
Text classification

IN4080
Natural Language Processing

Yves Scherrer



Supervised classification

2

Today:

• Perceptron

• Logistic regression



Supervised classification

General prediction function:
ො𝑦 = arg max

𝑦∈𝑌
𝑆(𝑥, 𝑦)

• 𝑥 ∈ 𝑋: input instance

• 𝑦 ∈ 𝑌: class/label

• ො𝑦: predicted class according to a model

• 𝑆 is some scoring function and depends on the type
of classification algorithm

• Prediction function for probabilistic models:
ො𝑦 = arg max

𝑦∈𝑌
𝑃(𝑦|𝑥)
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Bayesian inference

• Prediction: ො𝑦 = arg max
𝑦∈𝑌

𝑃(𝑦|𝑥)

• Bayes’ theorem: 𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)∙𝑃(𝐴)

𝑃(𝐵)

• Thus: ො𝑦 = arg max
𝑦∈𝑌

𝑃(𝑥|𝑦)∙𝑃(𝑦)

𝑃(𝑥)

• 𝑃(𝑥) does not affect the argmax computation

• Thus: ො𝑦 = arg max
𝑦∈𝑌

(𝑃 𝑥 𝑦 ∙ 𝑃 𝑦 )
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Properties of Naïve Bayes

• A probabilistic classifier
• There are also non-probabilistic ones

• A multi-class classifier
• Can handle more than two classes
• This is the default case for NLP problems

• Uses batch training:
• Each training instance is seen exactly once
• The order in which training instances are seen does 

not matter
• Probabilities can be computed exactly (“closed 

form”), there is no random/non-deterministic 
element in the computation
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Perceptron
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Perceptron

Why not forget about probabilities and learn the 
weights in an error-driven way?

ො𝑦 = arg max
𝑦∈𝑌

𝑆(𝑥, 𝑦)

Training:
• Take one instance 𝑥 of the training set

• Predict a label ො𝑦 using the current model

• If the prediction is correct, nothing happens

• If the prediction is wrong, modify the parameters of 
the model

• Continue “until tired” (J. Eisenstein)
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Perceptron

• The perceptron algorithm starts with a default 
model, which is then continuously adjusted and 
improved.

• There is no natural end point of the training 
process.

• You may want to see every training instance at 
least once (one epoch), but you’re not required to.

• There are heuristics to figure out when it is a good 
moment to stop.

• Results will vary depending on the initial model 
and the order of presenting the instances.
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Bag-of-words representations 
for the perceptron

• Change of notation:
• 𝑥𝑘: the 𝑘th instance of the dataset
• 𝑓𝑖: the 𝑖th word in the vocabulary

• This was 𝑥𝑖 last week…

• 𝑓𝑖,𝑘: the frequency of word 𝑖 in instance 𝑘

• Count features:
• 𝑓1,𝑘 ≡ the number of times the word Ronaldo occurs 

in 𝑥𝑘

• Binary features:
• 𝑓1,𝑘 ≡ 1 if 𝑥𝑘 contains the word Ronaldo, 0 otherwise

9

Count features and binary features may even be combined in 

the same model. Statistical independence is not required.



The perceptron prediction 
function

The perceptron associates each feature 𝑓𝑖 with a 
weight 𝑤𝑖:

• The feature values change with each instance

• The weight values change with each class

The perceptron scoring function:

𝑆 𝑥𝑘, 𝑦 =෍

𝑖

𝑛

𝑤𝑖,𝑦 ∙ 𝑓𝑖,𝑘

• where 𝑛 is the number of features (vocabulary size)
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The perceptron prediction 
function

The weights and features can be rewritten as 
vectors:

• 𝒘𝒚 = 𝑤1,𝑦, 𝑤2,𝑦, … , 𝑤𝑛,𝑦

• 𝒇𝒌 = 𝑓1,𝑘 , 𝑓2,𝑘, … , 𝑓𝑛,𝑘

and the scoring function can be rewritten as their 
dot product:

𝑆 𝑥𝑘, 𝑦 = 𝒘𝒚 ∙ 𝒇𝒌

Putting everything together, the perceptron 
prediction function is thus:

ො𝑦 = arg max
𝑦∈𝑌

(𝒘𝒚 ∙ 𝒇𝒌)

11



The perceptron prediction 
function

What about smoothing?
• Possible, but usually not required.

• There is no danger of canceling out the entire dot 
product, as its main operation is addition.

Many types of classifiers use the same 
prediction function (𝒘 ∙ 𝒇)

• The particularity of the perceptron lies in the 
approach to estimate the values of the weight 
vector.
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Perceptron training

Prediction function:
ො𝑦 = arg max

𝑦∈𝑌
(𝒘𝒚 ∙ 𝒇𝒌)

How to learn 𝒘 with the perceptron algorithm:
• Take one instance 𝑥𝑘 of the training set

• Predict a label ො𝑦 using the current model

• If the prediction is correct, nothing happens

• If the prediction is wrong, modify 𝒘

• Continue “until tired” (J. Eisenstein)

At the beginning, 𝒘 is typically initialized to 0.

How exactly?

When exactly?
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Update

If the prediction is correct ( ො𝑦 = 𝑦), nothing happens:
• 𝒘𝑦 does not change.

• The weight vectors of the other classes do not change 
either.

If the prediction is wrong ( ො𝑦 ≠ 𝑦):
• The weight vector of the correct label 𝑦 is updated by 

adding the feature values:
𝒘𝑦 ← 𝒘𝑦 + 𝒇𝒌

• The weight vector of the predicted (but wrong) label ො𝑦 is 
updated by subtracting the feature values:

𝒘 ො𝑦 ← 𝒘 ො𝑦 − 𝒇𝒌
• The weight vectors of the other classes do not change.
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Example

• Three classes: 𝐴, 𝐵, 𝐶

• Four features: 𝑓1, 𝑓2, 𝑓3, 𝑓4

• Weight vectors 𝑤𝐴, 𝑤𝐵 , 𝑤𝐶 initialized to 0

• In case of ties, predict the alphabetically first class

• First training instance: [4, 0, 0, 2], class 𝐶

• Second training instance: [0, 1, 0, 1], class 𝐵

• Third training instance: [1, 0, 7, 0], class 𝐴

• Fourth training instance: [0, 2, 0, 0], class 𝐵
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Algorithm:
Training and testing
procedure train_perceptron (D):

wy = [0…0] for all labels y # weight vectors initialized to zeros

repeat:

for each document x with label y in D:

fx = extract_feature_vector(x)

y_hat = argmaxy’ ( wy’ · fx )

if y_hat != y:

wy = wy + fx

wy_hat = wy_hat – fx

end if

end for

until stopping condition met

return w
procedure test_perceptron (x, w):

fx = extract_feature_vector(x)

y_hat = argmaxy’ ( wy’ · fx )

return y_hat
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test_perceptron (x, w)



When should we stop 
training?

• When the perceptron has reached a predefined 
number of epochs.

• When there are no updates for one full epoch.
• In that case, the model has converged.

• A model may not converge at all. Why/when?

• When the number of updates per epoch has 
fallen under a predefined threshold.
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Linear classifiers

The feature vectors can be viewed as points in a 
(high-dimensional) space:

• Two features
(x and y axis)

• In practice, we generally
have thousands of
features…

• Three classes/labels
(red/green/blue)

• Two-class problems are
easier to model
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Linear classifiers

The perceptron is a linear classifier.

Linear classifiers try to find a straight line that 
separates the instances of the two classes.

• Decision boundary

• What is the “best”
such line?

• The perceptron does
not give any
guarantee on the
“goodness” of the
line.
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Linear classifiers

The two classes are 
linearly separable if they 
can be separated by a 
straight line.

• If the data is not linearly 
separable, a perceptron 
will not converge.

In higher-dimensional 
spaces, the line becomes 
a hyper-plane.
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Logistic regression
also known as Maximum Entropy Classifier
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Probabilities – useful or not?

When the goal is just prediction,
any numeric scoring function is fine.

But an algorithm that offers probabilities over 
labels is useful if:

• we want to interpret its decisions, i.e. understand 
why it reached the conclusions it did,

• we want to know how confident the algorithm was 
or compute statistical tests on its decisions,

• we want the training process to be guided by these 
confidence values,

• its output is fed as input to some other system.
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From scores to probabilities

How can we convert a tuple of numeric scores 
into a probability distribution?

• Make sure each score is 0 or positive
• Exponentiation

• exp 𝑥 = 𝑒𝑥 = 2.7183𝑥

• Make sure that the sum of scores is 1
• Normalization

This operation is
called softmax:
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From scores to probabilities

• Exponentiation example: 
• exp −15 = 0.0000003

• exp 0 = 1

• exp 15 = 3 269 017

• Softmax example:

•
exp(−20)

exp −20 +exp 5 +exp(31)
≈ 7.1 ∙ 10−23

•
exp(5)

exp −20 +exp 5 +exp(31)
≈ 5.1 ∙ 10−12

•
exp(31)

exp −20 +exp 5 +exp(31)
≈ 0.9999
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exp 𝑥 = 𝑒𝑥 = 2.7183𝑥



Logistic regression

Logistic regression can be viewed a probabilistic 
variant of the perceptron.

Its prediction scores correspond to conditional 
probabilities:

𝑆 𝑥, 𝑦 = 𝑃(𝑦|𝑥) =
exp(𝒘𝒚 ∙ 𝒇𝒌)

σ𝑦′∈𝑌 exp(𝒘𝒚′ ∙ 𝒇𝒌)

• Logistic regression can give an indication of 
how likely it is that the answer is correct.
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Perceptron vs logistic regression

Perceptron Logistic regression

Feature re-

presentation

Vector of binary

and/or real-valued 

feature functions

Vector of binary

and/or real-valued 

feature functions

Scoring

function

𝑆 𝑥𝑘, 𝑦 = 𝒘𝒚 ∙ 𝒇𝒌 𝑃 𝑦 𝑥𝑘 =
exp(𝒘𝒚 ∙ 𝒇𝒌)

σ
𝑦′∈𝑌 exp(𝒘𝒚′ ∙ 𝒇𝒌)

Prediction 

function

ො𝑦 = argmax
𝑦∈𝑌

𝑆(𝑥𝑘, 𝑦) ො𝑦 = argmax
𝑦∈𝑌

𝑃(𝑦|𝑥𝑘)

Update rule

26

If you are only interested in the 

predicted class, then the softmax

transformation is not necessary…



Example

You are given a logistic regression model for three 
classes 𝐴, 𝐵 and 𝐶.

The current model parameters are 𝑤 = 𝒘𝑨, 𝒘𝑩, 𝒘𝒄 , 
where 𝒘𝒚 is the weight vector for class 𝑦:

• 𝒘𝑨 = 1.0, 1.2,−2.0, 1.5, 1.0

• 𝒘𝑩 = −2.0, 3.0, 1.0, 0.0,−2.0

• 𝒘𝑪 = 0.0,−3.0, 0.0,−2.0, 5.0

You are additionally given an example 𝑥𝑘 whose 
feature vector is 𝒇𝒌 = 0, 1, 0, 1, 1

Compute 𝑃(𝑦|𝑥𝑘) for each of the three classes.
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Perceptron vs logistic regression

Perceptron Logistic regression

Feature re-

presentation

Vector of binary

and/or real-valued 

feature functions

Vector of binary

and/or real-valued 

feature functions

Scoring

function

𝑆 𝑥𝑘, 𝑦 = 𝒘𝒚 ∙ 𝒇𝒌 𝑃 𝑦 𝑥𝑘 =
exp(𝒘𝒚 ∙ 𝒇𝒌)

σ
𝑦′∈𝑌 exp(𝒘𝒚′ ∙ 𝒇𝒌)

Prediction 

function

ො𝑦 = argmax
𝑦∈𝑌

𝑆(𝑥𝑘, 𝑦) ො𝑦 = argmax
𝑦∈𝑌

𝑃(𝑦|𝑥𝑘)

Update rule 𝒘𝑦 ← 𝒘𝑦 + 𝒇𝒌
𝒘 ො𝑦 ← 𝒘 ො𝑦 − 𝒇𝒌

??
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Logistic regression
update rule

Let 𝑦 be the gold class:

• 𝒘𝒚 ← 𝒘𝒚 + (1 − 𝑃 𝑦 𝑥𝑘 ) ∙ 𝒇𝒌

• 𝒘𝒛 ← 𝒘𝒛 − 𝑃(𝑧|𝑥𝑘) ∙ 𝒇𝒌 for all 𝑧 ≠ 𝑦

• We always update parameters for all classes.

• If the classifier assigns a high probability to an 
incorrect class 𝑧, we strongly update 𝒘𝒛.

• If the classifier assigns a high probability to the 
correct class 𝑦, we update 𝒘𝒚 only a little.
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Logistic regression
update rule

The update intensity can be modulated with an 
additional parameter 𝜆, the learning rate:

• 𝒘𝒚 ← 𝒘𝒚 + 𝜆 ∙ (1 − 𝑃 𝑦 𝑥𝑘 ) ∙ 𝒇𝒌

• 𝒘𝒛 ← 𝒘𝒛 − 𝜆 ∙ 𝑃(𝑧|𝑥𝑘) ∙ 𝒇𝒌 for all 𝑧 ≠ 𝑦
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Perceptron vs logistic regression

Perceptron Logistic regression

Feature re-

presentation

Vector of binary

and/or real-valued 

feature functions

Vector of binary

and/or real-valued 

feature functions

Scoring

function

𝑆 𝑥, 𝑦 = 𝒘𝒚 ∙ 𝒇𝒌 𝑃 𝑦 𝑥𝑘 =
exp(𝒘𝒚 ∙ 𝒇𝒌)

σ
𝑦′∈𝑌 exp(𝒘𝒚′ ∙ 𝒇𝒌)

Prediction 

function

ො𝑦 = argmax
𝑦∈𝑌

𝑆(𝑥, 𝑦) ො𝑦 = argmax
𝑦∈𝑌

𝑃(𝑦|𝑥)

Update rule 𝒘𝑦 ← 𝒘𝑦 + 𝒇𝒌
𝒘 ො𝑦 ← 𝒘 ො𝑦 − 𝒇𝒌

𝒘𝒚 ← 𝒘𝒚 + 𝜆 ∙ (1 − 𝑃 𝑦 𝑥𝑘 ) ∙ 𝒇𝒌
𝒘𝒛 ← 𝒘𝒛 − 𝜆 ∙ 𝑃(𝑧|𝑥𝑘) ∙ 𝒇𝒌
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That’s all you need to know to implement a LR classifier.



Perceptron vs logistic 
regression

1. Are there any conditions where the 
perceptron and LR update rules produce the 
same update (assuming 𝜆 = 1)?

2. What happens if 𝑃(𝑦|𝑥) = 1?

3. What happens if 𝑃(𝑧|𝑥) = 0 for some 𝑧 ≠ 𝑦?

33



When should we stop 
training?

• After a predefined number of epochs

• When the overall probability of the training data 
reaches a predefined threshold

• I.e., minimize training loss

• When the classification performance on the 
validation set stops improving

• The validation set can also be used e.g. to find the 
optimal learning rate.
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Some background 
about logistic 
regression
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Some background

• Why the name “logistic regression”?

• Different learning strategies

• Regularization
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Linear regression

Example: predict the weight (𝑦) from the height 
(𝑥) of a person

• Both 𝑥 and 𝑦 are numeric variables
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Linear regression

Method:
• Fit a straight line to the observed data

• Assume that unseen data are placed on the line
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Logistic regression

Another example: predicting gender from height
• 𝑦 is a categorical variable

• Let’s assume 𝑦 is binary (values 0 and 1)
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Logistic regression

The optimal regression
line is a sigmoid curve:

• This is not a straight
line, so the regression
cannot be called
“linear” here.

The regression line represents the probability
of predicting gender 1:

• If 𝑃(𝑦 = 1|𝑥) ≥ 0.5 predict gender 1 (green)

• If 𝑃 𝑦 = 1 𝑥 < 0.5 predict gender 0 (red)
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Logistic regression

Two-class classification:

• Only one weight vector

• Prediction corresponds to the probability of 
class 1

• Logistic regression scoring function:

𝑃 𝑦 = 1 𝑥𝑘 =
1

1 + exp(𝒇𝒌 ∙ 𝒘)

• This is called the sigmoid function or logistic 
function
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Logistic regression

Regression point of view
(1 input feature):

• The line is the regression line

• It is sigmoid-shaped

• It represents a probability

Classification point of view
(2 input features):

• The line is the decision 
boundary

• It is a straight line

• It represents the most 
ambiguous feature values
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Learning in logistic 
regression
During training, we are given labeled training data
𝒟 = 𝒇𝟏, 𝑦1 , … , 𝒇𝒏, 𝑦𝑛 and our goal is to find the best parameters 
𝒘.

The measure for how well we’re doing on dataset 𝒟 is the probability 
of the dataset given the weight vector:

ෑ

𝑖=1

𝑛

𝑃(𝑦𝑖|𝒇𝒊;𝒘)

By convention, we take the logarithm of this probability. It is called the 
objective:

log ෑ

𝑖=1

𝑛

𝑃 𝑦𝑖 𝒇𝒊;𝒘 =෍

𝑖=1

𝑛

log(𝑃 𝑦𝑖 𝒇𝒊; 𝒘 )

Our model is good if the value of the objective is large.
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Learning in logistic 
regression
Rather than maximizing an objective, the learning 
process is usually formalized as minimizing a loss.

Logistic regression uses the negative log-likelihood loss 
or cross-entropy loss:

𝐿 𝒘 = −෍

𝑖=1

𝑛

log(𝑃 𝑦𝑖 𝒙𝒊; 𝒘 )

• The loss is influenced by the training data and the model 
parameters. But we assume that the training data is fixed, so 
we can view the loss as a function of the model parameters.

To obtain a better model, we need to adjust the model 
parameters such that the loss decreases.
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Models with 1 parameter

Let us assume that we have
a single parameter (feature)
𝑤.

Then, we can draw the loss
𝐿(𝑤) as a function of 𝑤.

• The cross-entropy loss is
guaranteed to produce a
convex curve with one 
minimum.

• 𝑤 is typically initialized at 0,
but we want it to become 𝑤𝑚𝑖𝑛.
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Models with 1 parameter

How do we find the minimum of 𝐿(𝑤)?
• Take the derivative and set it to zero: 𝐿′ 𝑤 = 0
• Unfortunately, we usually cannot solve the equation 
𝐿′ 𝑤 = 0

Instead, we can use an iterative approach:
• Pick a random value for 𝑤
• Evaluate 𝐿′ 𝑤
• If 𝐿′ 𝑤 = 0, we have found the

optimal value of 𝑤
• If 𝐿′ 𝑤 < 0, we need to increase 𝑤
• If 𝐿′ 𝑤 > 0, we need to decrease 𝑤

𝐿′ 𝑤 < 0: the curve goes downwards, i.e. the minimum is on the right

𝐿′ 𝑤 > 0: the curve goes upwards, i.e. the minimum is on the left 48



Models with 1 parameter

We can use an iterative approach:
• Pick a random value for 𝑤 (or set 𝑤 = 0)
• Evaluate 𝐿′ 𝑤
• Update 𝑤 ← 𝑤 − 𝜆 ∙ 𝐿′(𝑤)
• Repeat until 𝐿′ 𝑤

becomes very small

This procedure is called
gradient descent.

• For 𝑛 > 1 parameters, the
derivative 𝐿′ 𝑤 is replaced
with its 𝑛-dimensional
equivalent, the gradient 𝛻𝐿(𝒘)

If 𝐿′ 𝑤 = −1, increase 𝑤 by 𝜆
If 𝐿′ 𝑤 = +1, decrease 𝑤 by 𝜆
If 𝐿′ 𝑤 = 0, 𝑤 doesn’t change
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Learning rate

The learning rate 𝜆 governs the step size in 
gradient descent.

• If 𝜆 is too large, we may end up taking too large 
steps and may miss the optimum of the loss
function.

• Here we take a step in the right
direction but the step is too long.
We end up getting a higher value
for the loss than we had before!
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Gradient descent

Generic update rule: 𝒘 ← 𝒘− 𝜆 ∙ 𝛻𝐿(𝒘)

If you...
• take the cross-entropy loss function,

• substitute 𝑃 𝑦𝑖 𝒙𝒊; 𝒘 by the softmax,

• take its gradient,

• and plug it into the generic update rule,

then you should end up with the update rule 
specified in the beginning:

• 𝒘𝒚 ← 𝒘𝒚 + 𝜆 ∙ (1 − 𝑃 𝑦 𝑥 ) ∙ 𝒇𝒙
• 𝒘𝒛 ← 𝒘𝒛 − 𝜆 ∙ 𝑃(𝑧|𝑥) ∙ 𝒇𝒙 for all 𝑧 ≠ 𝑦

There is a 

demonstration of 

this process for 

the two-class LR 

in J&M 5.10.
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Different learning strategies

1. Batch learning:
• Calculate the loss for the whole training set:

𝐿 𝒘 = −෍

𝑖=1

𝑛

log(𝑃 𝑦𝑖 𝒙𝒊; 𝒘 )

• Make one move in the direction of the gradient

• Repeat

• Slow and inefficient, only makes one update 
per epoch!
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Different learning strategies

2. Stochastic gradient descent:
• Randomly pick one item from the training data

• Calculate the loss for this item

• Move in the direction of the gradient for this item

• Idea: the loss of the entire training set can be 
approximated by the loss of one randomly 
chosen example.

• Faster, but unstable.
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Different learning strategies

3. Minibatch training:
• Sample a small number of instances from the 

training data

• Calculate the loss for this subset

• Make one move in the direction of this gradient

• Good compromise between speed and stability

• Standard approach used with neural networks
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Different learning strategies

55

https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/
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Regularization

Logistic regression is prone to overfitting to the 
training data.

Regularization reduces overfitting by penalizing 
large weight values.

• No single feature/weight should override the others.

• L2 regularization: 𝑅 𝑤 = σ0
𝑛𝑤𝑖

2

• L1 regularization: 𝑅 𝑤 = σ0
𝑛 𝑤𝑖

• Can be specified with the penalty and C
parameters in Scikit-Learn.
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Readings

• Jurafsky & Martin, chapter 5
• Note: this chapter doesn’t cover the perceptron.
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