
Text classification

IN4080
Natural Language Processing

Yves Scherrer

Supervised classification

2

Today:

• Perceptron

• Logistic regression

Supervised classification

General prediction function:
ො𝑦 = arg max

𝑦∈𝑌
𝑆(𝑥, 𝑦)

• 𝑥 ∈ 𝑋: input instance

• 𝑦 ∈ 𝑌: class/label

• ො𝑦: predicted class according to a model

• 𝑆 is some scoring function and depends on the type
of classification algorithm

• Prediction function for probabilistic models:
ො𝑦 = arg max

𝑦∈𝑌
𝑃(𝑦|𝑥)

3

Bayesian inference

• Prediction: ො𝑦 = arg max
𝑦∈𝑌

𝑃(𝑦|𝑥)

• Bayes’ theorem: 𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)∙𝑃(𝐴)

𝑃(𝐵)

• Thus: ො𝑦 = arg max
𝑦∈𝑌

𝑃(𝑥|𝑦)∙𝑃(𝑦)

𝑃(𝑥)

• 𝑃(𝑥) does not affect the argmax computation

• Thus: ො𝑦 = arg max
𝑦∈𝑌

(𝑃 𝑥 𝑦 ∙ 𝑃 𝑦)

4

Properties of Naïve Bayes

• A probabilistic classifier
• There are also non-probabilistic ones

• A multi-class classifier
• Can handle more than two classes
• This is the default case for NLP problems

• Uses batch training:
• Each training instance is seen exactly once
• The order in which training instances are seen does

not matter
• Probabilities can be computed exactly (“closed

form”), there is no random/non-deterministic
element in the computation

5

Perceptron

6

Perceptron

Why not forget about probabilities and learn the
weights in an error-driven way?

ො𝑦 = arg max
𝑦∈𝑌

𝑆(𝑥, 𝑦)

Training:
• Take one instance 𝑥 of the training set

• Predict a label ො𝑦 using the current model

• If the prediction is correct, nothing happens

• If the prediction is wrong, modify the parameters of
the model

• Continue “until tired” (J. Eisenstein)

7

Perceptron

• The perceptron algorithm starts with a default
model, which is then continuously adjusted and
improved.

• There is no natural end point of the training
process.

• You may want to see every training instance at
least once (one epoch), but you’re not required to.

• There are heuristics to figure out when it is a good
moment to stop.

• Results will vary depending on the initial model
and the order of presenting the instances.

8

Bag-of-words representations
for the perceptron

• Change of notation:
• 𝑥𝑘: the 𝑘th instance of the dataset
• 𝑓𝑖: the 𝑖th word in the vocabulary

• This was 𝑥𝑖 last week…

• 𝑓𝑖,𝑘: the frequency of word 𝑖 in instance 𝑘

• Count features:
• 𝑓1,𝑘 ≡ the number of times the word Ronaldo occurs

in 𝑥𝑘

• Binary features:
• 𝑓1,𝑘 ≡ 1 if 𝑥𝑘 contains the word Ronaldo, 0 otherwise

9

Count features and binary features may even be combined in

the same model. Statistical independence is not required.

The perceptron prediction
function

The perceptron associates each feature 𝑓𝑖 with a
weight 𝑤𝑖:

• The feature values change with each instance

• The weight values change with each class

The perceptron scoring function:

𝑆 𝑥𝑘, 𝑦 =෍

𝑖

𝑛

𝑤𝑖,𝑦 ∙ 𝑓𝑖,𝑘

• where 𝑛 is the number of features (vocabulary size)

10

The perceptron prediction
function

The weights and features can be rewritten as
vectors:

• 𝒘𝒚 = 𝑤1,𝑦, 𝑤2,𝑦, … , 𝑤𝑛,𝑦

• 𝒇𝒌 = 𝑓1,𝑘 , 𝑓2,𝑘, … , 𝑓𝑛,𝑘

and the scoring function can be rewritten as their
dot product:

𝑆 𝑥𝑘, 𝑦 = 𝒘𝒚 ∙ 𝒇𝒌

Putting everything together, the perceptron
prediction function is thus:

ො𝑦 = arg max
𝑦∈𝑌

(𝒘𝒚 ∙ 𝒇𝒌)

11

The perceptron prediction
function

What about smoothing?
• Possible, but usually not required.

• There is no danger of canceling out the entire dot
product, as its main operation is addition.

Many types of classifiers use the same
prediction function (𝒘 ∙ 𝒇)

• The particularity of the perceptron lies in the
approach to estimate the values of the weight
vector.

12

Perceptron training

Prediction function:
ො𝑦 = arg max

𝑦∈𝑌
(𝒘𝒚 ∙ 𝒇𝒌)

How to learn 𝒘 with the perceptron algorithm:
• Take one instance 𝑥𝑘 of the training set

• Predict a label ො𝑦 using the current model

• If the prediction is correct, nothing happens

• If the prediction is wrong, modify 𝒘

• Continue “until tired” (J. Eisenstein)

At the beginning, 𝒘 is typically initialized to 0.

How exactly?

When exactly?

13

Update

If the prediction is correct (ො𝑦 = 𝑦), nothing happens:
• 𝒘𝑦 does not change.

• The weight vectors of the other classes do not change
either.

If the prediction is wrong (ො𝑦 ≠ 𝑦):
• The weight vector of the correct label 𝑦 is updated by

adding the feature values:
𝒘𝑦 ← 𝒘𝑦 + 𝒇𝒌

• The weight vector of the predicted (but wrong) label ො𝑦 is
updated by subtracting the feature values:

𝒘 ො𝑦 ← 𝒘 ො𝑦 − 𝒇𝒌
• The weight vectors of the other classes do not change.

14

Example

• Three classes: 𝐴, 𝐵, 𝐶

• Four features: 𝑓1, 𝑓2, 𝑓3, 𝑓4

• Weight vectors 𝑤𝐴, 𝑤𝐵 , 𝑤𝐶 initialized to 0

• In case of ties, predict the alphabetically first class

• First training instance: [4, 0, 0, 2], class 𝐶

• Second training instance: [0, 1, 0, 1], class 𝐵

• Third training instance: [1, 0, 7, 0], class 𝐴

• Fourth training instance: [0, 2, 0, 0], class 𝐵

15

Algorithm:
Training and testing
procedure train_perceptron (D):

wy = [0…0] for all labels y # weight vectors initialized to zeros

repeat:

for each document x with label y in D:

fx = extract_feature_vector(x)

y_hat = argmaxy’ (wy’ · fx)

if y_hat != y:

wy = wy + fx

wy_hat = wy_hat – fx

end if

end for

until stopping condition met

return w
procedure test_perceptron (x, w):

fx = extract_feature_vector(x)

y_hat = argmaxy’ (wy’ · fx)

return y_hat

16

test_perceptron (x, w)

When should we stop
training?

• When the perceptron has reached a predefined
number of epochs.

• When there are no updates for one full epoch.
• In that case, the model has converged.

• A model may not converge at all. Why/when?

• When the number of updates per epoch has
fallen under a predefined threshold.

17

Linear classifiers

The feature vectors can be viewed as points in a
(high-dimensional) space:

• Two features
(x and y axis)

• In practice, we generally
have thousands of
features…

• Three classes/labels
(red/green/blue)

• Two-class problems are
easier to model

18

Linear classifiers

The perceptron is a linear classifier.

Linear classifiers try to find a straight line that
separates the instances of the two classes.

• Decision boundary

• What is the “best”
such line?

• The perceptron does
not give any
guarantee on the
“goodness” of the
line.

19

Linear classifiers

The two classes are
linearly separable if they
can be separated by a
straight line.

• If the data is not linearly
separable, a perceptron
will not converge.

In higher-dimensional
spaces, the line becomes
a hyper-plane.

20

Logistic regression
also known as Maximum Entropy Classifier

21

Probabilities – useful or not?

When the goal is just prediction,
any numeric scoring function is fine.

But an algorithm that offers probabilities over
labels is useful if:

• we want to interpret its decisions, i.e. understand
why it reached the conclusions it did,

• we want to know how confident the algorithm was
or compute statistical tests on its decisions,

• we want the training process to be guided by these
confidence values,

• its output is fed as input to some other system.

22

From scores to probabilities

How can we convert a tuple of numeric scores
into a probability distribution?

• Make sure each score is 0 or positive
• Exponentiation

• exp 𝑥 = 𝑒𝑥 = 2.7183𝑥

• Make sure that the sum of scores is 1
• Normalization

This operation is
called softmax:

23

From scores to probabilities

• Exponentiation example:
• exp −15 = 0.0000003

• exp 0 = 1

• exp 15 = 3 269 017

• Softmax example:

•
exp(−20)

exp −20 +exp 5 +exp(31)
≈ 7.1 ∙ 10−23

•
exp(5)

exp −20 +exp 5 +exp(31)
≈ 5.1 ∙ 10−12

•
exp(31)

exp −20 +exp 5 +exp(31)
≈ 0.9999

24

exp 𝑥 = 𝑒𝑥 = 2.7183𝑥

Logistic regression

Logistic regression can be viewed a probabilistic
variant of the perceptron.

Its prediction scores correspond to conditional
probabilities:

𝑆 𝑥, 𝑦 = 𝑃(𝑦|𝑥) =
exp(𝒘𝒚 ∙ 𝒇𝒌)

σ𝑦′∈𝑌 exp(𝒘𝒚′ ∙ 𝒇𝒌)

• Logistic regression can give an indication of
how likely it is that the answer is correct.

25

Perceptron vs logistic regression

Perceptron Logistic regression

Feature re-

presentation

Vector of binary

and/or real-valued

feature functions

Vector of binary

and/or real-valued

feature functions

Scoring

function

𝑆 𝑥𝑘, 𝑦 = 𝒘𝒚 ∙ 𝒇𝒌 𝑃 𝑦 𝑥𝑘 =
exp(𝒘𝒚 ∙ 𝒇𝒌)

σ
𝑦′∈𝑌 exp(𝒘𝒚′ ∙ 𝒇𝒌)

Prediction

function

ො𝑦 = argmax
𝑦∈𝑌

𝑆(𝑥𝑘, 𝑦) ො𝑦 = argmax
𝑦∈𝑌

𝑃(𝑦|𝑥𝑘)

Update rule

26

If you are only interested in the

predicted class, then the softmax

transformation is not necessary…

Example

You are given a logistic regression model for three
classes 𝐴, 𝐵 and 𝐶.

The current model parameters are 𝑤 = 𝒘𝑨, 𝒘𝑩, 𝒘𝒄 ,
where 𝒘𝒚 is the weight vector for class 𝑦:

• 𝒘𝑨 = 1.0, 1.2,−2.0, 1.5, 1.0

• 𝒘𝑩 = −2.0, 3.0, 1.0, 0.0,−2.0

• 𝒘𝑪 = 0.0,−3.0, 0.0,−2.0, 5.0

You are additionally given an example 𝑥𝑘 whose
feature vector is 𝒇𝒌 = 0, 1, 0, 1, 1

Compute 𝑃(𝑦|𝑥𝑘) for each of the three classes.

27

Perceptron vs logistic regression

Perceptron Logistic regression

Feature re-

presentation

Vector of binary

and/or real-valued

feature functions

Vector of binary

and/or real-valued

feature functions

Scoring

function

𝑆 𝑥𝑘, 𝑦 = 𝒘𝒚 ∙ 𝒇𝒌 𝑃 𝑦 𝑥𝑘 =
exp(𝒘𝒚 ∙ 𝒇𝒌)

σ
𝑦′∈𝑌 exp(𝒘𝒚′ ∙ 𝒇𝒌)

Prediction

function

ො𝑦 = argmax
𝑦∈𝑌

𝑆(𝑥𝑘, 𝑦) ො𝑦 = argmax
𝑦∈𝑌

𝑃(𝑦|𝑥𝑘)

Update rule 𝒘𝑦 ← 𝒘𝑦 + 𝒇𝒌
𝒘 ො𝑦 ← 𝒘 ො𝑦 − 𝒇𝒌

??

29

Logistic regression
update rule

Let 𝑦 be the gold class:

• 𝒘𝒚 ← 𝒘𝒚 + (1 − 𝑃 𝑦 𝑥𝑘) ∙ 𝒇𝒌

• 𝒘𝒛 ← 𝒘𝒛 − 𝑃(𝑧|𝑥𝑘) ∙ 𝒇𝒌 for all 𝑧 ≠ 𝑦

• We always update parameters for all classes.

• If the classifier assigns a high probability to an
incorrect class 𝑧, we strongly update 𝒘𝒛.

• If the classifier assigns a high probability to the
correct class 𝑦, we update 𝒘𝒚 only a little.

30

Logistic regression
update rule

The update intensity can be modulated with an
additional parameter 𝜆, the learning rate:

• 𝒘𝒚 ← 𝒘𝒚 + 𝜆 ∙ (1 − 𝑃 𝑦 𝑥𝑘) ∙ 𝒇𝒌

• 𝒘𝒛 ← 𝒘𝒛 − 𝜆 ∙ 𝑃(𝑧|𝑥𝑘) ∙ 𝒇𝒌 for all 𝑧 ≠ 𝑦

31

Perceptron vs logistic regression

Perceptron Logistic regression

Feature re-

presentation

Vector of binary

and/or real-valued

feature functions

Vector of binary

and/or real-valued

feature functions

Scoring

function

𝑆 𝑥, 𝑦 = 𝒘𝒚 ∙ 𝒇𝒌 𝑃 𝑦 𝑥𝑘 =
exp(𝒘𝒚 ∙ 𝒇𝒌)

σ
𝑦′∈𝑌 exp(𝒘𝒚′ ∙ 𝒇𝒌)

Prediction

function

ො𝑦 = argmax
𝑦∈𝑌

𝑆(𝑥, 𝑦) ො𝑦 = argmax
𝑦∈𝑌

𝑃(𝑦|𝑥)

Update rule 𝒘𝑦 ← 𝒘𝑦 + 𝒇𝒌
𝒘 ො𝑦 ← 𝒘 ො𝑦 − 𝒇𝒌

𝒘𝒚 ← 𝒘𝒚 + 𝜆 ∙ (1 − 𝑃 𝑦 𝑥𝑘) ∙ 𝒇𝒌
𝒘𝒛 ← 𝒘𝒛 − 𝜆 ∙ 𝑃(𝑧|𝑥𝑘) ∙ 𝒇𝒌

32

That’s all you need to know to implement a LR classifier.

Perceptron vs logistic
regression

1. Are there any conditions where the
perceptron and LR update rules produce the
same update (assuming 𝜆 = 1)?

2. What happens if 𝑃(𝑦|𝑥) = 1?

3. What happens if 𝑃(𝑧|𝑥) = 0 for some 𝑧 ≠ 𝑦?

33

When should we stop
training?

• After a predefined number of epochs

• When the overall probability of the training data
reaches a predefined threshold

• I.e., minimize training loss

• When the classification performance on the
validation set stops improving

• The validation set can also be used e.g. to find the
optimal learning rate.

36

Some background
about logistic
regression

37

Some background

• Why the name “logistic regression”?

• Different learning strategies

• Regularization

38

Linear regression

Example: predict the weight (𝑦) from the height
(𝑥) of a person

• Both 𝑥 and 𝑦 are numeric variables

39

Linear regression

Method:
• Fit a straight line to the observed data

• Assume that unseen data are placed on the line

40

Logistic regression

Another example: predicting gender from height
• 𝑦 is a categorical variable

• Let’s assume 𝑦 is binary (values 0 and 1)

41

Logistic regression

The optimal regression
line is a sigmoid curve:

• This is not a straight
line, so the regression
cannot be called
“linear” here.

The regression line represents the probability
of predicting gender 1:

• If 𝑃(𝑦 = 1|𝑥) ≥ 0.5 predict gender 1 (green)

• If 𝑃 𝑦 = 1 𝑥 < 0.5 predict gender 0 (red)

42

Logistic regression

Two-class classification:

• Only one weight vector

• Prediction corresponds to the probability of
class 1

• Logistic regression scoring function:

𝑃 𝑦 = 1 𝑥𝑘 =
1

1 + exp(𝒇𝒌 ∙ 𝒘)

• This is called the sigmoid function or logistic
function

43

Logistic regression

Regression point of view
(1 input feature):

• The line is the regression line

• It is sigmoid-shaped

• It represents a probability

Classification point of view
(2 input features):

• The line is the decision
boundary

• It is a straight line

• It represents the most
ambiguous feature values

44

Learning in logistic
regression
During training, we are given labeled training data
𝒟 = 𝒇𝟏, 𝑦1 , … , 𝒇𝒏, 𝑦𝑛 and our goal is to find the best parameters
𝒘.

The measure for how well we’re doing on dataset 𝒟 is the probability
of the dataset given the weight vector:

ෑ

𝑖=1

𝑛

𝑃(𝑦𝑖|𝒇𝒊;𝒘)

By convention, we take the logarithm of this probability. It is called the
objective:

log ෑ

𝑖=1

𝑛

𝑃 𝑦𝑖 𝒇𝒊;𝒘 =෍

𝑖=1

𝑛

log(𝑃 𝑦𝑖 𝒇𝒊; 𝒘)

Our model is good if the value of the objective is large.

45

Learning in logistic
regression
Rather than maximizing an objective, the learning
process is usually formalized as minimizing a loss.

Logistic regression uses the negative log-likelihood loss
or cross-entropy loss:

𝐿 𝒘 = −෍

𝑖=1

𝑛

log(𝑃 𝑦𝑖 𝒙𝒊; 𝒘)

• The loss is influenced by the training data and the model
parameters. But we assume that the training data is fixed, so
we can view the loss as a function of the model parameters.

To obtain a better model, we need to adjust the model
parameters such that the loss decreases.

46

Models with 1 parameter

Let us assume that we have
a single parameter (feature)
𝑤.

Then, we can draw the loss
𝐿(𝑤) as a function of 𝑤.

• The cross-entropy loss is
guaranteed to produce a
convex curve with one
minimum.

• 𝑤 is typically initialized at 0,
but we want it to become 𝑤𝑚𝑖𝑛.

47

Models with 1 parameter

How do we find the minimum of 𝐿(𝑤)?
• Take the derivative and set it to zero: 𝐿′ 𝑤 = 0
• Unfortunately, we usually cannot solve the equation
𝐿′ 𝑤 = 0

Instead, we can use an iterative approach:
• Pick a random value for 𝑤
• Evaluate 𝐿′ 𝑤
• If 𝐿′ 𝑤 = 0, we have found the

optimal value of 𝑤
• If 𝐿′ 𝑤 < 0, we need to increase 𝑤
• If 𝐿′ 𝑤 > 0, we need to decrease 𝑤

𝐿′ 𝑤 < 0: the curve goes downwards, i.e. the minimum is on the right

𝐿′ 𝑤 > 0: the curve goes upwards, i.e. the minimum is on the left 48

Models with 1 parameter

We can use an iterative approach:
• Pick a random value for 𝑤 (or set 𝑤 = 0)
• Evaluate 𝐿′ 𝑤
• Update 𝑤 ← 𝑤 − 𝜆 ∙ 𝐿′(𝑤)
• Repeat until 𝐿′ 𝑤

becomes very small

This procedure is called
gradient descent.

• For 𝑛 > 1 parameters, the
derivative 𝐿′ 𝑤 is replaced
with its 𝑛-dimensional
equivalent, the gradient 𝛻𝐿(𝒘)

If 𝐿′ 𝑤 = −1, increase 𝑤 by 𝜆
If 𝐿′ 𝑤 = +1, decrease 𝑤 by 𝜆
If 𝐿′ 𝑤 = 0, 𝑤 doesn’t change

49

Learning rate

The learning rate 𝜆 governs the step size in
gradient descent.

• If 𝜆 is too large, we may end up taking too large
steps and may miss the optimum of the loss
function.

• Here we take a step in the right
direction but the step is too long.
We end up getting a higher value
for the loss than we had before!

50

Gradient descent

Generic update rule: 𝒘 ← 𝒘− 𝜆 ∙ 𝛻𝐿(𝒘)

If you...
• take the cross-entropy loss function,

• substitute 𝑃 𝑦𝑖 𝒙𝒊; 𝒘 by the softmax,

• take its gradient,

• and plug it into the generic update rule,

then you should end up with the update rule
specified in the beginning:

• 𝒘𝒚 ← 𝒘𝒚 + 𝜆 ∙ (1 − 𝑃 𝑦 𝑥) ∙ 𝒇𝒙
• 𝒘𝒛 ← 𝒘𝒛 − 𝜆 ∙ 𝑃(𝑧|𝑥) ∙ 𝒇𝒙 for all 𝑧 ≠ 𝑦

There is a

demonstration of

this process for

the two-class LR

in J&M 5.10.

51

Different learning strategies

1. Batch learning:
• Calculate the loss for the whole training set:

𝐿 𝒘 = −෍

𝑖=1

𝑛

log(𝑃 𝑦𝑖 𝒙𝒊; 𝒘)

• Make one move in the direction of the gradient

• Repeat

• Slow and inefficient, only makes one update
per epoch!

52

Different learning strategies

2. Stochastic gradient descent:
• Randomly pick one item from the training data

• Calculate the loss for this item

• Move in the direction of the gradient for this item

• Idea: the loss of the entire training set can be
approximated by the loss of one randomly
chosen example.

• Faster, but unstable.

53

Different learning strategies

3. Minibatch training:
• Sample a small number of instances from the

training data

• Calculate the loss for this subset

• Make one move in the direction of this gradient

• Good compromise between speed and stability

• Standard approach used with neural networks

54

Different learning strategies

55

https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/

https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/

Regularization

Logistic regression is prone to overfitting to the
training data.

Regularization reduces overfitting by penalizing
large weight values.

• No single feature/weight should override the others.

• L2 regularization: 𝑅 𝑤 = σ0
𝑛𝑤𝑖

2

• L1 regularization: 𝑅 𝑤 = σ0
𝑛 𝑤𝑖

• Can be specified with the penalty and C
parameters in Scikit-Learn.

56

Readings

• Jurafsky & Martin, chapter 5
• Note: this chapter doesn’t cover the perceptron.

57

	Slide 1: Text classification
	Slide 2: Supervised classification
	Slide 3: Supervised classification
	Slide 4: Bayesian inference
	Slide 5: Properties of Naïve Bayes
	Slide 6: Perceptron
	Slide 7: Perceptron
	Slide 8: Perceptron
	Slide 9: Bag-of-words representations for the perceptron
	Slide 10: The perceptron prediction function
	Slide 11: The perceptron prediction function
	Slide 12: The perceptron prediction function
	Slide 13: Perceptron training
	Slide 14: Update
	Slide 15: Example
	Slide 16: Algorithm: Training and testing
	Slide 17: When should we stop training?
	Slide 18: Linear classifiers
	Slide 19: Linear classifiers
	Slide 20: Linear classifiers
	Slide 21: Logistic regression
	Slide 22: Probabilities – useful or not?
	Slide 23: From scores to probabilities
	Slide 24: From scores to probabilities
	Slide 25: Logistic regression
	Slide 26: Perceptron vs logistic regression
	Slide 27: Example
	Slide 29: Perceptron vs logistic regression
	Slide 30: Logistic regression update rule
	Slide 31: Logistic regression update rule
	Slide 32: Perceptron vs logistic regression
	Slide 33: Perceptron vs logistic regression
	Slide 36: When should we stop training?
	Slide 37: Some background about logistic regression
	Slide 38: Some background
	Slide 39: Linear regression
	Slide 40: Linear regression
	Slide 41: Logistic regression
	Slide 42: Logistic regression
	Slide 43: Logistic regression
	Slide 44: Logistic regression
	Slide 45: Learning in logistic regression
	Slide 46: Learning in logistic regression
	Slide 47: Models with 1 parameter
	Slide 48: Models with 1 parameter
	Slide 49: Models with 1 parameter
	Slide 50: Learning rate
	Slide 51: Gradient descent
	Slide 52: Different learning strategies
	Slide 53: Different learning strategies
	Slide 54: Different learning strategies
	Slide 55: Different learning strategies
	Slide 56: Regularization
	Slide 57: Readings

