Text classification

IN4080 Natural Language Processing

Yves Scherrer

Main NLP tasks

Natural language generation

These are (in general) **text classification** or **document classification** tasks: one label per text / document.

Annotation (natural language understanding)

- Hate speech detection
- Sentiment analysis
- Language identification
- Syntactic analysis
- Part-of-speech tagging

Experimental setup

Supervised classification

Supervised classification

Experimental setup

- We need **training data** for the training phase
 - Labeled instances
 - The model learns to associate instances with labels
- We need test data for the prediction phase
 - In most cases: labeled instances
 - Hide the labels, let the model predict new labels, and compare the two to compute performance
- Training and test data must not overlap!

A sample of a sentiment analysis dataset

Text / Document	Label
Shanghai is also really exciting (precisely skyscrapers galore). Good tweeps in China:	positive
Recession hit Veronique Branquinho, she has to quit her company, such a shame!	negative
happy bday!	positive
that`s great!! weee!! visitors!	positive
I THINK EVERYONE HATES ME ON HERE IOI	negative
soooooo wish i could, but im in school and myspace is completely blocked	negative
and within a short time of the last clue all of them	neutral
What did you get? My day is alright Haven't done anything yet. leaving soon to my stepsister tho	neutral
My bike was put on holdshould have known that argh total bummer	negative
I checked. We didn't win	neutral
and you're on twitter! Did the tavern bore you that much?	neutral
Its coming out the socket I feel like my phones hole is not a virgin. That's how loose it is :'(negative

https://www.kaggle.com/datasets/abhi8923shriv/sentiment-analysis-dataset

A three-way split

- In practice, you may want to experiment with several models, compare their quality, and select the best one
 - Different learning algorithms, different features, ...
- We need two sets of held-out data:
 - development (test) set / validation set
 - test set

To evaluate the best model setup objectively

To select the best model setup

A typical experimental setup

- 1. Train classifier on training set
- 2. Test it on validation set
- 3. Compare to earlier runs, is it better?
- 4. Error analysis: What are the mistakes (on validation set)?
- 5. Make changes to the classifier
- 6. Repeat from 1
- 7. When you have run out of ideas, test on test set
- 8. Stop!

A three-way split

- Example:
 - Model A gets 96% accuracy on validation set
 - Model B gets 97% accuracy on validation set
 - Model C gets 94% accuracy on validation set
- Select model B based on performance on validation set
- Evaluate the model objectively on the test set:
 - Model B gets 95% accuracy on test set
 - Model A or C may get better test set accuracies, but you cannot know this beforehand. You should not report such accuracies.

In practice

- Common splits:
 - 80% training, 10% validation, 10% test
 - 80% training, 20% validation, test from different source
 - Shuffle before splitting (why? / why not?)
- What if this leaves you with too little data?
 - K-fold cross-validation
 - Leave-one-out cross-validation

K-fold cross-validation

- Train K models with different parts held out for validation
- Average validation scores
- Typical example: K=10

Leave-one-out crossvalidation

- For each instance *i* in the dataset:
 - Train model on all instances except i
 - Validate model on *i*
- Average validation scores
- Requires training as many models as there are instances!
- This is only viable if the number of instances is small (~100).

Evaluation measures

Automatic evaluation

- Assume that the validation and test sets are labeled
- Hide the labels, let the model predict new labels, and compare the two
- For each instance, we have a gold label and a predicted label

Accuracy simply refers to the proportion of matching labels (gold label = predicted label):

number of instances with matching labels

total number of instances

- Example: A model that predicts whether a given message is spam or not.
- 1685 test instances, distributed as follows:

	Gold label YES	Gold label NO
System prediction YES	83	22
System prediction NO	41	1539

- Accuracy: $\frac{83+1539}{83+22+41+1539} = \frac{1622}{1685} = 96.26\%$
- What would be the accuracy of a stupid model that always returns NO?

Contingency tables

This is a contingency table (or confusion matrix):

	Gold label YES	Gold label NO
System prediction YES	true positive	false positive
System prediction NO	false negative	true negative

- These names are indeed a bit confusing...
 - positive = obtained a YES prediction
 - negative = obtained a NO prediction
 - true = prediction is true (predicted = gold label)
 - false = prediction is false (predicted ≠ gold label)

Precision and recall

	Gold label YES	Gold label NO
System prediction YES	true positive	false positive
System prediction NO	false negative	true negative

true positives

- Precision = $\frac{\text{true positives}}{\text{true positives}+\text{false positives}}$
- Recall = $\frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$
- Intuition: We want our model to report "all the truth and nothing but the truth"

Intuition: Information retrieval

- Goal: Find all the documents on a particular topic out of 100 000 documents
 - Say there are 5
 - The system delivers 10 documents: 2 relevant and 8 irrelevant
 - What is the accuracy?
- For information retrieval tasks, we focus on:
 - The relevant documents
 - The documents returned by the system
- We do not care about:
 - The irrelevant documents which are not returned

Intuition: Information retrieval

Precision and recall

- What about our two models?
- Intelligent:

• Precision:
$$\frac{83}{83+22} = 79.0\%$$

• Recall:
$$\frac{83}{83+41} = 66.9\%$$

- Stupid:
 - Precision: $\frac{0}{0+0} = 0\%$ (undefined $\rightarrow 0$)

• Recall:
$$\frac{0}{0+124} = 0\%$$

F-measure

- It is a bit inconvenient to have to report two figures, precision and recall...
- Can we combine them into one, take some "average"?
- F-measure is the harmonic mean of precision and recall
- F₁-measure is the (most popular) variant that weighs precision and recall equally:

$$F_1 = \frac{2 * P * R}{P + R}$$

Multi-class settings

Naive Bayes

Supervised classification

Take an instance x from input set X and associate it with a label y from the set of output labels Y.

• General prediction function:

$$\hat{y} = \arg\max_{y \in Y} S(x, y)$$

- \hat{y} : predicted class according to a model
- *S* is some scoring function and depends on the type of classification algorithm
- Prediction function for probabilistic models:

$$\hat{y} = rg \max_{y \in Y} P(y|x)$$

Bayesian inference

- Prediction: $\hat{y} = \underset{y \in Y}{\operatorname{arg max}} P(y|x)$
- Bayes' theorem: $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$
- Thus: $\hat{y} = \underset{v \in Y}{\operatorname{arg\,max}} \frac{P(x|y) \cdot P(y)}{P(x)}$
- P(x) does not affect the argmax computation
- Thus: $\hat{y} = \underset{y \in Y}{\operatorname{arg max}} (P(x|y) \cdot P(y))$

Bayesian inference

$$\hat{y} = \arg \max_{\substack{y \in Y \\ \text{likelihood prior probability}}} P(y)$$

 The likelihood part feels backwards: we compute the probability of a document given a label, not the probability of a label given a document!

Bag of words

- In the NB prediction function, x represents a document, consisting of dozens to hundreds of words: ŷ = arg max(P(x|y) ⋅ P(y)) y∈Y
- We need to decompose the document.
- The bag of words representation reduces a document to the frequency distribution of its words.

6 5 the I love this movie! It's sweet. fairy 3 to but with satirical humor. The always love_{to} it whimsical it and 3 dialogue is great and the and seen are seen 2 adventure scenes are fun... anyone friend happy dialogue yet It manages to be whimsical recommend would adventure and romantic while laughing who^{sweet} of satirical whimsical at the conventions of the it I but to romantic times fairy tale genre. I would recommend it to just about several yet sweet again it the humor satirical anyone. I've seen it several seen would adventure times, and I'm always happy to scenes I the manages aenre to see it again whenever I the times and fairy have a friend who hasn't and about while humor seen it yet! whenever have have conventions great ...

The Naive Bayes assumption

Bag of words representation: $P(x|y) = P(x_1, x_2, ..., x_n|y)$

- Each x_i corresponds to a word.
- Simplifying assumption: a word is equally likely in all positions.

Naïve Bayes assumption:

- All x_i are conditionally independent given the class.
- Their probabilities can thus be 'naively' multiplied: $P(x_1, x_2, ..., x_n | y) = P(x_1 | y) \cdot P(x_2 | y) \cdot ... \cdot P(x_n | y)$
- How realistic is this assumption?

The Naive Bayes assumption

Full prediction function: $\hat{y} = \underset{y \in Y}{\operatorname{arg max}} \left(P(y) \cdot \prod_{i=1}^{n} P(x_i | y) \right)$

Next steps:

- An example with fictive probabilities
- How to train the probability distributions from data

An example

Likelihoods $P(x_i|y)$:

	positive	negative
I	0.09	0.15
always	0.07	0.08
like	0.29	0.06
foreign	0.06	0.15
films	0.08	0.12

Priors P(y):

positive	negative
0.5	0.5

$$\hat{y} = \underset{y \in Y}{\operatorname{arg\,max}} \left(P(y) \cdot \prod_{i=1}^{n} P(x_i | y) \right)$$

- What is the prediction score of the sentence "I always like foreign films" for class "positive"?
- What is the score for class "negative"?

Training

Training a Naive Bayes model amounts to estimating the probabilities $\hat{P}(y)$ and $\hat{P}(x_i|y)$ **Maximum likelihood estimation:** maximize the probability of the training set (= compute relative counts)

An example

Consider the following movie reviews associated with genres "comedy" or "action":

fun couple love love	comedy
fast furious shoot	action
couple fly fast fun fun	comedy
furious shoot shoot fun	action
fly fast shoot love	action

- What is the value of P(y = comedy)?
- What is the value of P(x = fast | y = comedy)?
- What is the value of P(x = fast | y = action)?
- Which is the predicted class for "fast couple shoot fly"?

Smoothing

It is generally not the case that all words $x_1, x_2, ..., x_n$ are observed in all classes.

- When they are not, $P(x_i|y) = 0$
- By multiplication, the entire P(x|y) = 0

Solution: smooth the probabilities by adding pseudo-counts α :

 $\widehat{P}(x_i|y) = \frac{\operatorname{Count}(x_i, y) + \alpha}{\sum_{x' \in V} (\operatorname{Count}(x', y) + \alpha)}$

• This is called **additive smoothing** or **Lidstone smoothing**.

Smoothing

• No smoothing:

$$\hat{P}(x_i|y) = \frac{\text{Count}(x_i, y)}{\sum_{x' \in V} (\text{Count}(x', y))}$$

- Lidstone smoothing with 0.5 (NLTK default): $\widehat{P}(x_i|y) = \frac{\operatorname{Count}(x_i, y) + 0.5}{\sum_{x' \in V} (\operatorname{Count}(x', y) + 0.5)}$
- Add-one / Laplace smoothing ($\alpha = 1$):

 $\hat{P}(x_i|y) = \frac{\text{Count}(x_i, y) + 1}{\sum_{x' \in V} (\text{Count}(x', y) + 1)} = \frac{\text{Count}(x_i, y) + 1}{\sum_{x' \in V} (\text{Count}(x', y)) + |V|}$

An example

Let us apply add-one smoothing to the likelihoods.

fun couple love love	comedy
fast furious shoot	action
couple fly fast fun fun	comedy
furious shoot shoot fun	action
fly fast shoot love	action

- What is the value of P(y = comedy)?
- What is the value of P(x = fast | y = comedy)?
- What is the value of P(x = fast | y = action)?
- Which is the predicted class for "fast couple shoot fly"?

Prediction

We have learned the $P(x_i|y)$ for all x_i and y. We have learned the P(y) for all y.

Prediction: For each *x*, compute $\hat{y} = \underset{y \in Y}{\operatorname{arg\,max}} \left(P(y) \cdot \prod_{i=1}^{n} P(x_i|y) \right)$

- Prediction scores are probabilities ([0..1]) and typically become very small.
- To prevent this, one typically converts probabilities to log probabilities.

Computing in log space

What do logarithms do?

- Logarithms transform big positive numbers (> 1) into smaller positive numbers
- Logarithms transform numbers between 0 and 1 into big negative numbers
 - $\log(0.0005) = -7.60$
 - $\log(0.0004) = -7.82$
- The order is preserved: if a > b then log(a) > log(b)
- The log of a product is the sum of the logs of its factors

Computing in log space

Prediction function:

$$\hat{y} = \underset{y \in Y}{\operatorname{arg\,max}} \left(P(y) \cdot \prod_{i=1}^{n} P(x_i | y) \right)$$

In log space:

$$\hat{y} = \arg\max_{y \in Y} \left(\log P(y) + \sum_{i=1}^{n} \log P(x_i|y) \right)$$

- Avoids underflow and increases speed
- You may assume that all logarithms are base *e*, but any other base is fine (if used consistently)

Algorithm: Training

procedure train_naive_bayes (D, alpha):

```
for each document x with label y in D:
    doc_counts[y] += 1
    doc_counts_total += 1
```

```
for each feature xi in x:
    feat_counts[xi, y] += count(xi)
    feat_counts_total[xi] += count(xi)
end for
```

This procedure uses simple dictionaries instead of vectors/arrays. The latter may be more efficient.

```
end for
```

```
for each y in doc_counts:
    logpriors[y] = log(doc_counts[y] / doc_counts_total)
end for
```

end for

return logpriors, loglikelihoods

Algorithm: Testing

procedure test_naive_bayes (x, logpriors, loglikelihoods):

x is one test document

for each class y in logpriors: logsum[y] = logpriors[y]

```
for each feature xi in x:
    if xi, y in loglikelihoods: # skip features not seen in training
        logsum[y] += loglikelihoods[xi,y]
    end if
    end for
end for
```

```
y_hat = argmax<sub>v</sub>(logsum[y])
```

return y_hat

Variants

Multinomial Naive Bayes uses count-based bags of words (or weighted count-based BOWs)

 Multinomial distribution = probability distribution over vectors of non-negative counts

Binary Naive Bayes / Bernoulli Naive Bayes uses binary counts

1 if feature is present,
0 if feature is absent

		N Cou	B Ints	Bin Cou	ary ints
Four original documents:		+	_	+	_
 it was pathetic the worst part was the boxing scenes no plot twists or great scenes and satire and great plot twists great scenes great film 	and boxing film great it no or	2 0 1 3 0 0 0	0 1 0 1 1 1 1 1	1 0 1 2 0 0 0 0	0 1 0 1 1 1 1
 After per-document binarization: it was pathetic the worst part boxing scenes no plot twists or great scenes 	part pathetic plot satire scenes	0 0 1 1 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 2 \end{array} $	0 0 1 1 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 2 \end{array} $
+ and satire great plot twists+ great scenes film	the twists was worst	0 1 0 0		0 1 0 0	1 1 1 1

Figure 4.3 An example of binarization for the binary naive Bayes algorithm.

Variants

Multinomial NB

- Counts how many times a term is present
- Considers only the present terms, ignores absent terms
- Tends to be better for longer texts

Bernoulli NB

- Registers whether a term is present or not
- Considers both the present and the absent terms
- Recommended for shorter snippets

Properties of Naïve Bayes

- A probabilistic classifier
 - There are also non-probabilistic ones
- A multi-class classifier
 - Can handle more than two classes
 - This is the default case for NLP problems
- Uses batch training:
 - Each training instance is seen exactly once
 - The order in which training instances are seen does not matter
 - Probabilities can be computed exactly ("closed form"), there is no random/non-deterministic element in the computation

Properties of Naïve Bayes

- The independence assumption is in general wrong!
 - $P(x_1, x_2, ..., x_n | y)$ is far from $P(x_1 | y) \cdot P(x_2 | y) \cdot ...$ $P(x_n | y)$
- Nevertheless, NB works reasonably well as a classifier:
 - Fast to train, low storage requirements
 - Not prone to overfitting
 - Irrelevant features just cancel each other out
 - Good in domains with many equally important features

Readings

• Jurafsky & Martin 3rd ed., chapter 4

More information on the Bernoulli model:

Manning, Raghavan & Schütze, chapter 13
 <u>https://nlp.stanford.edu/IR-book/</u>