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IN4080 2022, Exercise set 7: Nov. 15 
(This was part of mandatory 2 in 2021, and the points are left-overs from that.) 

In this set we will use the gensim package to familiarize ourselves with word embeddings and 

word2vec. You will get more experience with 

 vector representations of words 

 cosine distance and similarity 

 semantic relationships including analogies 

 training embeddings 

 evaluating embeddings 

 application of embeddings in text classification 

Getting started with gensim 
You should have gensim available in the in4080 environment on your own machine if you have 

followed the installation instructions 

https://www.uio.no/studier/emner/matnat/ifi/IN4080/h22/lab-setup/ 

It should work on the IFI linux. Be aware that you might get problems with disk space on the IFI 

machines if you download large models. 

 

You find information on gensim at the webpage https://radimrehurek.com/gensim/index.html. To 

get started, consider the Word2Vec Model tutorial on the documentation page, 

https://radimrehurek.com/gensim/auto_examples/index.html . Follow the first steps up to Training 

Your Own Model. In particular, download and install the 'word2vec-google-news-300'. (If you get 

problems with disk space, choose another, smaller model, e.g. ‘glove-wiki-gigaword-100’. Beware 

that the results on the question below will depend on the model you use.) By the way, look at the 

page https://github.com/RaRe-Technologies/gensim-data and try to grasp how large amounts of 

texts that have been used for training these models. 

Exercise 1 Basics (10 points) 
a) How many different words are there in the model? With so many words, why does the ‘cameroon’ 

example fails? 

 

b) Implement a function for calculating the norm (the length) of an (embedding) vector, and a 

function for calculating the cosine between two vectors. 

 

c) Calculate the cosine between the vectors for ‘king’ and ‘queen’ and check you get the same as by  

<model>.similarity(‘king’, ‘queen’) 

Exercise 2 Built in functions (5 points) 
Several built-in functions let you inspect semantic properties of the embeddings. The most_similar 

lets you find the nearest neighbor to one or more words. 

print(wv.most_similar('car', topn=5)) 

print(wv.most_similar(positive=['car', 'minivan'], topn=5)) 

 

It is also the tool for testing analogies, e.g. 

https://www.uio.no/studier/emner/matnat/ifi/IN4080/h22/lab-setup/
https://radimrehurek.com/gensim/index.html
https://radimrehurek.com/gensim/auto_examples/index.html
https://github.com/RaRe-Technologies/gensim-data
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“Norway is to Oslo as Sweden is to …” 

as 

print(wv.most_similar(positive=['Oslo', 'Sweden'],  

                      negative = ['Norway'], topn=5)) 

a) Try a few analogy tests like 

“ king is to man as queen is to …” 

“ king is to queen as man is to …” 

“cat is to kitten as dog is to …” 

Add four more examples of your choice. Report the results of the tests. Are the results as expected? 

 

b) To understand the method better, we can try to follow the recipe more directly. Try 

a = wv['king'] + wv['woman'] - wv['man'] 

and calculate the cosine between a and the vectors for queen, woman, man, king. You may also 

calculate the  

wv.similar_by_vector(a) 

What does this show regarding how the most_similar works? 

 

c) Play around with wv.doesnt_match, e.g. 

print(wv.doesnt_match(['Norway', 'Denmark', 'Finland',  

                      'Sweden', 'Spain', 'Stockholm'])) 

Make at least two more examples where the result match human evaluation and two examples 

where they do not match. Explain! 

Exercise 3 Training a toy model (5 points) 
a) Train a word2vec model on the Brown corpus. Follow the recipe from the tutorial, the section 

Training Your Own Model. You may import the corpus from NLTK by brown.sents(). Beware that this 

is a toy example. The Brown corpus is too small for training good models. How many times larger is 

the Google news corpus compared to the Brown corpus? 

 

b) We will compare the Brown model to the 'word2vec-google-news-300'. Try to find the 10 nearest 

words first to car and then to queen in the two models. What do the examples reveal about the two 

training corpora? 

 

c) Inspect the trained Brown model on some of the examples from exercise 2. Does it yield the same 

results on the analogy tests as the model in exercise 2? 

 

Exercise 4 Evaluation (5 points) 
Gensim comes with several methods for evaluation together with standard datasets for the tests. 

Testsets can be found by the tha datapath command, e.g. 

path=datapath('questions-words.txt') 

One test you may use is to see how well the model perform on the Google analogy test datset. This 

can be run by 

<model>.evaluate_word_analogies(path) 

Report the key numbers, and try to understand what they mean.  
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To compare 'word2vec-google-news-300' to the Brown embeddings is not too interesting. The 

difference between them is too large. A test like this becomes more interesting if you try to compare 

'word2vec-google-news-300'   to e.g. ‘glove-wiki-gigaword-300’ or you want to inspect the effect of 

the length of the embeddings by comparing ‘glove-wiki-gigaword-300’ and ‘glove-wiki-gigaword-

100’. 

Exercise 5 Application (10 points) 
We will try a simple example of applying word embeddings to an NLP task. We consider text 

classification. We will use the same movie dataset from NLTK as we used in Mandatory assignment 

1B, with the same split as we used there. Thereby, we may compare the results with the results from 

Mandatory 1.  

 

We will consider a document as a bag of words. The word order and sentence structure will be 

ignored. Each word can be represented by its embedding. But how should a document be 

represented? The easiest is to use the “semantic fingerprint”, which means representing the 

document by the average vector of its words. 

 

Train and test a logistic regression classifier as described. Tune the C parameter (regularization, cf. 

Mandatory 2.A). Report the results from the tuning in a table. How does this classifier perform 

compared to your results from Mandatory assignment 1? 

 

Warning! When using neural networks and embeddings for word classification, you would use more 

elaborate models than the simple bag-of-words model, e.g. convolutional networks or recurrent 

networks that consider word order. 

 


