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IN4080	–	2023	
Mandatory	assignment	2	

 
Thursday 28 September 2023 

Submission deadline: Monday 16 October 2023 23:59 CEST 

General	requirements	

We assume that you have read and are familiar with IFI's requirements and guidelines for mandatory 
assignments: 
https://www.uio.no/english/studies/examinations/compulsory-activities/mn-ifi-mandatory.html 
https://www.uio.no/english/studies/examinations/compulsory-activities/mn-ifi-guidelines.html 

Note that any use of pretrained language models (such as ChatGPT) is forbidden for this assignment. 

This is an individual assignment. You should not deliver joint submissions. 

You may upload several submissions to Devilry, but only the last submission will be evaluated. Therefore, 
make sure to include all files in the last submission. If you submit more than one file, put them into a zip-
archive and name your submission as follows: <username>_in4080_mandatory_2 

Your submission should contain: 

• One or several Jupyter notebooks containing your code, and where you answer the text 
questions in markup. 

• A PDF version of the notebook(s) where all the results of the runs are included. 

The assignment consists of three parts with a total of 100 points. You are required to get at least 60 
points to pass. It is more important that you try to answer all questions rather than that you get 
everything correct. 

Goals	

In this assignment, we will experiment with sequence classification models for the part-of-speech 
tagging task. In the first part, we will evaluate some pre-implemented sequence classification models 
from NLTK. In the second part, we will experiment in detail with a greedy logistic regression tagger and 
investigate the impact of different feature types. Finally, in the third part, we will evaluate the best 
taggers on held-out data and perform more fine-grained evaluation. 

https://www.uio.no/english/studies/examinations/compulsory-activities/mn-ifi-mandatory.html
https://www.uio.no/english/studies/examinations/compulsory-activities/mn-ifi-guidelines.html
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Part	1	–	Exploring	the	NLTK	tagger	landscape	 	 	 [30	pts]	

The NLTK toolkit provides various methods to train and test part-of-speech taggers. Most relevant 
content is described in chapters 5 and 6. For our experiments, we will use the Brown corpus, which is 
annotated with part-of-speech tags and is also made available through NLTK. 

Exercise	1a:	Data	Split	 	 	 	 	 	 	 [5	pts]	

For our first experiments, we limit ourselves to the news section of the Brown corpus and split it into a 
training (90%) and a validation (10%) set. (We don’t need a test set for the moment, but will build one in 
part 3.) Moreover, we use the universal tagset instead of the default one. 

Sections 5.5.1 and 5.5.2 of the NLTK book should give you a starting point for this. (You may shuffle the 
data if you wish, but don’t have to.) You can switch to the universal tagset with the following command: 

sents = brown.tagged_sents(categories='news', tagset='universal') 

You should store your data split in the variables news_train and news_val. Note that you may need 
to download the corpus first. 

Exercise	1b:	Most	Frequent	Class	Baseline	 	 	 	 	 [5	pts]	

The distribution of part-of-speech tags is typically quite skewed, with the most frequent class in general 
being common nouns. As a simple baseline, we should thus know how a model that always predicts the 
same (most frequent) class performs. This can be done with nltk.DefaultTagger. The NLTK book, 
section 5.4.1, shows how to “train” such a tagger. Note that we are using the universal tagset, so the 
most frequent tag is not named NN. Evaluate it on the validation set and report the accuracy. 

Exercise	1c:	Naïve	Bayes	Unigram	Tagger	 	 	 	 	 [5	pts]	

One of the first models discussed in course is a Naïve Bayes classifier that relies only on the current word 
and does not take any context into account. This model is available as nltk.UnigramTagger. Section 
5.5.1 of the NLTK book shows how to train and evaluate such a tagger. Report the accuracy on the 
validation set. How does the accuracy on the universal tagset differ from the one reported on the default 
tagset in the NLTK book? 

Exercise	1d:	Bigram	HMM	Tagger	 	 	 	 	 	 [5	pts]	

In the lectures, we spent quite some time on the HMM tagger. NLTK comes with a bigram HMM tagger 
which can be trained with the following command: 

hmm = nltk.HiddenMarkovModelTagger.train(news_train) 

Evaluate it on the validation set and report the result. 
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Exercise	1e:	Perceptron	with	greedy	decoding	 	 	 	 [10	pts]	

In the lectures, we have shortly discussed Matthew Honnibal’s proposal of a structured perceptron 
tagger with greedy decoding. He argued that an extended set of features is more helpful for tagging than 
exact (Viterbi) decoding. NLTK provides a re-implementation of this tagger that you can train in the 
following way: 

perc = nltk.PerceptronTagger(load=False) 
perc.train(news_train) 

Evaluate it on the validation set and report the result. 

Summarize the results of the previous exercises and discuss them in a few sentences. Do the accuracies 
correspond to your expectations? 

Part	2	–	Greedy	LR	taggers	and	feature	engineering	 	 [35	pts]	

In this part, we will dig a bit deeper in the implementation part and try to partially replicate the 
perceptron tagger, using logistic regression as its base classifier. 

Exercise	2a:	Getting	started	with	a	greedy	logistic	regression	tagger	 [5	pts]	

NLTK contains a ConsecutivePosTagger class, which actually corresponds to a greedy bigram HMM 
with additional features. It is described in detail in the NLTK book, chapter 6.1.6. The following code 
snippet reimplements this class to use the logistic regression classifier from Scikit-Learn as a basis: 

import nltk 
import numpy as np 
import sklearn 
from sklearn.linear_model import LogisticRegression 
from sklearn.feature_extraction import DictVectorizer 

class ScikitGreedyTagger(nltk.TaggerI): 

    def __init__(self, features, clf=LogisticRegression()): 
        self.features = features 
        self.classifier = clf 
        self.vectorizer = DictVectorizer() 

    def train(self, train_sents): 
        train_feature_sets = [] 
        train_labels = [] 

        for tagged_sent in train_sents: 
            history = [] 
            untagged_sent = nltk.tag.untag(tagged_sent) 

            for i, (word, tag) in enumerate(tagged_sent): 
                feature_set = features(untagged_sent, i, history) 
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                train_feature_sets.append(feature_set) 
                train_labels.append(tag) 
                history.append(tag) 

        x_train = self.vectorizer.fit_transform(train_feature_sets) 
        y_train = np.array(train_labels) 
        self.classifier.fit(x_train, y_train) 

    def tag(self, sentence): 
        test_features = [] 
        history = [] 
        for i, word in enumerate(sentence): 
            featureset = self.features(sentence, i, history) 
            test_features.append(featureset) 
        X_test = self.vectorizer.transform(test_features) 
        tags = self.classifier.predict(X_test) 
        return zip(sentence, tags) 

This class requires an additional function that defines the features to be used. This function returns a 
dictionary. This dictionary will then be converted into a set of one-hot vectors (one vector per dictionary 
key), and concatenated into a single vector. 

A basic feature function that only uses the current and previous words could look like this: 

def pos_features(sentence, i, history): 
    features = {"curr_word": sentence[i]} 
    if i == 0: 
        features["prev_word"] = "<START>" 
    else: 
        features["prev_word"] = sentence[i-1] 
    return features 

We have all the ingredients in place now to train and evaluate a tagger with this model: 

lr_tagger = ScikitGreedyTagger(pos_features) 
lr_tagger.train(news_train) 
lr_tagger.accuracy(news_val) 

How does the accuracy of this tagger compare to the taggers tested in part 1? 

Exercise	2b:	Adding	word	context	features		 	 	 	 [5	pts]	

The basic feature function contains the previous and the current word. Also add the next word and the 
word before the previous one. Describe which combination works best and keep it for the next 
experiment. 
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Exercise	2c:	Adding	transition	features	 	 	 	 	 [5	pts]	

Modify the feature function to include the tag predicted at the previous position. Does this help? What 
about a trigram model that includes the two previously predicted tags? 

Exercise	2d:	Even	more	features	 	 	 	 	 	 [10	pts]	

Try to add more features to get an even better tagger. Only the fantasy sets limits to what you may 
consider. Some ideas: Extract suffixes and prefixes from the current, previous or next word. Is the 
current word a number? Is it capitalized? Does it contain capitals? Does it contain a hyphen? etc. What is 
the best feature set you can come up with? Train and test various feature sets and select the best one. 

If you use sources for finding tips about good features (like articles, web pages, NLTK code, etc.) make 
references to the sources and explain what you got from them. 

Exercise	2e:	Regularization	 	 	 	 	 	 	 [10	pts]	

As in the previous assignment, we will study the effect of different regularization strengths now. In scikit-
learn, regularization is expressed by the parameter C. A smaller C means stronger regularization. Try with 
C in [0.01, 0.1, 1.0, 10.0, 100.0, 1000.0] and see which value which yields the best result. You can also try 
additional values. 

Summarize your experiments to make clear which set of features and parameters provide the best 
results, and what the corresponding accuracy score is. Did you manage to outperform the perceptron 
tagger? If not, where do you think the bottleneck of your current tagger lies? 

Part	3	–	Training	and	testing	on	a	larger	corpus	 	 	 [35	pts]	

The Brown corpus covers 15 different genres, but we have only explored the news genre so far. In this 
part, we will retrain the most promising taggers on an extended set of genres and test them on held-out 
data. 

Exercise	3a:	Compile	the	extended	training	and	test	data	 	 	 [5	pts]	

The NLTK book, chapter 2.1.3, lists the names of the 15 genres available in the Brown corpus. We will set 
two genres aside for testing: hobbies and adventure. For training, we will use the news training set 
prepared for the previous exercises, as well as the data from the remaining 12 genres. Prepare the 
corpus as described and store the datasets in the variables all_train, hobbies_test and 
adventure_test. We will not use news_val in this part. Make sure to use the universal tagset. 

Exercise	3b:	Evaluate	the	taggers	 	 	 	 	 	 [5	pts]	

Identify the most successful tagger from part 1 and the best setup from part 2. Retrain both of them on 
all_train and evaluate them separately on the two test genres. Report the results and discuss them 
briefly: Which of the two genres is “easier”? How well do the two taggers generalize to unseen genres? 
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Exercise	3c:	Confusion	matrix	 	 	 	 	 	 [5	pts]	

The accuracy gives us a high-level overview of the performance of a tagger, but we may be interested in 
finding out more details about where the tagger makes the mistakes. The universal tagset is reasonably 
small, so we can produce a confusion matrix. Take a look at https://www.nltk.org/api/nltk.tag.api.html 
and make a confusion matrix for the results. Pick the results of one test set and one tagger. Make sure 
you understand what the rows and columns are. Which pairs of tags are most easily confounded? 

You can find the documentation of the tagset in the following link, but note that NLTK uses an earlier, 
slightly different version of the tagset: https://universaldependencies.org/u/pos/index.html  

Exercise	3d:	Precision,	recall	and	f-measure	 	 	 	 [10	pts]	

Finding hints on the NLTK web page linked above, calculate the precision, recall and f-measure for each 
tag and display the results in a table. 

Also calculate the macro precision, macro recall and macro f-measure across all tags. 

Exercise	3e:	Error	analysis	 	 	 	 	 	 	 [10	pts]	

Sometimes, it makes sense to inspect the output of a machine learning model more thoroughly. Find five 
sentences in the test set where at least one token is misclassified and display these sentences in the 
following format, with both the predicted and gold tags. 

Token               pred   gold 
================================== 
The                 DET    DET 
panda               NOUN   NOUN 
eats                VERB   VERB 
shoots              VERB   NOUN 
and                 CONJ   CONJ 
leaves              VERB   NOUN 

Identify the words that are tagged differently. Comment on each of the differences. Would you say that 
the predicted tag is wrong? Or is there a genuine ambiguity such that both answers are defendable? Or is 
even the gold tag wrong? 

https://www.nltk.org/api/nltk.tag.api.html
https://universaldependencies.org/u/pos/index.html

