File:Cbow.png

Skip-gram

 From 𝑤𝑡 predict all the words in
a window

(𝑤𝑡−𝑘, … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘)

 Assume independence of the
context words, i.e. from 𝑤𝑡
predict each of the words w in

{𝑤𝑡−𝑘, … , 𝑤𝑡−1,𝑤𝑡+1, … , 𝑤𝑡+𝑘}

 The size of the window will
influence which embeddings
you get

40

https://commons.wikimedia.org/wiki/File:Skip-gram.png

Skip-gram model
41

From J&M 3.ed. 2018 Ch. 16

Softmax is expensive
42

 The use of softmax is
expensive

 For one observation, apricot
preserves, one must change

all the 𝑐𝑖,𝑗-s to

 increase the probability for
preserves

 decrease the probabilities
for predicting other words

 𝑑 × |𝐶|, say 300 × 50,000

0
0

0

0
1
0

0

one-hot

encoding of

apricot

apricot
aprés

april
z

𝑤1,1243

𝑤2,1243

𝑤3,1243

𝑐30999,1

𝑐30999,2

𝑐30999,3

0
0

0

0
1
0

0
one-hot

enco-

ding of

pre-

serves

s

o

f

t

m

a

x

𝒛 ෝ𝒚 𝒚

preserves
preservative

press

Prediction as classification
43

 To predict preserves

from apricot,

corresponds to a

classification task

where

 class(apricot,

preserves)=+

 class(apricot, w)= –

for all other w
0 0 0…0 1 0…0 0 0 0 0 0 0 0 0 0 0…0 1 0… 0 0 0 0

apricot preserves

𝒘 𝒄

𝒛 = 𝒘 ∙ 𝒄

𝝈(𝒘 ∙ 𝒄)

𝑾 𝑪

Skip-gram with negative sampling
44

1. Treat the target word and a neighboring context word as a positive

example.

2. Randomly sample other words in the lexicon to get negative samples

 sample accordance to frequency

 adjusted for high-frequent and low-frequent words:

3. Use logistic regression to train a classifier to distinguish between a

positive example and the corresponding negative examples

4. Use the weights as the embeddings

Skip-Gram Training Data

 Training sentence:

 ... lemon, a tablespoon of apricot preserves or a ...

 c1 c2 t c3 c4

 Training data: input/output pairs centering on apricot

 Asssume a +/- 2 word window

11/7/2022

45

Skip-Gram Training Data

 ... lemon, a tablespoon of apricot preserves or a ...

 c1 c2 t c3 c4

 For each positive example, we'll create k negative examples.

 Using noise words: Any random word that isn't 𝑡

46

Learning
47

 Like Logistic Regression

 Start with randomly initialized weights for W and C

 For the training items (w, c), calculate ො𝑦 = 𝜎 𝒄 ∙ 𝒘 =
1

1+𝑒−𝒄∙𝒘

 Compare to the gold labels using cross-entropy loss

 The gold label is 1 if c is a context word and 0 if c is a negative example

 This is like Logistic regression

 Use the derivative of the loss with respect to c:
𝜕

𝜕𝒄
𝐿𝑐𝑒 to update c

 and the derivative of the loss with respect to w to update w

Update equations in SGD
48

 We skip the derivation, but these are the resulting update equations

 ො𝑦 = 𝜎 𝒄 ∙ 𝒘

 Similar to the logistic regression, where we update weights

 Her we update both the 𝑤-s and the 𝑐-s.

Result
49

 We learn two separate embedding matrices W and C

 We can use W as representations for the words

 (or combine with C in some ways)

 What have we learned:

 If two words w1 and w2 occur in similar contexts

 = with the same (or similar) context words, e.g. c,

 then both w1 and w2 should have a large cosine with c,

 hence get similar vectors.

Use of embeddings

 Embeddings are used as

representations for words as

input in all kinds of NLP tasks

using deep learning:

 Text classification

 Language models

 Named-entity recognition

 Machine translation

 etc.

 These embeddings are

nowadays called static

 Since 2018, Transformers:

 The embedding of each word

depends on the context

 Superior results in all tasks

 IN5550, Spring

50

Resources

 gensim

 Easy-to-use tool for training own models

 Word2wec

 https://code.google.com/archive/p/word2vec/

 https://fasttext.cc/

 https://nlp.stanford.edu/projects/glove/

 http://vectors.nlpl.eu/repository/

 Pretrained embeddings, also for Norwegian

51

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
http://vectors.nlpl.eu/repository/

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language models

52

Classification
53

Today (and next week)

 Feedforward Neural Networks

 Computational graphs

 Training FNN

 Word embeddings and Word2vec

 Applying embeddings

 Neural Language Models

54

n-gram language models – remember?
55

 Goal: Ascribe probabilities to word sequences

 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ≈

 ς𝑖
𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘, 𝑤𝑖+1−𝑘, … , 𝑤𝑖−1 = ς𝑖

𝑛𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 The probabilities are estimated by counting occurrences over a corpus.

Challenges
56

 There might be words that is never observed during training.

 N-grams which are seen no – or only a few – times during training

 Add-k smoothing is not appropriate

 Possibilities:

 Back-off

 Interpolation

 Kneser-Ney (best)

 Short-comings of all n-gram models

 The smoothing is not optimal

 The context are restricted to a limited number of preceding words

Neural Language Models
57

 Neural language model (k-

gram)

 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

 Use embeddings for

representing the 𝑤𝑖-s

 Use neural network for

estimating 𝑃 𝑤𝑖| 𝑤𝑖−𝑘
𝑖−1

Neural Language Models
58

At each timestep 𝑡:

 Each of the words 𝑤𝑗 , 𝑗 = 𝑡 − 1, 𝑡 − 2, 𝑡 − 3

 is represented by a one-hot-vector 𝒙𝑗
 which is multiplied with the same matrix 𝐸 to a
d-dimensional embedding 𝒆𝒋 = 𝐸𝒙𝑗

 They are concatenated to get the embedding
layer e.

 e is multiplied by a weight matrix W and

 An activation function is applied element-wise
to produce the hidden layer h, which is

 multiplied by another weight matrix U.

 Finally, a softmax output layer predicts at
each node 𝑖 the probability that the next
word 𝑤𝑡 will be vocabulary word 𝑉𝑖 .

Training the language models
59

Training the language models, alt. 1

 We may use pretrained embeddings

 Trained with some method, SkipGram, CBOW, Glove, …

 On some specific corpus

 Can be downloaded from the web

 This means that the matrix 𝐸 is fixed and that we update 𝑊 and 𝑈
during training

60

Training the embeddings

 Alternatively:

 Start with one-hot representations of words and train the embeddings as the

first layer in our models

 (=the original model for training the embeddings)

 Start with pre-trained embeddings, but update them during training

 Use two set of embeddings for each word – one pretrained and one which

is trained during the task.

 If the goal is a task different from language modeling, this may result

in embeddings better suited for the specific tasks.

61

Computational graph
62

𝒙2

E
W 𝒃[1] 𝒃[2]

𝒖 = 𝑐𝑜𝑛𝑐𝑎𝑡(

𝒖1
[1]

, 𝒖1
[1]

, 𝒖1
[1]

)

𝑎 =
𝑅𝑈(𝒛)

𝒗 =
𝑊𝒖

𝒛 =
𝒗 + 𝒃[1]

ෝ𝒚 = 𝑠𝑜𝑓𝑡−
𝑚𝑎𝑥(𝒛𝟐)

𝒙𝟑

𝒙𝟏

U

𝒘
= 𝑈𝒂

𝒖1
[1]

=𝐸𝒙𝟏

𝒖2
[1]

=𝐸𝒙𝟐

𝒖3
[1]

=𝐸𝒙𝟑

𝒛𝟐 =
𝒘+ 𝒃[2]

This picture is if we train the

embeddings E

With pretrained embeddings,

we look up 𝒖1
[1]

in a table for

each word

