Text classification

IN4A080
Natural Language Processing

Yves Scherrer



Supervised classification

machine

\ learning
. feature EEEEEEE algorithm
extractor

™
' feature classifier
EEEEEEE mﬁl
. extractor model

Today:
* Perceptron
* Logistic regression




Supervised classification

General prediction function:
y = arg maxS(x,y)
yeY
* x € X: input instance
» y € Y: class/label
* V. predicted class according to a model

« S is some scoring function and depends on the type
of classification algorithm

 Prediction function for probabilistic models:
y = arg max P(y|x)
yeY



Bayesian inference

* Prediction: y = arg max P(y|x)
yeY
- Bayes’ theorem: P(A|B) = ZEIA L)
P(B)
~ P(x|y)-P(y)
* Thus: =
Y arg)g/g/lax o

* P(x) does not affect the argmax computation

e Thus: y = arg max(P(x|y) - P(y))
yeY



Properties of Naive Bayes

A probabilistic classifier
* There are also non-probabilistic ones

A multi-class classifier
e Can handle more than two classes
* This is the default case for NLP problems

» Uses batch training:
* Each training instance is seen exactly once
* The order in which training instances are seen does
not matter

« Probabilities can be computed exactly (“closed
form”), there is no random/non-deterministic
element in the computation



Perceptron



Perceptron

Why not forget about probabilities and learn the
weights in an error-driven way?
y = arg maxS(x,y)
yeY

Training:

» Take one instance x of the training set

* Predict a label y using the current model

« |f the prediction is correct, nothing happens

* |f the prediction is wrong, modify the parameters of
the model

» Continue “until tired” (J. Eisenstein)



Perceptron

* The perceptron algorithm starts with a default
model, which is then continuously adjusted and
Improved.

* There is no natural end point of the training
process.

* You may want to see every training instance at
least once (one epoch), but you're not required to.

* There are heuristics to figure out when it is a good
moment to stop.

* Results will vary depending on the initial model
and the order of presenting the instances.



Bag-of-words representations
for the perceptron

« Change of notation:
* x5 the kth instance of the dataset

* fi: the ith word in the vocabulary
* This was x; last week...

* fir: the frequency of word i in instance k

e Count features:

. f1,k = the number of times the word Ronaldo occurs
N Xy,

 Binary features:
* fix = 1if x4 contains the word Ronaldo, 0 otherwise

Count features and binary features may even be combined in

the same model. Statistical independence is not required. 9



The perceptron prediction
function

The perceptron associates each feature f; with a
weight w;:

* The feature values change with each instance

* The weight values change with each class

The perceptron scoring ftTJlnction:
S(xk' y) — Z Wiy * fi,k
i
« where n is the number of features (vocabulary size)
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The perceptron prediction
function

The weights and features can be rewritten as
vectors:

° Wy — [Wl,)” WZ,y: ...,Wn’y]
* fk — [.fl,k!.fZ,k! "'an,k]

and the scoring function can be rewritten as their
dot product:

S(xk'y) = W,y fk
Putting everything together, the perceptron
prediction function is thus:

y = arg max(wy, - fi)
yeY
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The perceptron prediction
function

What about smoothing?
» Possible, but usually not required.

* There is no danger of canceling out the entire dot
product, as its main operation is addition.

Many types of classifiers use the same
prediction function (w - f)

* The particularity of the perceptron lies in the
approach to estimate the values of the weight
vector.
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Perceptron training

Prediction function:

y = arg max(wy - fi)
yeY

How to learn w with the perceptron algorithm:
» Take one instance x;, of the training set
* Predict a label y using the current model
* |f the prediction is correct, nothing happens

+ If the prediction is wrong, modify w —— FE=EC T

» Continue “until tired” (J. Eisenstein) —= I EE
At the beginning, w is typically initialized to O.
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Update

If the prediction is correct (y = y), nothing happens:
* w,, does not change.

« The weight vectors of the other classes do not change
either.

If the prediction is wrong (y # y):

» The weight vector of the correct label y is updated by
adding the feature values:
w, < w, + [
* The weight vector of the predicted (but wrong) label y is
updated by subtracting the feature values:

Wy < Wy — [y
« The weight vectors of the other classes do not change.
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Example

* Three classes: 4,B,C

* Four features: 1, /5, f3, /4

* Weight vectors w,, wg, w, Initialized to 0

* In case of ties, predict the alphabetically first class

* First training instance: [4, 0,0, 2], class C

» Second training instance: [0,1, 0, 1], class B
 Third training instance: [1,0,7,0], class A
 Fourth training instance: [0, 2,0, 0], class B



Algorithm:
Training and testing

procedure train_perceptron (D):

w, = [0...0] for all labels y # weight vectors initialized to zeros
repeat:
for each document x with label y in D:
f, = extract_feature_vector(x)

y_hat = argmaxy, ( W, - fx ) } test _perceptron (X, W)

ify hat!=y:
w, = w, +f,
Wy_hat = y hat — fx
end if
end for
until stopping condition met

procedure test perceptron (x, w):
f, = extract_feature_vector(x)
y_hat = argmax, (w, - f, )

return y_hat

return w

16



When should we stop
training?
* When the perceptron has reached a predefined

number of epochs.

* When there are no updates for one full epoch.
* In that case, the model has converged.
* A model may not converge at all. Why/when?

* When the number of updates per epoch has
fallen under a predefined threshold.
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Linear classifiers

The feature vectors can be viewed as points in a

(high-dimensional) space:
« Two features
(x and y axis)

* In practice, we generally

have thousands of
features...

 Three classes/labels
(red/green/blue)

« Two-class problems are Sl
eaSler to mOdel 40 45 50 55 60 65 70 75 80 85

sepal length

5.0 . | The Iris Data Set

_ I iris setosa
45 : ‘ : : i B iris versicolor
' : : : : B iris virginica

sepal width
w
wun

w
o
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Linear classifiers

The perceptron is a linear classifier.

Linear classifiers try to find a straight line that
separates the instances of the two classes.

* Decision boundary

* What is the “best”
such line? N

* The perceptron does
not give any
guarantee on the 21
“goodness” of the " |
line. ; 3 i : : 1

.
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Linear classifiers

The two classes are | R
linearly separable if they | if;;:"
can be separated by a | ARG
straight line. | "'&3?&“ 2l
+ If the data is not linearly S IR
separable, a perceptron T
will not converge. e

In higher-dimensional
spaces, the line becomes
a hyper-plane.




Logistic regression

also known as Maximum Entropy Classifier



Probabilities — useful or not?

When the goal is just prediction, ? =
any numeric scoring function is fine. [ * ; >

But an algorithm that offers probabilities over
labels is useful if:

« we want to interpret its decisions, i.e. understand
why it reached the conclusions it did,

« we want to know how confident the algorithm was
or compute statistical tests on its decisions,

« we want the training process to be guided by these
confidence values,

* its output is fed as input to some other system.
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From scores to probabilities

How can we convert a tuple of numeric scores
into a probability distribution?
* Make sure each score is 0 or positive
« Exponentiation
* exp(x) = e* = 2.7183*
* Make sure that the sum of scores is 1
* Normalization
This operation is w1 w2 ]

called softmax: *
[ exp(ry) exp(22) exp(ay,) ]

Doy explai) DLy explai) 30 exp(ay)

23



From scores to probabilities

* Exponentiation example:

. exp(—15) = 0.0000003
* exp(0) =1
. exp(15) = 3269 017

exp(x) = e* = 2.7183*

» Softmax example: @ © &
. exp(—20) . ] —23 -20 5 31
exp(—20)+exp(5)+exp(31) 7.1-10
. exp(5) N . —12
exp(—20)+exp(5)+exp(31) 5.1-10
- 3D ~ 0.9999

exp(—20)+exp(5)+exp(31)

24



Logistic regression

Logistic regression can be viewed a probabilistic
variant of the perceptron.

Its prediction scores correspond to conditional
probabilities:

eXp(Wy ) fk)
Y ey eXP(Wy, - 1)

S(x,y) =P(ylx) =

* Logistic regression can give an indication of
how likely it is that the answer is correct.
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Perceptron vs logistic regression

_______[Perceptron___|Logistic regression

Feature re- Vector of binary Vector of binary
presentation and/or real-valued and/or real-valued
feature functions  feature functions

Scorin S(x.,y) =w, - _exp(wy - fi)
g (X1, y) y fr P(ylxk)_zyleyexp(wy,.fk)

function

Prediction y = argmaxS(xy,y) ¥ = argmaxP(y|xy)
function yEer yer

Update rule

If you are only interested in the
predicted class, then the softmax
transformation is not necessary...
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Example

You are given a logistic regression model for three
classes A, B and C.

The current model parameters are w = {w4, wg, w_},
where w,, is the weight vector for class y:

e w,=[ 1.0, 1.2,-2.0, 1.5, 1.0]

« wg =[-2.0, 3.0, 1.0, 0.0,—2.0]

 we=[ 0.0,—-3.0, 0.0,—2.0, 5.0]

You are additionally given an example x; whose
feature vectoris f;, = [0,1,0,1, 1]

Compute P(y|x;) for each of the three classes.




Perceptron vs logistic regression

_______[Perceptron___|Logistic regression

Feature re- Vector of binary Vector of binary
presentation and/or real-valued and/or real-valued
feature functions  feature functions

Scoring S, y) =wy - fr »p __ expwy - fi)
function ¢ o) z:y’ey exp(Wy, * fx)
Prediction y = argmaxS(xy,y) ¥ = argmaxP(y|xy)
function yEeY yEY

Update rule w, <« wy, + fi ?7?

wy — wy — fi
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Logistic regression
update rule

Let y be the gold class:
* Wy (_Wy'l' (1_P(Y|xk)) 'fk
‘w, —«w,—P(z|x}) " [k forall z #y

« We always update parameters for all classes.

* |f the classifier assigns a high probability to an
iIncorrect class z, we strongly update w,,.

* |f the classifier assigns a high probabillity to the
correct class y, we update w,, only a little.

30



Logistic regression
update rule

The update intensity can be modulated with an
additional parameter 1, the learning rate:

*wy, «wy +4-(1=Pylxg)) - fr
‘w, < w,—A1-P(z|xy) - [k forall z #y

31



Perceptron vs logistic regression

| |Perceptron __|Logistic regression

Feature re-
presentation

Scoring
function

Prediction
function

Update rule

Vector of binary  Vector of binary
and/or real-valued and/or real-valued
feature functions feature functions

S(x,y) = wy - fi P(ylxy) = 3 expei‘;z’v;,fk.)fk)
y'ey y!

y = argmaxS(x,y) ¥y = argmaxP(y|x)
YEY YEY

W, « W, + fr WreWytA A-PUIx)) - fi
4 Y WZPWZ_A.P(lek)'fk

That’s all you need to know to implement a LR classifier.
32



Perceptron vs logistic
regression

1. Are there any conditions where the
perceptron and LR update rules produce the
same update (assuming A = 1)?

2. What happens if P(y|x) = 17

3. What happens if P(z|x) = 0 for some z # y?

33



When should we stop
training?

 After a predefined number of epochs

* When the overall probability of the training data
reaches a predefined threshold

* |.e., minimize training loss

* When the classification performance on the
validation set stops improving

* The validation set can also be used e.g. to find the
optimal learning rate.

36



Some background
about logistic
regression



Some background

* Why the name “logistic regression™?
* Different learning strategies
* Regularization
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Linear regression

Example: predict the weight (y) from the height
(x) of a person

» Both x and y are numeric variables

100 e X
) =
50 - S Foog
w4 K}{);é
oo X
a0 4 o K:{Kxx:ﬁ
. 0
10 4 » :-‘{x Kﬁx%
o
» x5 X *’%
60 x%‘x}&}‘x
e ¥ oo
WX
i

140 150 160 170 180 190



Linear regression

Method:

* Fit a straight line to the observed data
« Assume that unseen data are placed on the line

110 +

100 4

s & 8 8 838 B8 8

140 150 160 170 180 190
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Logistic regression

Another example: predicting gender from height
* y is a categorical variable
 Let’'s assume y is binary (values 0 and 1)

150

125 -

100 4 W e e .

075 4

0.50 -

.25 -

000 4 ses =

—0.25 1

_UED T T T T T
1440 1540 150 173 180 190 200



Logistic regression

150

The optimal regression
line is a sigmoid curve:

* This is not a straight
line, so the regression ...
cannot be called 000 Lvvrveee
“linear” here. 025 |

_DSEI T T T T T
140 1540 1ad 17a 180 1940 200

The regression line represents the probability
of predicting gender 1:

 If P(y = 1|x) = 0.5 predict gender 1 (green)
 If P(y = 1|x) < 0.5 predict gender O (red)
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Logistic regression

Two-class classification:
* Only one weight vector

 Prediction corresponds to the probability of
class 1

* Logistic regression scoring function:

1
POy =1lxe) =77 oxp(Fr W)

 This is called the sigmoid function or logistic
function
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Logistic regression

150

Regression point of view
(1 input feature): .
* The line is the regression line o]
* |t is sigmoid-shaped
» It represents a probability T

—0.25 1

—0.50

Classification point of view
(2 input features):

 The line is the decision
boundary

* |tis a straight line

* |t represents the most
ambiguous feature values

100 4

E 8 &8 2 8 &

140 150 160 170 180 190
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Learning in logistic
regression

During training, we are given labeled training data
D ={(f1,v1),--,(fn, ¥,)} and our goal is to find the best parameters

w.

The measure for how well we’re doing on dataset D is the probability
of the dataset given the weigplt vector:

[ [Poitriw
i=1

By convention, we take the logarithm of this probability. It is called the

objective:
n n
log (]_[ PGilf s w)) = ) 1og(P(ilf W)
i=1 =1
Our model is good if the value of the objective is large.
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Learning in logistic
regression

Rather than maximizing an objective, the learning
process is usually formalized as minimizing a loss.

Logistic regression uses the negative log-likelinood loss
or cross-entropy loss:

Lw) = = > 10g(P(lxi w))
=1

* The loss is influenced by the training data and the model
parameters. But we assume that the training data is fixed, so
we can view the loss as a function of the model parameters.

To obtain a better model, we need to adjust the model
parameters such that the loss decreases.

46



Models with 1 parameter

Let us assume that we have Lw) 1

a single parameter (feature)

W.

Then, we can draw the loss

L(w) as a function of w. - N
* The cross-entropy loss is L'(Wanin) = 0

guaranteed to produce a
convex curve with one
minimum.

* w is typically initialized at O,
but we want it to become w,,,;,,.

47



Models with 1 parameter

How do we find the minimum of L(w)?
« Take the derivative and set it to zero: L'(w) = 0
« Unfortunately, we usually cannot solve the equation

L'(w)=0
Instead, we can use an iterative approach:
* Pick a random value for w Lw) 1
« Evaluate L'(w)
 If L'(w) = 0, we have found the \
optimal value of w
 If L'(w) < 0, we need to increase w h
« If L'(w) > 0, we need to decrease w  w w

L'(w) < 0: the curve goes downwards, i.e. the minimum is on the right
L'(w) > 0: the curve goes upwards, i.e. the minimum is on the left 15



Models with 1 parameter

We can use an iterative approach:
 Pick a random value for w (or set w = 0)
 Evaluate L'(w) { If L'(w) = —1, increase w by 1
« Update w «w — A - L'(w) 7 IfL'(w) =+1, decrease w by 1
. Repeat until L' (W) If L'(w) = 0, w doesn’t change
becomes very small

This procedure is called

gradient descent.
 For n > 1 parameters, the
derivative L' (w) is replaced

with its n-dimensional
equivalent, the gradient VL(w)

49



Learning rate

The learning rate A governs the step size Iin

gradient descent.

* |f A is too large, we may end up taking too large
steps and may miss the optimum of the loss

function.

* Here we take a step in the right
direction but the step is too long.
We end up getting a higher value
for the loss than we had before!

L(w) 4

\

Wi+1

too long step
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Gradient descent

Generic update rule: w «w — 1 - VL(w)
If you...

_ There is a
* take the cross-entropy loss function, demonstration of
. : ar.- this process for
subs’gtute P(.yllx,, w) by the softmax, he two.class LR
* take its gradient, in J&M 5.10.

* and plug it into the generic update rule,

then you should end up with the update rule
specified in the beginning:

* Wy(_Wy+/1'(1_P(Y|x))'fx

cw, <w,—A-P(z|x) - [, forall z #y
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Different learning strategies

1. Batch learning:
 Calculate the loss 1flor the whole training set:

Lw) = = ) 1og(P(yilx; w))
i=1
« Make one move in the direction of the gradient

* Repeat

« Slow and inefficient, only makes one update
per epoch!
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Different learning strategies

2. Stochastic gradient descent:
« Randomly pick one item from the training data
 Calculate the loss for this item
* Move in the direction of the gradient for this item

* |dea: the loss of the entire training set can be
approximated by the loss of one randomly
chosen example.

* Faster, but unstable.
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Different learning strategies

3. Minibatch training:

« Sample a small number of instances from the
training data

» Calculate the loss for this subset
« Make one move in the direction of this gradient

« Good compromise between speed and stability
» Standard approach used with neural networks
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Different learning strategies

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/
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https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/

Regularization

Logistic regression is prone to overfitting to the
training data.

Regularization reduces overfitting by penalizing
large weight values.

* No single feature/weight should override the others.
e L2 regularization: R(w) = X8 w?
e L1 regularization: R(w) = X0 |w;|

» Can be specified with the penalty and C
parameters in Scikit-Learn.
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Readings

 Jurafsky & Martin, chapter 5
* Note: this chapter doesn’t cover the perceptron.
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