
1

IN4080 2022, Exercise set 7: Nov. 15
(This was part of mandatory 2 in 2021, and the points are left-overs from that.)

In this set we will use the gensim package to familiarize ourselves with word embeddings and

word2vec. You will get more experience with

 vector representations of words

 cosine distance and similarity

 semantic relationships including analogies

 training embeddings

 evaluating embeddings

 application of embeddings in text classification

Getting started with gensim
You should have gensim available in the in4080 environment on your own machine if you have

followed the installation instructions

https://www.uio.no/studier/emner/matnat/ifi/IN4080/h22/lab-setup/

It should work on the IFI linux. Be aware that you might get problems with disk space on the IFI

machines if you download large models.

You find information on gensim at the webpage https://radimrehurek.com/gensim/index.html. To

get started, consider the Word2Vec Model tutorial on the documentation page,

https://radimrehurek.com/gensim/auto_examples/index.html . Follow the first steps up to Training

Your Own Model. In particular, download and install the 'word2vec-google-news-300'. (If you get

problems with disk space, choose another, smaller model, e.g. ‘glove-wiki-gigaword-100’. Beware

that the results on the question below will depend on the model you use.) By the way, look at the

page https://github.com/RaRe-Technologies/gensim-data and try to grasp how large amounts of

texts that have been used for training these models.

Exercise 1 Basics (10 points)
a) How many different words are there in the model? With so many words, why does the ‘cameroon’

example fails?

b) Implement a function for calculating the norm (the length) of an (embedding) vector, and a

function for calculating the cosine between two vectors.

c) Calculate the cosine between the vectors for ‘king’ and ‘queen’ and check you get the same as by

<model>.similarity(‘king’, ‘queen’)

Exercise 2 Built in functions (5 points)
Several built-in functions let you inspect semantic properties of the embeddings. The most_similar

lets you find the nearest neighbor to one or more words.

print(wv.most_similar('car', topn=5))

print(wv.most_similar(positive=['car', 'minivan'], topn=5))

It is also the tool for testing analogies, e.g.

https://www.uio.no/studier/emner/matnat/ifi/IN4080/h22/lab-setup/
https://radimrehurek.com/gensim/index.html
https://radimrehurek.com/gensim/auto_examples/index.html
https://github.com/RaRe-Technologies/gensim-data

2

“Norway is to Oslo as Sweden is to …”

as

print(wv.most_similar(positive=['Oslo', 'Sweden'],

 negative = ['Norway'], topn=5))

a) Try a few analogy tests like

“ king is to man as queen is to …”

“ king is to queen as man is to …”

“cat is to kitten as dog is to …”

Add four more examples of your choice. Report the results of the tests. Are the results as expected?

b) To understand the method better, we can try to follow the recipe more directly. Try

a = wv['king'] + wv['woman'] - wv['man']

and calculate the cosine between a and the vectors for queen, woman, man, king. You may also

calculate the

wv.similar_by_vector(a)

What does this show regarding how the most_similar works?

c) Play around with wv.doesnt_match, e.g.

print(wv.doesnt_match(['Norway', 'Denmark', 'Finland',

 'Sweden', 'Spain', 'Stockholm']))

Make at least two more examples where the result match human evaluation and two examples

where they do not match. Explain!

Exercise 3 Training a toy model (5 points)
a) Train a word2vec model on the Brown corpus. Follow the recipe from the tutorial, the section

Training Your Own Model. You may import the corpus from NLTK by brown.sents(). Beware that this

is a toy example. The Brown corpus is too small for training good models. How many times larger is

the Google news corpus compared to the Brown corpus?

b) We will compare the Brown model to the 'word2vec-google-news-300'. Try to find the 10 nearest

words first to car and then to queen in the two models. What do the examples reveal about the two

training corpora?

c) Inspect the trained Brown model on some of the examples from exercise 2. Does it yield the same

results on the analogy tests as the model in exercise 2?

Exercise 4 Evaluation (5 points)
Gensim comes with several methods for evaluation together with standard datasets for the tests.

Testsets can be found by the tha datapath command, e.g.

path=datapath('questions-words.txt')

One test you may use is to see how well the model perform on the Google analogy test datset. This

can be run by

<model>.evaluate_word_analogies(path)

Report the key numbers, and try to understand what they mean.

3

To compare 'word2vec-google-news-300' to the Brown embeddings is not too interesting. The

difference between them is too large. A test like this becomes more interesting if you try to compare

'word2vec-google-news-300' to e.g. ‘glove-wiki-gigaword-300’ or you want to inspect the effect of

the length of the embeddings by comparing ‘glove-wiki-gigaword-300’ and ‘glove-wiki-gigaword-

100’.

Exercise 5 Application (10 points)
We will try a simple example of applying word embeddings to an NLP task. We consider text

classification. We will use the same movie dataset from NLTK as we used in Mandatory assignment

1B, with the same split as we used there. Thereby, we may compare the results with the results from

Mandatory 1.

We will consider a document as a bag of words. The word order and sentence structure will be

ignored. Each word can be represented by its embedding. But how should a document be

represented? The easiest is to use the “semantic fingerprint”, which means representing the

document by the average vector of its words.

Train and test a logistic regression classifier as described. Tune the C parameter (regularization, cf.

Mandatory 2.A). Report the results from the tuning in a table. How does this classifier perform

compared to your results from Mandatory assignment 1?

Warning! When using neural networks and embeddings for word classification, you would use more

elaborate models than the simple bag-of-words model, e.g. convolutional networks or recurrent

networks that consider word order.

