IN4.080 - 2023
Exercise set 2

Friday 1 September 2023

Part 1: Probability distributions
In this exercise, we explore the relationship between word length and grammatical categories (parts of
speech).

NLTK provides the Brown corpus of English together with its part-of-speech tags. You will first have to
download the corpus:

import nltk
nltk.download("brown")

You can then load the corpus and the list of word-tag pairs with the following command:

from nltk.corpus import brown
wordlist = brown.tagged_words()
wordlist[:20]

You will see that there are composite tags containing —or +, such as NP-TL or DTS+BEZ. To reduce the
amount of tags, we will only consider the first part of the tag, i.e. NP or DTS.

Create a dictionary that contains, for each word length in characters and for each (simplified) part of
speech tag, the number of occurrences of words in the corpus. For further processing, it is easiest to
create a dictionary of dictionaries, with the tags and lengths as keys. The resulting dictionary might look
as follows:

{'AT": {3: 69969, 2: 5546, 1: 23070, 5: 492},

'NP': {6: 7697, 7: 5816, 17: 18, 3: 3070, 4: 5825, ...},
'NN': {6: 25413, 4: 31089, 13: 1607, 7: 20324, ...},
o}

You can convert this dictionary easily into a Pandas dataframe with the following command:

import pandas as pd
df = pd.DataFrame.from_dict(d)
df

You will see that missing values will be displayed as NaN. You can replace them with Os using the
following command:

df = df.fillna(0)



You should get a table that looks approximately as follows:

AT NP NN JJ  VBD NR IN  NPS

J 69969.0 3070.0 11513 4666.0 1603.0 0.0 101450 30
2 554G6.0 16480 1495 14.0 1.0 0.0 85567.0 0.0
1 23070.0 4310 519 0.0 0.0 0.0 113.0 0.0
5 4920 6163.0 27859 105720 3208.0 6030 37930 1220

6 0.0 76970 25413 75250 51630 2320 32260 3860
7 0.0 583160 20324 83050 3980.0 960 32020 4810
17 0.0 18.0 103 95.0 1.0 0.0 0.0 0.0
4 0.0 53250 31089 87710 6679.0 5990 15361.0 6.0
8 0.0 37860 15720 90220 2919.0 2050 450 &71.0
10 0.0 14460 9717 48580 6200 0.0 2080 2720
9 0.0 20370 11831 69220 16650 160.0 402.0 4930
1 0.0 4520 5880 32920 2520 0.0 240 156.0
13 00 1710 1607 12810 12.0 0.0 0.0 340

You can sort the rows according to length with df.sort_index(). You can switch rows and columns with
df.transpose().

Which are the five most frequent part-of-speech tags? If you are not familiar with the labels, you find the
list here: http://korpus.uib.no/icame/manuals/BROWN/INDEX.HTM#bc6

Which are the five most frequent word lengths?

Create another dataframe that represents the joint probability distribution of the two random variables
tag and length, i.e. P(tag = t, length = [). Make sure that the resulting values correspond to your
expectations. The joint distribution answers the question: what is the probability that a randomly
selected word form in the corpus has tag t and length [?

Create two additional dataframes with the conditional probability distributions. One of them should
represent P(tag = t | length = [) and the other one P(length = [ | tag = t).

What is the probability that a common noun (NN) has length 5?
What is the probability that a word of length 1 is an article (AT)?
What is the average length of adjectives (JJ)?

Part 2: Vectors, matrices, linear algebra basics
Exercise 1: Let us first define two vectors: u = [1,2,3,5] andv = [-1,0, 3, —1].

Compute the following expressions, both by hand and using NumPy:

e u+v

e 2V

e u-v (the dot product)

e ||lul| (the norm of u)

e sim(u,v) (the cosine similarity between the two vectors)


http://korpus.uib.no/icame/manuals/BROWN/INDEX.HTM#bc6

Exercise 2: What is the product AB of the two matrices A and B defined below?

3 -2 1 2 -1
A=(-2 1 -1 B=|-2 0
3 1 -2 1 1

Again, first compute the result by hand and then check it with NumPy.
Exercise 3: You are given a vector of word length counts computed from a short text:
=10, 11, 42, 53,52, 60, 77, 55, 45, 33, 10, 2, 1, 0, 1]

There are [[{] words of length i in the text. For example, there are 52 words of length 4. (Note that
[[0] = 0 because words are always at least one character long.) Use NumPy functions to figure out:

e Whatis the length of the text in words?

e Which word length is the most frequent?

e What percentage of words has length 10?

e Whatis the total character count of the words of the text? (Hint: You can use the dot product.)

Part 3: Getting started with Naive Bayes
For our first Naive Bayes classifier, we will se the Movie Reviews corpus that comes with NLTK:

from nltk.corpus import movie_reviews

The following commands allow us to determine the available labels, the files with the documents of a
particular label, and the raw text of one file:

movie_reviews.categories()
movie_reviews.fileids(‘pos’)
movie_reviews.raw('pos/cv000_29590.txt')

The following command builds a list of text-label pairs:

movie_docs = [(movie_reviews.raw(fileid), label)
for label in movie_reviews.categories()
for fileid in movie_reviews.fileids(label)

]

We transform this list into a Pandas dataframe for easier manipulation:
df = pd.DataFrame(movie_docs, columns=["text', 'label'])

Next, we shuffle the data and split it into training (80%), validation (10%) and test (10%) set. Scikit-Learn
contains a method to split a dataset into two parts:

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(df[‘text’], df[‘label’], test_size=0.1)
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You’ll have to apply this function twice to get a three-way split.

For basic tokenization and bag-of-words feature extraction, we can use the CountVectorizer class from
scikit-learn:

from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()
X_train_bow = cv.fit_transform(x_train)

The following commands may help you inspect the features:

cv.vocabulary_
cv.vocabulary_[‘boring’]

Now, we train a multinomial Naive Bayes classifier, using again existing libraries from scikit-learn:

from sklearn.naive_bayes import MultinomialNB
nb = MultinomialNB()
nb.fit(x_train_bow, y_train)

Let us evaluate this model on the validation set. We first need to transform it to the bag-of-words
representation, using the same CountVectorizer already used for training:

x_val_bow = cv.transform(x_val)
predicted_y_val = nb.predict(x_val_bow)

Now, we can compare the predictions with the gold labels of the validation set and compute accuracy:

from sklearn import metrics
acc = metrics.accuracy_score(y_val, predicted_y val)

Scikit-learn also provides a “classification report” that shows precision and recall for all classes:
print(metrics.classification_report(y_val, predicted_y _val))

You can also display the raw confusion matrix, but note that scikit-learn displays the gold labels as the
rows and the predicted labels as columns:

print(metrics.confusion_matrix(y_val, predicted_y val))

Create two other classifiers by changing some parameters either in the data extraction (CountVectorizer)
or the training (MultinomialNB) step. Select the best of the three models based on the development set
performance and use that model for predicting and evaluating the test set (don’t forget to vectorize the
test set with the appropriate CountVectorizer!).

A few suggestions for modifying the parameters:



e The corpus is already lowercased and tokenized, so there are limited options in that respect, but
you may still try to improve tokenization.

o The CountVectorizer documentation is available here: https://scikit-
learn.org/stable/modules/generated/sklearn.feature extraction.text.CountVectorizer.html
In particular, you could experiment with the stop_words and binary parameters.

e The MultinomialNB documentation is here: https://scikit-
learn.org/stable/modules/generated/sklearn.naive bayes.MultinomialNB.html
The alpha parameter specifies the amount of smoothing and can be changed.



https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

