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IN4080 – 2023 
Exercise set 2 

 

Friday 1 September 2023 

Part 1: Probability distributions 
In this exercise, we explore the relationship between word length and grammatical categories (parts of 

speech). 

NLTK provides the Brown corpus of English together with its part-of-speech tags. You will first have to 

download the corpus: 

import nltk 

nltk.download("brown") 

You can then load the corpus and the list of word-tag pairs with the following command: 

 from nltk.corpus import brown 

 wordlist = brown.tagged_words() 

 wordlist[:20] 

You will see that there are composite tags containing – or +, such as NP-TL or DTS+BEZ. To reduce the 

amount of tags, we will only consider the first part of the tag, i.e. NP or DTS. 

Create a dictionary that contains, for each word length in characters and for each (simplified) part of 

speech tag, the number of occurrences of words in the corpus. For further processing, it is easiest to 

create a dictionary of dictionaries, with the tags and lengths as keys. The resulting dictionary might look 

as follows: 

{'AT': {3: 69969, 2: 5546, 1: 23070, 5: 492}, 

 'NP': {6: 7697, 7: 5816, 17: 18, 3: 3070, 4: 5825, …}, 

 'NN': {6: 25413, 4: 31089, 13: 1607, 7: 20324, …}, 

 …} 

You can convert this dictionary easily into a Pandas dataframe with the following command: 

import pandas as pd 

df = pd.DataFrame.from_dict(d) 

df 

You will see that missing values will be displayed as NaN. You can replace them with 0s using the 

following command: 

 df = df.fillna(0) 
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You should get a table that looks approximately as follows: 

 

You can sort the rows according to length with df.sort_index(). You can switch rows and columns with 

df.transpose(). 

Which are the five most frequent part-of-speech tags? If you are not familiar with the labels, you find the 

list here: http://korpus.uib.no/icame/manuals/BROWN/INDEX.HTM#bc6  

Which are the five most frequent word lengths? 

Create another dataframe that represents the joint probability distribution of the two random variables 

tag and length, i.e. 𝑃(tag = 𝑡, length = 𝑙). Make sure that the resulting values correspond to your 

expectations. The joint distribution answers the question: what is the probability that a randomly 

selected word form in the corpus has tag 𝑡 and length 𝑙? 

Create two additional dataframes with the conditional probability distributions. One of them should 

represent 𝑃(tag = 𝑡 | length = 𝑙) and the other one 𝑃(length = 𝑙 | tag = 𝑡). 

What is the probability that a common noun (NN) has length 5? 

What is the probability that a word of length 1 is an article (AT)? 

What is the average length of adjectives (JJ)? 

Part 2: Vectors, matrices, linear algebra basics 
Exercise 1: Let us first define two vectors: 𝒖 = [1, 2, 3, 5] and 𝒗 = [−1, 0, 3, −1]. 

Compute the following expressions, both by hand and using NumPy: 

• 𝒖 + 𝒗 

• 2 ∙ 𝒗 

• 𝒖 ∙ 𝒗 (the dot product) 

• ‖𝒖‖ (the norm of 𝒖) 

• sim(𝒖, 𝒗) (the cosine similarity between the two vectors) 

http://korpus.uib.no/icame/manuals/BROWN/INDEX.HTM#bc6


3 
 

Exercise 2: What is the product 𝑨𝑩 of the two matrices 𝑨 and 𝑩 defined below? 

𝑨 = [
3 −2 1

−2 1 −1
3 1 −2

]  𝑩 = [
2 −1

−2 0
1 1

] 

Again, first compute the result by hand and then check it with NumPy. 

Exercise 3: You are given a vector of word length counts computed from a short text: 

l = [0, 11, 42, 53, 52, 60, 77, 55, 45, 33, 10, 2, 1, 0, 1] 

There are 𝑙[𝑖] words of length 𝑖 in the text. For example, there are 52 words of length 4. (Note that 

𝑙[0] = 0 because words are always at least one character long.) Use NumPy functions to figure out: 

• What is the length of the text in words? 

• Which word length is the most frequent? 

• What percentage of words has length 10? 

• What is the total character count of the words of the text? (Hint: You can use the dot product.) 

Part 3: Getting started with Naïve Bayes 
For our first Naïve Bayes classifier, we will se the Movie Reviews corpus that comes with NLTK: 

 from nltk.corpus import movie_reviews 

The following commands allow us to determine the available labels, the files with the documents of a 

particular label, and the raw text of one file: 

 movie_reviews.categories() 

 movie_reviews.fileids(‘pos’) 

 movie_reviews.raw('pos/cv000_29590.txt') 

The following command builds a list of text-label pairs: 

movie_docs = [(movie_reviews.raw(fileid), label) 

   for label in movie_reviews.categories() 

    for fileid in movie_reviews.fileids(label) 

   ] 

We transform this list into a Pandas dataframe for easier manipulation: 

 df = pd.DataFrame(movie_docs , columns=['text', 'label']) 

Next, we shuffle the data and split it into training (80%), validation (10%) and test (10%) set. Scikit-Learn 

contains a method to split a dataset into two parts: 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test = train_test_split(df[‘text’], df[‘label’], test_size=0.1) 
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You’ll have to apply this function twice to get a three-way split. 

For basic tokenization and bag-of-words feature extraction, we can use the CountVectorizer class from 

scikit-learn: 

 from sklearn.feature_extraction.text import CountVectorizer 

 cv = CountVectorizer() 

 x_train_bow = cv.fit_transform(x_train) 

The following commands may help you inspect the features: 

 cv.vocabulary_ 

 cv.vocabulary_[‘boring’] 

Now, we train a multinomial Naïve Bayes classifier, using again existing libraries from scikit-learn: 

from sklearn.naive_bayes import MultinomialNB 

nb = MultinomialNB() 

nb.fit(x_train_bow, y_train) 

Let us evaluate this model on the validation set. We first need to transform it to the bag-of-words 

representation, using the same CountVectorizer already used for training: 

 x_val_bow = cv.transform(x_val) 

 predicted_y_val = nb.predict(x_val_bow) 

Now, we can compare the predictions with the gold labels of the validation set and compute accuracy: 

from sklearn import metrics 

acc = metrics.accuracy_score(y_val, predicted_y_val) 

Scikit-learn also provides a “classification report” that shows precision and recall for all classes: 

 print(metrics.classification_report(y_val, predicted_y_val)) 

You can also display the raw confusion matrix, but note that scikit-learn displays the gold labels as the 

rows and the predicted labels as columns: 

 print(metrics.confusion_matrix(y_val, predicted_y_val)) 

Create two other classifiers by changing some parameters either in the data extraction (CountVectorizer) 

or the training (MultinomialNB) step. Select the best of the three models based on the development set 

performance and use that model for predicting and evaluating the test set (don’t forget to vectorize the 

test set with the appropriate CountVectorizer!). 

A few suggestions for modifying the parameters: 
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• The corpus is already lowercased and tokenized, so there are limited options in that respect, but 

you may still try to improve tokenization. 

• The CountVectorizer documentation is available here: https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html 

In particular, you could experiment with the stop_words and binary parameters. 

• The MultinomialNB documentation is here: https://scikit-

learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html 

The alpha parameter specifies the amount of smoothing and can be changed. 

 

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

