
IN4080 – 2022 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 13, Nov. 17 (&24)

2

This lecture

 Recurrent Neural Networks

 RNN Language Models

 Other applications of RNNs

 Extended architectures and challenges

 Encoder-Decoder models and Machine Translation

 Transformers as Language Models

 Information extraction – some loose ends

3

Recurrent neural nets

 Model sequences/temporal phenomena

 A cell may send a signal back to itself – at the next moment in time

4

https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing

during time

Forward

 Each U, V and W are edges with

weights (matrices)

 𝑥1, 𝑥2, … , 𝑥𝑛 is the input sequence

 𝑦1, … , 𝑦𝑛 is the output sequence

 Forward:

 (Initialize ℎ0)

 For 𝑖 = 1 to 𝑛:

 Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖,

 calculate 𝑦𝑖 from ℎ𝑖

5

From J&M, 3.ed., 2019

Forward

 𝒉𝑡 = 𝑔 𝑈𝒉𝑡−1 +𝑊𝒙𝑡
 𝒚𝑡 = 𝑓 𝑉𝒉𝑡
 𝑔 and 𝑓 are activation

functions

 (There are also bias which we

didn't include in the formulas)

6

From J&M, 3.ed., 2019

Training

Process one sequence:

 At each output node:

 Calculate the loss and the

 𝛿-term

 Back-propagate the error, e.g.

 the 𝛿-term at ℎ2is calculated
 from the 𝛿-term at ℎ3 by U and

 the 𝛿-term at 𝑦2 by V

 Update

 V from the 𝛿-terms at the 𝑦𝑖-s and

 U and W from the 𝛿-terms at the
ℎ𝑖-s

7

From J&M, 3.ed., 2019

This lecture

 Recurrent Neural Networks

 RNN Language Models

 Other applications of RNNs

 Extended architectures and challenges

 Encoder-Decoder models and Machine Translation

 Transformers as Language Models

 Information extraction – some loose ends

8

RNN Language model

 ො𝑦 = 𝑃 𝑤𝑛 𝑤1
𝑛−1 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

 In principle:

 unlimited history

 a word depends on all preceding
words

 The word 𝑤𝑖 is represented by an
embedding

 or a one-hot and the embedding is
made by the LM

9

<s>

w1

w2

From J&M, 3.ed., 2019

Training

 The predicted output is a
softmax prob.distribution
over the vocabulary

 The target is the next word

 Cross-entropy loss compare
the two

 The errors are back-
propagated through the
network

 The weights get updated.

10

From J&M, 3.ed., 2022

This lecture

 Recurrent Neural Networks

 RNN Language Models

 Other applications of RNNs

 Extended architectures and challenges

 Encoder-Decoder models and Machine Translation

 Transformers as Language Models

 Information extraction – some loose ends

11

Neural sequence labeling: e.g., tagging

 ො𝑦 = 𝑃 𝑡𝑛 𝑤1
𝑛 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

12

From J&M, 3.ed., 2021

Neural sequence classification

 E.g., sentiment

 Consider only the final

state

 Might have a feed-

forward network

before the softmax.

13

From J&M, 3.ed., 2021

Autoregressive generation

 From a trained neural LM,
generate text

 Initialize with some (or no)
words

 The network will at each
stage:

 Alt. 1: pick the most likely word
(argmax)

 Alt. 2: sample a word randomly
according to the softmax
probability

14

From J&M, 3.ed., 2021

This lecture

 Recurrent Neural Networks

 RNN Language Models

 Other applications of RNNs

 Extended architectures and challenges

 Encoder-Decoder models and Machine Translation

 Transformers as Language Models

 Information extraction – some loose ends

15

Sequence labeling

 Actual models for sequence labeling, e.g. tagging, are more complex

 For example, it may take words after the tag into consideration.

16

Stacked RNN

 Can yield better

results than single-

layers

 Reason?

 Higher-layers of

abstraction

 similar to image

processing

(convolutional nets)

17

From J&M, 3.ed., 2019

Bi-directional RNN

 Example: Tagger

 Considers both

preceding and

following words

18

From J&M, 3.ed., 2019

Challenges: Vanishing gradient

 A problem for all deep neural networks

 When back-propagating through many

layers

 the gradient may approach 0

 little update

 Partial help:

 Other activation functions, e.g. RelU

 Various forms of data normalization

 Adjusted architecture

19

LSTM

 Problems for RNN

 Keep track of distant information

 Long Short-Term Memory

 An advanced architecture with

additional layers and weights

 Not consider the details here

 Bi-LSTM (Binary LSTM)

 Popular standard architecture in

NLP

20

This lecture

 Recurrent Neural Networks

 Encoder-Decoder models and Machine Translation

 Transformers as Language Models

 Information extraction – some loose ends

21

22

Idea

 C.f., the autoregressive generation:

 Read-in the first part of the sentence, and

 then predict the rest of the sentence

 using an RNN trained on sentences

 Generalize to other tasks

 e.g., Machine Translation

23

24

Machine Learning-based Machine Translation

 Bi-text

 Text translated between two languages

 The translated sentences are aligned into sentence pairs

 Machine learning based translation systems are trained on large

amounts of bi-text

25

Encoder-decoder based translation

 Concatenate the two sentences in a pair:

 source sentence_<\s>_target sentence

 Train an RNN on these concatenated pairs

 Apply by reading a source sentence and from there predict a target

sentence

26

27

Application
28

Refinements

 The encoder can be more

refined than a simple RNN,

 e.g. bi-LSTM

 The decoder may take more

information into consideration:

 Each output state has access to c

29

ℎ𝑡
𝑑 = 𝑔(ො𝑦𝑡−1, ℎ𝑡−1

𝑑 , c)

This lecture

 Recurrent Neural Networks

 Encoder-Decoder models and Machine Translation

 Attention

 Transformers as Language Models

 Information extraction – some loose ends

30

Further refinement

 Challenge for one context vector to code a whole sentence.

 In particular if the sentence is long

31

ℎ𝑡
𝑑 = 𝑔(ො𝑦𝑡−1, ℎ𝑡−1

𝑑 , c)

Attention - sketch

 The context vector is:

 different for each step:

 𝒉𝑡
𝑑 = 𝑔(ො𝑦𝑡−1, 𝒉𝑡−1

𝑑 , 𝒄𝑡)

 a weighted sum of input
states:

 𝒄𝑡 = σ𝑗=1
𝑛 𝛼𝑖,𝑗𝒉𝑗

𝑒

 where the weight 𝛼𝑖,𝑗 is

determined by 𝒉𝑗
𝑒 and 𝒉𝑡−1

𝑑

 "How much attention shall

𝒉𝑡
𝑑 pay to each of the input

words?"

32

Attention for translation - sketch
33

 𝒉𝑡
𝑑 = 𝑔(ො𝑦𝑡−1, 𝒉𝑡−1

𝑑 , 𝒄𝑡)

 𝒄𝑡 = σ𝑗=1
𝑛 𝛼𝑖,𝑗𝒉𝑗

𝑒

 "How much attention shall 𝒉𝑡
𝑑 pay

to each of the input words?"

 Which words in the source

sentence determine which words

in the target sentence?

 𝛼𝑖,𝑗 is learned from the examples

sentence pairs (as the rest)

https://teddykoker.com/2020/02/nlp-from-scratch-annotated-attention/

This lecture

 Recurrent Neural Networks

 Encoder-Decoder models and Machine Translation

 Transformers as Language Models

 Information extraction – some loose ends

34

Language transformers – self-attention (simplified)

 Self-attention: Attention between
one word and the other words in
the sentence.

 Transformer:

 A number of layers (e.g., 8)

 Each layer:

 A vector representation for each word
in the input

 Predicted from the representation of
the same word in the preceding layer
+ the attention it receives from the
other words

35

J. Devlin et. al. BERT, https://arxiv.org/pdf/1810.04805.pdf

Language transformers – self-attention (simplified)

 This results in a vector

(embedding) for each word

which is context-dependent

 Can be applied to various

down-street tasks

 In general, better results than

with static embeddings

(Word2Vec)

36

J. Devlin et. al. BERT, https://arxiv.org/pdf/1810.04805.pdf

Language transformers – self-attention (simplified)

 Pre-trained language models,
e.g., BERT

 Trained on large amounts on data

 Trained on some prediction task,
e.g., next word, masked word,
next sentence, etc.

 Can then be applied to all kinds
of jobs.

 The transformer can be tuned
when training the downstream
task

37

J. Devlin et. al. BERT, https://arxiv.org/pdf/1810.04805.pdf

Neural Methods in Natural Language Processing

 This completes the introduction to neural NLP

 We did not go very far

 You will learn more in

 IN5550 – Neural Methods in Natural Language Processing in January

 In particular, implementations using HPCs

38

This lecture

 Recurrent Neural Networks

 Encoder-Decoder models and Machine Translation

 Transformers as Language Models

 Information extraction – some loose ends

 Repeat the basics of IE and NER

 Evaluation of NER

 Relation (extraction)

 Comparison with the transformer approach

39

IE basics

 Bottom-Up approach

 Start with unrestricted texts, and do the best you can

 The approach was in particular developed by the Message Understanding
Conferences (MUC) in the 1990s

 Select a particular domain and task

40

Information extraction (IE) is the task of

automatically extracting structured information

from unstructured and/or semi-structured

machine-readable documents. (Wikipedia)

A typical pipeline
41

From NLTK

Named entities
42

 Named entity:

 Anything you can refer

to by a proper name

 NE Recognition

 Find the phrases

 Classify them

Citing high fuel prices, [ORG United Airlines]

said [TIME Friday] it has increased fares by

[MONEY $6] per round trip on flights to

some cities also served by lower-cost

carriers. [ORG American Airlines], a unit of

[ORG AMR Corp.], immediately matched the

move, spokesman [PER Tim Wagner] said.

[ORG United], a unit of [ORG UAL Corp.],

said the increase took effect [TIME Thursday]

and applies to most routes where it

competes against discount carriers, such as

[LOC Chicago] to [LOC Dallas] and [LOC

Denver] to [LOC San Francisco].

BIO Labels (IOB)

 B-PER:

 First word in

this PER-NE

 I-NP:

 Part of PER-NE

 O:

 Not part of

any NE

 Can code where something

begins and ends without

altering the word sequence

 Applying "CONNL-format"

 one word per line

 info in columns

 we may add more columns, e.g.

for POS-tag

43

Tag accuracy

 2 out of 21 tags are incorrect

 Tag-accuracy: 19/21

44

45 Counting chunks
• Left column: Gold

• Right column: Predicted

Precision: ?

Recall: ?

Relation extraction

 Extract the relations that exist

between the (named) entities in the

text

 A fixed set of relations (normally)

 Determined by application:

 Jeopardy

 Preventing terrorist attacks

 Detecting illness from medical record

…

46

• Born_in

• Date_of_birth

• Parent_of

• Author_of

• Winner_of

• Part_of

• Located_in

• Acquire

• Threaten

• Has_symptom

• Has_illness

Examples
47

Methods for relation extraction
48

1. Hand-written patterns

2. Machine Learning (Supervised classifiers)

3. Semi-supervised classifiers via bootstrapping

4. Semi-supervised classifiers via distant supervision

5. Unsupervised

Different approaches

One step after another

1. Tokenize

2. Tag

3. Maybe some form of parsing

4. NER

5. Relations

6. Application

1. Tokenize

2. Pre-trained LM

3. Application:

 Machine-learning

 Fine-tune pre-trained model

49

Tradition pipeline Large pre-trained models

Some example systems
50

 Stanford core nlp (Java): http://corenlp.run/

 Stanza (Python): https://stanfordnlp.github.io/stanza/

 with a wrapper for Stanford Core NLP

 SpaCy (Python): https://spacy.io/docs/api/

http://corenlp.run/
https://stanfordnlp.github.io/stanza/
https://spacy.io/docs/api/

