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This lecture

 Recurrent Neural Networks

 RNN Language Models

 Other applications of RNNs
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 Transformers as Language Models

 Information extraction – some loose ends
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Recurrent  neural nets

 Model sequences/temporal phenomena

 A cell may send a signal back to itself – at the next moment in time
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https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing 

during time



Forward

 Each U, V and W are edges with 

weights (matrices)

 𝑥1, 𝑥2, … , 𝑥𝑛 is the input sequence

 𝑦1, … , 𝑦𝑛 is the output sequence

 Forward: 

 (Initialize ℎ0) 

 For 𝑖 = 1 to 𝑛:

 Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖, 

 calculate 𝑦𝑖 from ℎ𝑖
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From J&M, 3.ed., 2019



Forward

 𝒉𝑡 = 𝑔 𝑈𝒉𝑡−1 +𝑊𝒙𝑡
 𝒚𝑡 = 𝑓 𝑉𝒉𝑡
 𝑔 and 𝑓 are activation 

functions

 (There are also bias which we 

didn't include in the formulas)
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From J&M, 3.ed., 2019



Training

Process one sequence:

 At each output node:

 Calculate the loss and the

 𝛿-term

 Back-propagate the error, e.g.

 the 𝛿-term at ℎ2is calculated
 from the 𝛿-term at ℎ3 by U and 

 the 𝛿-term at 𝑦2 by V

 Update 

 V from the 𝛿-terms at the 𝑦𝑖-s and

 U and W from the 𝛿-terms at the 
ℎ𝑖-s
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RNN Language model

 ො𝑦 = 𝑃 𝑤𝑛 𝑤1
𝑛−1 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)

 In principle:

 unlimited history

 a word depends on all preceding 
words

 The word 𝑤𝑖 is represented by an 
embedding

 or a one-hot and the embedding is 
made by the LM
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<s>

w1
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From J&M, 3.ed., 2019



Training

 The predicted output is a 
softmax prob.distribution
over the vocabulary

 The target is the next word

 Cross-entropy loss compare 
the two

 The errors are back-
propagated through the 
network

 The weights get updated.
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From J&M, 3.ed., 2022
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Neural sequence labeling: e.g., tagging

 ො𝑦 = 𝑃 𝑡𝑛 𝑤1
𝑛 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝒉𝑛)
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From J&M, 3.ed., 2021



Neural sequence classification

 E.g., sentiment

 Consider only the final 

state

 Might have a feed-

forward network 

before the softmax.
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From J&M, 3.ed., 2021



Autoregressive generation

 From a trained neural LM, 
generate text

 Initialize with some (or no) 
words

 The network will at each 
stage:

 Alt. 1: pick the most likely word 
(argmax)

 Alt. 2: sample a word randomly 
according to the softmax
probability
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Sequence labeling

 Actual models for sequence labeling, e.g. tagging, are more complex

 For example, it may take words after the tag into consideration.
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Stacked RNN

 Can yield better 

results than single-

layers

 Reason?

 Higher-layers of 

abstraction

 similar to image 

processing 

(convolutional nets)
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Bi-directional RNN

 Example: Tagger

 Considers both 

preceding and 

following words
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From J&M, 3.ed., 2019



Challenges: Vanishing gradient

 A problem for all deep neural networks

 When back-propagating through many 

layers

 the gradient may approach 0

 little update

 Partial help:

 Other activation functions, e.g. RelU

 Various forms of data normalization

 Adjusted architecture
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LSTM

 Problems for RNN

 Keep track of distant information

 Long Short-Term Memory

 An advanced architecture with 

additional layers and weights

 Not consider the details here

 Bi-LSTM (Binary LSTM)

 Popular standard architecture in 

NLP
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Idea

 C.f., the autoregressive generation:

 Read-in the first part of the sentence, and 

 then predict the rest of the sentence

 using an RNN trained on sentences

 Generalize to other tasks

 e.g., Machine Translation
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Machine Learning-based Machine Translation

 Bi-text

 Text translated between two languages

 The translated sentences are aligned into sentence pairs

 Machine learning based translation systems are trained on large 

amounts of bi-text
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Encoder-decoder based translation

 Concatenate the two sentences in a pair: 

 source sentence_<\s>_target sentence

 Train an RNN on these concatenated pairs

 Apply by reading a source sentence and from there predict a target 

sentence
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Application
28



Refinements

 The encoder can be more 

refined than a simple RNN,

 e.g. bi-LSTM

 The decoder may take more 

information into consideration:

 Each output state has access to c
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ℎ𝑡
𝑑 = 𝑔(ො𝑦𝑡−1, ℎ𝑡−1

𝑑 , c)
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Further refinement

 Challenge for one context vector to code a whole sentence.

 In particular if the sentence is long
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ℎ𝑡
𝑑 = 𝑔(ො𝑦𝑡−1, ℎ𝑡−1

𝑑 , c)



Attention - sketch

 The context vector is:

 different for each step:

 𝒉𝑡
𝑑 = 𝑔(ො𝑦𝑡−1, 𝒉𝑡−1

𝑑 , 𝒄𝑡)

 a weighted sum of input 
states:

 𝒄𝑡 = σ𝑗=1
𝑛 𝛼𝑖,𝑗𝒉𝑗

𝑒

 where the weight 𝛼𝑖,𝑗 is 

determined by 𝒉𝑗
𝑒 and 𝒉𝑡−1

𝑑

 "How much attention shall 

𝒉𝑡
𝑑 pay to each of the input 

words?"
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Attention for translation - sketch
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 𝒉𝑡
𝑑 = 𝑔(ො𝑦𝑡−1, 𝒉𝑡−1

𝑑 , 𝒄𝑡)

 𝒄𝑡 = σ𝑗=1
𝑛 𝛼𝑖,𝑗𝒉𝑗

𝑒

 "How much attention shall 𝒉𝑡
𝑑 pay 

to each of the input words?"

 Which words in the source 

sentence determine which words 

in the target sentence?

 𝛼𝑖,𝑗 is learned from the examples 

sentence pairs (as the rest)

https://teddykoker.com/2020/02/nlp-from-scratch-annotated-attention/



This lecture

 Recurrent Neural Networks

 Encoder-Decoder models and Machine Translation

 Transformers as Language Models

 Information extraction – some loose ends

34



Language transformers – self-attention (simplified)

 Self-attention: Attention between 
one word and the other words in 
the sentence.

 Transformer:

 A number of layers (e.g., 8)

 Each layer:

 A vector representation for each word 
in the input

 Predicted from the representation of 
the same word in the preceding layer 
+ the attention it receives from the 
other words

35

J. Devlin et. al. BERT, https://arxiv.org/pdf/1810.04805.pdf



Language transformers – self-attention (simplified)

 This results in a vector 

(embedding) for each word 

which is context-dependent

 Can be applied to various 

down-street tasks

 In general, better results than 

with static embeddings

(Word2Vec)
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J. Devlin et. al. BERT, https://arxiv.org/pdf/1810.04805.pdf



Language transformers – self-attention (simplified)

 Pre-trained language models, 
e.g., BERT

 Trained on large amounts on data

 Trained on some prediction task, 
e.g., next word, masked word, 
next sentence, etc.

 Can then be applied to all kinds 
of jobs.

 The transformer can be tuned 
when training the downstream 
task
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J. Devlin et. al. BERT, https://arxiv.org/pdf/1810.04805.pdf



Neural Methods in Natural Language Processing

 This completes the introduction to neural NLP

 We did not go very far

 You will learn more in

 IN5550 – Neural Methods in Natural Language Processing in January

 In particular, implementations using HPCs
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IE basics

 Bottom-Up approach

 Start with unrestricted texts, and do the best you can

 The approach was in particular developed by the Message Understanding 
Conferences (MUC) in the 1990s

 Select a particular domain and task

40

Information extraction (IE) is the task of 

automatically extracting structured information 

from unstructured and/or semi-structured 

machine-readable documents. (Wikipedia)



A typical pipeline
41

From NLTK



Named entities
42

 Named entity:

 Anything you can refer 

to by a proper name

 NE Recognition

 Find the phrases

 Classify them

Citing high fuel prices, [ORG United Airlines] 

said [TIME Friday] it has increased fares by 

[MONEY $6] per round trip on flights to 

some cities also served by lower-cost 

carriers. [ORG American Airlines], a unit of 

[ORG AMR Corp.], immediately matched the 

move, spokesman [PER Tim Wagner] said. 

[ORG United], a unit of [ORG UAL Corp.], 

said the increase took effect [TIME Thursday] 

and applies to most routes where it 

competes against discount carriers, such as 

[LOC Chicago] to [LOC Dallas] and [LOC

Denver] to [LOC San Francisco].



BIO Labels (IOB)

 B-PER: 

 First word in 

this PER-NE

 I-NP: 

 Part of PER-NE

 O: 

 Not part of 

any NE

 Can code where something 

begins and ends without 

altering the word sequence

 Applying "CONNL-format"

 one word per line

 info in columns

 we may add more columns, e.g. 

for POS-tag
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Tag accuracy

 2 out of 21 tags are incorrect

 Tag-accuracy: 19/21
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45 Counting chunks
• Left column: Gold

• Right column: Predicted

Precision: ?

Recall: ?



Relation extraction

 Extract the relations that exist 

between the (named) entities in the 

text

 A fixed set of relations (normally) 

 Determined by application:

 Jeopardy

 Preventing terrorist attacks

 Detecting illness from medical record

…
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• Born_in

• Date_of_birth

• Parent_of

• Author_of

• Winner_of

• Part_of

• Located_in

• Acquire

• Threaten

• Has_symptom

• Has_illness



Examples
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Methods for relation extraction
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1. Hand-written patterns

2. Machine Learning (Supervised classifiers)

3. Semi-supervised classifiers via bootstrapping

4. Semi-supervised classifiers via distant supervision

5. Unsupervised



Different approaches

One step after another

1. Tokenize

2. Tag

3. Maybe some form of parsing

4. NER

5. Relations

6. Application

1. Tokenize

2. Pre-trained LM

3. Application:

 Machine-learning

 Fine-tune pre-trained model
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Tradition pipeline Large pre-trained models



Some example systems
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 Stanford core nlp (Java): http://corenlp.run/

 Stanza (Python): https://stanfordnlp.github.io/stanza/

 with a wrapper for Stanford Core NLP

 SpaCy (Python): https://spacy.io/docs/api/

http://corenlp.run/
https://stanfordnlp.github.io/stanza/
https://spacy.io/docs/api/

