
Sequence labeling

IN4080
Natural Language Processing

Yves Scherrer



Regularization

Logistic regression is prone to overfitting to the 
training data.

Regularization reduces overfitting by penalizing 
large weight values.

• No single feature/weight should override the others.

• L2 regularization: 𝑅 𝑤 = σ0
𝑛𝑤𝑖
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• L1 regularization: 𝑅 𝑤 = σ0
𝑛 𝑤𝑖

• Can be specified with the penalty and C
parameters in Scikit-Learn.

• See J&M chapter 5.7 for details
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Linear classifiers 
overview
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Overview

Naive Bayes Perceptron Logistic regression

Probabilistic Non-probabilistic Probabilistic

Generative Discriminative Discriminative

Batch training Online training Batch or online training
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Generative vs discriminative 
classifiers
Consider a classification problem in which we want to learn to 
distinguish between elephants (y = 1) and dogs (y = 0), based on 
some features of an animal. Given a training set, a [discriminative] 
algorithm [...] (basically) tries to find a straight line—that is, a 
decision boundary—that separates the elephants and dogs. Then, to 
classify a new animal as either an elephant or a dog, it checks on 
which side of the decision boundary it falls, and makes its prediction 
accordingly.

Here’s a different [generative] approach. First, looking at elephants, 
we can build a model of what elephants look like. Then, looking at 
dogs, we can build a separate model of what dogs look like. Finally, 
to classify a new animal, we can match the new animal against the 
elephant model, and match it against the dog model, to see whether 
the new animal looks more like the elephants or more like the dogs 
we had seen in the training set.

Andrew Ng, http://cs229.stanford.edu/notes/cs229-notes2.pdf
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Generative classifiers

Underlying idea: a generative process
• For each document 𝑥:

• Determine a class label according to 𝑃(𝑦)

• Generate word counts according to the 𝑃(𝑥𝑖|𝑦)

• How likely is it that the observed document 𝑥 (i.e. its
bag of words) with label 𝑦 has been generated from
the distributions 𝑃?

Generative models solve a harder problem than 
just classification

• Modelling the generative process may not be useful 
if we just want to predict labels
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Online vs batch learning

Batch learning algorithms process all the 
training data at once and create one model at 
the end of an epoch.

Online learning algorithms process one (or a 
few) training instances at a time, gradually 
refining the model.

• Intermediate models can be used at any time

• Easier to work with big data sets
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Linear classifiers: Pros and 
cons

Pros Cons

Naive 

Bayes

• Easy to implement, fast to

train

• Probabilistic

• Good for small data sets

• Often poor accuracy

• Limited choice of features 

to avoid correlation

Perceptron • Easy to implement

• Typically high accuracy

• Not probabilistic

• Hard to know when to stop

• Lack of margin can lead to 

overfitting

Logistic

regression

• Probabilistic (interpretable)

• Typically more accurate 

than Naive Bayes

• Can overtrain on correctly

labeled examples
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Sequence labeling 
problems
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Part-of-speech tagging

Profits soared at Boeing Co. , easily topping forecasts on Wall 
Street , as their CEO Alan Mulally announced first quarter 
results .

Profits/NOUN soared/VERB at/ADP Boeing/PROPN
Co./PROPN ,/PUNCT easily/ADV topping/VERB
forecasts/NOUN on/ADP Wall/PROPN Street/PROPN
,/PUNCT as/SCONJ their/DET CEO/PROPN Alan/PROPN
Mulally/PROPN announced/VERB first/ADJ quarter/NOUN
results/NOUN ./PUNCT
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Part-of-speech tagging

Verticalized format:
Profits NOUN
soared VERB
at ADP
Boeing PROPN
Co. PROPN
, PUNCT
easily ADV
topping VERB
forecasts NOUN
on ADP
Wall PROPN
Street PROPN
, PUNCT

as SCONJ
their DET
CEO PROPN
Alan PROPN
Mulally PROPN
announced VERB
first ADJ
quarter NOUN
results NOUN
. PUNCT
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Part-of-speech tagging

What is a part-of-speech (POS)?
• A basic grammatical category (noun, verb, etc.)

How many parts-of-speech are there?
• Traditional (Greek) grammar:

• 8: noun, verb, pronoun, preposition, adverb, conjunction, 
participle, article

• English corpora from the 1990s:
• 87, 35, 44

• Universal POS tagset (2012):
• 17: ADJ, ADV, INTJ, NOUN, PROPN, VERB, ADP, AUX, 

CCONJ, DET, NUM, PART, PRON, SCONJ, PUNCT, 
SYM, X

12



Tagsets

There are various tagsets, even for a single 
language:
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Brown Penn Universal

he she PPS PRP PRON

I PPSS PRP PRON

me him her PPO PRP PRON

my his her PP$ PRP$ DET

mine his hers PP$$ PRP$ PRON



Part-of-speech tagging

Why is POS tagging useful?

• Search for syntactic patterns in a corpus

• Information extraction: focus on content words

• Text-to-speech (how do we pronounce “lead”?)

• As a preprocessing step for other types of 
analysis
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Sequence labeling

Goal:
• Predict a label for each element of a sequence

• I.e. predict a label for each word of a sentence

Easy cases:
• Unambiguous words (words seen together with a 

single label during training)

Difficult cases:
• Unknown words (words not seen during training)

• Ambiguous words (words seen together with 
several labels during training)
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Ambiguity of tags

17

J&M, 3rd edition, chapter 8.



Another task:
Named entity recognition
Named entities:

• Person names

• Place names

• Date and time expressions

• Organization names

Citing high fuel prices, United Airlines said Friday it has increased 
fares by $6 per round trip on flights to some cities also served by 
lower-cost carriers. American Airlines, a unit of AMR Corp., 
immediately matched the move, spokesman Tim Wagner said. 
United, a unit of UAL Corp., said the increase took effect Thursday
and applies to most routes where it competes against discount 
carriers, such as Chicago to Dallas and Denver to San Francisco.
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Another task:
Named entity recognition

Named entities often cover several words.
They can be represented with named brackets:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it 
has increased fares by $6 per round trip on flights to some cities also 
served by lower-cost carriers. [ORG American Airlines], a unit of [ORG

AMR Corp.], immediately matched the move, spokesman [PER Tim 
Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the 
increase took effect [TIME Thursday] and applies to most routes 
where it competes against discount carriers, such as [LOC Chicago] to 
[LOC Dallas] and [LOC Denver] to [LOC San Francisco].

19



Named entities

20
J&M, SLP 3rd ed., ch. 8



BIO encoding

• B = Beginning of a new named entity

• I = Inside an existing named entity

• O = Outside of any named entity

Citing/O high/O fuel/O prices/O ,/O United/B-ORG 
Airlines/I-ORG said/O Friday/B-TIME it/O …

… such/O as/O Chicago/B-LOC to/O Dallas/B-LOC
and/O Denver/B-LOC to/O San/B-LOC Francisco/I-
LOC ./O

21

This looks exactly like a 

POS tagging task now.



Sequence labeling models

• Generative vs discriminative models

• Probabilistic vs non-probabilistic models

• Unigram models vs sequence models

• Greedy decoding vs exact search
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Generative
sequence models

Naïve Bayes

Hidden Markov Models
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Naïve Bayes for sequence 
labeling

A first (and probably stupid) idea:
• Look at one word at a time (no context)

• Predict the most probable tag according to training 
data

Prediction function:
• ො𝑦 = arg max

𝑦∈𝑌
(𝑃 𝑦 ∙ 𝑃 𝑥 𝑦 )

Estimate probabilities from training data:

• 𝑃 𝑥 𝑦 =
𝐶𝑜𝑢𝑛𝑡(𝑥,𝑦)

𝐶𝑜𝑢𝑛𝑡(𝑦)
𝑃 𝑦 =

𝐶𝑜𝑢𝑛𝑡(𝑦)

𝑁
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Let’s try!

dogs/N eat/V fish/N

cats/N eat/V mice/N

cats/N like/V fish/N

dogs/N fish/V

Training corpus:

𝑃 dogs 𝑁 =
2

7
𝑃 dogs 𝑉 = 0

𝑃 cats 𝑁 =
2

7
𝑃 cats 𝑉 = 0

𝑃 eat 𝑁 = 0 𝑃 eat 𝑉 =
2

4

𝑃 like 𝑁 = 0 𝑃 like 𝑉 =
1

4

𝑃 fish 𝑁 =
2

7
𝑃 fish 𝑉 =

1

4

𝑃 mice 𝑁 =
1

7
𝑃 mice 𝑉 = 0

Compute likelihoods:

Compute priors:

𝑃(𝑁) =
7

11
𝑃(𝑉) =

4

11
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Let’s try!

dogs like fishTest sentence:

Computations:

𝑃(𝑁|dogs) =
7

11
∙
2

7
=

2

11
𝑃(𝑉|dogs) =

4

11
∙ 0 = 0 ො𝑦 = 𝑁

𝑃(𝑁|like) =
7

11
∙ 0 = 0 𝑃(𝑉|like) =

4

11
∙
1

4
=

1

11
ො𝑦 = 𝑉

𝑃(𝑁|fish) =
7

11
∙
2

7
=

2

11
𝑃(𝑉|fish) =

4

11
∙
1

4
=

1

11
ො𝑦 = 𝑁

ො𝑦 = arg max
𝑦∈𝑌

(𝑃 𝑦 ∙ 𝑃 𝑥 𝑦 )
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Let’s try!

cats fish fishTest sentence:

Computations:

ො𝑦 = arg max
𝑦∈𝑌

(𝑃 𝑦 ∙ 𝑃 𝑥 𝑦 )

𝑃(𝑁|cats) =
7

11
∙
2

7
=

2

11
𝑃(𝑉|cats) =

4

11
∙ 0 = 0 ො𝑦 = 𝑁

𝑃(𝑁|fish) =
7

11
∙
2

7
=

2

11
𝑃(𝑉|fish) =

4

11
∙
1

4
=

1

11
ො𝑦 = 𝑁

𝑃(𝑁|fish) =
7

11
∙
2

7
=

2

11
𝑃(𝑉|fish) =

4

11
∙
1

4
=

1

11
ො𝑦 = 𝑁
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Naïve Bayes for sequence 
labeling

• Unambiguous words
• Seems fine…

• Ambiguous words
• Not great…

• cats/N fish/N fish/N

• Unknown words
• cats/N fish/N cyprinids/?

• 𝑃 𝑁 cyprinids =
7

11
∙ 0 = 0

• 𝑃 𝑉 cyprinids =
4

11
∙ 0 = 0 ො𝑦 = ???

• We can solve that with smoothing!
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Dealing with unknown words

Option 1: add-one smoothing

𝑃 dogs 𝑁 =
2+1

7+6
𝑃 dogs 𝑉 =

0+1

4+6

𝑃 cats 𝑁 =
2+1

7+6
𝑃 cats 𝑉 =

0+1

4+6

𝑃 eat 𝑁 =
0+1

7+6
𝑃 eat 𝑉 =

2+1

4+6

𝑃 like 𝑁 =
0+1

7+6
𝑃 like 𝑉 =

1+1

4+6

𝑃 fish 𝑁 =
2+1

7+6
𝑃 fish 𝑉 =

1+1

4+6

𝑃 mice 𝑁 =
1+1

7+6
𝑃 mice 𝑉 =

0+1

4+6

Compute likelihoods: Compute priors:

𝑃(𝑁) =
7+1

11+2
𝑃(𝑉) =

4+1

11+2

𝑃 𝑁 cyprinids =
7+1

11+2
∙
0+1

7+6
= 0.047

𝑃 𝑉 cyprinids =
4+1

11+2
∙
0+1

4+6
= 0.038

Test computations:
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Dealing with unknown words

Option 2: use rare words classes
• Split vocabulary into two sets:

• Rare words: words occurring (for example) < 5 times in 
the training data

• Frequent words: all other words

• Replace all rare words in training data by _rare_ 
before computing probabilities

• Replace unknown words in test data by _rare_

• 𝑃 𝑁 cyprinids = 𝑃(𝑁|_rare_)

• 𝑃 𝑉 cyprinids = 𝑃(𝑉|_rare_)
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What about ambiguous 
words?

• Our Naive Bayes model is a unigram model
• It looks at one word/label at a time

• It labels each word independently of its context:
• We/PRON can/AUX come/VERB tomorrow/ADV ./PUNCT

• The/DET trash/NOUN can/AUX is/VERB empty/ADJ ./PUNCT

• Tomorrow/ADV empty/ADJ come/VERB can/AUX ./PUNCT

• It cannot handle ambiguous words by design
• We have to change that design…
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Generative unigram models

PRON

We can come tomorrow

AUX VERB ADV

Priors

Likelihoods
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Generative bigram models

PRON

We can come tomorrow

AUX VERB ADV
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A simple Hidden Markov 
Model

Recall the Naïve Bayes prediction function:
ෝ𝑦𝑖 = arg max

𝑦𝑖∈𝑌
(𝑃(𝑦𝑖) ∙ 𝑃(𝑥𝑖|𝑦𝑖))

We can just replace the prior probability by a 
conditional probability:

ෝ𝑦𝑖 = arg max
𝑦𝑖∈𝑌

(𝑃 𝑦𝑖 𝑦𝑖−1 ∙ 𝑃 𝑥𝑖 𝑦𝑖 )

• This is a simple Hidden Markov model.

34
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Transitions Emissions



Bigram HMM

PRON

We can come tomorrow

AUX VERB ADV

35

Transitions

Emissions



Trigram HMM

PRON

We can come tomorrow

AUX VERB ADV

36

ෝ𝑦𝑖 = arg max
𝑦𝑖∈𝑌

(𝑃 𝑦𝑖 𝑦𝑖−2, 𝑦𝑖−1 ∙ 𝑃 𝑥𝑖 𝑦𝑖 )



Different ways to look at the 
context

Option 1: Look at the neighboring words:
ෝ𝑦𝑖 = arg max

𝑦𝑖∈𝑌
𝑃(𝑦𝑖|𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1)

• Doesn’t work with generative learning algorithms

• But works well with discriminative algorithms (later)

Option 2: Look at the previous tag decisions:
ෝ𝑦𝑖 = arg max

𝑦𝑖∈𝑌
𝑃(𝑦𝑖|𝑥𝑖 , 𝑦𝑖−1)

• Works well with generative learning algorithms

• This is the idea behind HMMs
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A Hidden Markov Model

Training:
• For each 𝑥, 𝑦 in training data:

• Compute and store 𝑃𝐸 𝑥 𝑦 =
𝐶𝑜𝑢𝑛𝑡(𝑥,𝑦)

𝐶𝑜𝑢𝑛𝑡(𝑦)

• For each bigram 𝑦𝑖−1, 𝑦𝑖 in training data:

• Compute and store 𝑃𝑇 𝑦𝑖|𝑦𝑖−1 =
𝐶𝑜𝑢𝑛𝑡(𝑦𝑖−1,𝑦𝑖)

𝐶𝑜𝑢𝑛𝑡(𝑦𝑖−1)

Testing/Prediction (first try):
• For each sentence in test data:

• For each position 𝑖 in sentence:

• Compute ෝ𝑦𝑖 = arg max
𝑦𝑖∈𝑌

(𝑃𝑇 𝑦𝑖 𝑦𝑖−1 ∙ 𝑃𝐸 𝑥𝑖 𝑦𝑖 )

• Store ෝ𝑦𝑖 to make it accessible for the next position

We will need to apply a 

trick for the first word of 

each sentence…
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Example
Training

39

Emissions:

𝑃𝑇 𝑁 𝑁 =
0

4
= 0

𝑃𝑇 𝑉 𝑁 =
4

4
= 1

𝑃𝑇 𝑁 𝑉 =
3

3
= 1

𝑃𝑇 𝑉 𝑉 =
0

3
= 0

𝑃𝑇 𝑁 ∗ =
4

4
= 1

𝑃𝑇 𝑉 ∗ =
0

4
= 0

Transitions:

/* dogs/N eat/V fish/N

/* cats/N eat/V mice/N

/* cats/N like/V fish/N

/* dogs/N fish/V

Training corpus:

𝑃𝐸 dogs 𝑁 =
2

7
𝑃𝐸 dogs 𝑉 = 0

𝑃𝐸 cats 𝑁 =
2

7
𝑃𝐸 cats 𝑉 = 0

𝑃𝐸 eat 𝑁 = 0 𝑃𝐸 eat 𝑉 =
2

4

𝑃𝐸 like 𝑁 = 0 𝑃𝐸 like 𝑉 =
1

4

𝑃𝐸 fish 𝑁 =
2

7
𝑃𝐸 fish 𝑉 =

1

4

𝑃𝐸 mice 𝑁 =
1

7
𝑃𝐸 mice 𝑉 = 0

Trick: add a dummy 

label * at the beginning 

of each sentence



Example – Prediction

dogs like fishTest sentence:

Computations:

ෝ𝑦𝑖 = arg max
𝑦𝑖∈𝑌

(𝑃𝑇 𝑦𝑖 𝑦𝑖−1 ∙ 𝑃𝐸 𝑥𝑖 𝑦𝑖 )

40

N

V

dogs like fish

1 ∙
2

7
= 0.286

0 ∙ 0 = 0

ො𝑦 = 𝑁

1 ∙
1

4
= 0.25

ො𝑦 = 𝑉

1 ∙
2

7
= 0.286

0 ∙
1

4
= 0

ො𝑦 = 𝑁

0 ∙ 0 = 0

Due to the small number of examples, a lot of probabilities become 0.

We can use add-one smoothing to avoid this.



Example
Training
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𝑃 dogs 𝑁 =
2+1

7+6
𝑃 dogs 𝑉 =

0+1

4+6

𝑃 cats 𝑁 =
2+1

7+6
𝑃 cats 𝑉 =

0+1

4+6

𝑃 eat 𝑁 =
0+1

7+6
𝑃 eat 𝑉 =

2+1

4+6

𝑃 like 𝑁 =
0+1

7+6
𝑃 like 𝑉 =

1+1

4+6

𝑃 fish 𝑁 =
2+1

7+6
𝑃 fish 𝑉 =

1+1

4+6

𝑃 mice 𝑁 =
1+1

7+6
𝑃 mice 𝑉 =

0+1

4+6

Smoothed emissions:

𝑃𝑇 𝑁 𝑁 =
0+1

4+2

𝑃𝑇 𝑉 𝑁 =
4+1

4+2

𝑃𝑇 𝑁 𝑉 =
3+1

3+2

𝑃𝑇 𝑉 𝑉 =
0+1

3+2

𝑃𝑇 𝑁 ∗ =
4+1

4+2

𝑃𝑇 𝑉 ∗ =
0+1

4+2

Smoothed transitions:

/* dogs/N eat/V fish/N

/* cats/N eat/V mice/N

/* cats/N like/V fish/N

/* dogs/N fish/V

Training corpus:



Example – Prediction

dogs like fishTest sentence:

Computations:

ෝ𝑦𝑖 = arg max
𝑦𝑖∈𝑌

(𝑃𝑇 𝑦𝑖 𝑦𝑖−1 ∙ 𝑃𝐸 𝑥𝑖 𝑦𝑖 )

42

N

V

dogs like fish

5

6
∙
3

13
= 0.192

1

6
∙
1

10
= 0.017

ො𝑦 = 𝑁

1

6
∙
1

13
= 0.013

5

6
∙
2

10
= 0.167

ො𝑦 = 𝑉

4

5
∙
3

13
= 0.185

1

5
∙
2

10
= 0.040

ො𝑦 = 𝑁

No more zeros, but the predictions remain the same.



Another example

cats fish fishTest sentence:

Computations:

ෝ𝑦𝑖 = arg max
𝑦𝑖∈𝑌

(𝑃𝑇 𝑦𝑖 𝑦𝑖−1 ∙ 𝑃𝐸 𝑥𝑖 𝑦𝑖 )
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N

V

cats fish fish

5

6
∙
3

13
= 0.192

1

6
∙
1

10
= 0.017

ො𝑦 = 𝑁

1

6
∙
3

13
= 0.038

5

6
∙
2

10
= 0.167

ො𝑦 = 𝑉

4

5
∙
3

13
= 0.185

1

5
∙
2

10
= 0.040

ො𝑦 = 𝑁

Seems to work fine for ambiguous words!



Computing the probabilities

• Now, we compute one argmax for each position:
ෝ𝑦𝑖 = arg max

𝑦𝑖∈𝑌
(𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1 )

• What if we want to get the joint probability of words and 
predicted labels?

𝑃(𝑥1..𝑛, ෞ𝑦1..𝑛) =ෑ

𝑖=1

𝑛

max
𝑦𝑖∈𝑌

(𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1 )

• Replace the argmax by max

• Multiply the probabilities of each position

• We haven’t done this multiplication yet...
• It doesn’t change the predictions, but it will become important 

later...

44



Example – Prediction

dogs like fishTest sentence:

Computations: 𝑃(𝑥1..𝑛, ෞ𝑦1..𝑛) =ෑ

𝑖=1

𝑛

max
𝑦𝑖∈𝑌

(𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1 )
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N

V

dogs like fish

5

6
∙
3

13
= 0.192

1

6
∙
1

10
= 0.017

ො𝑦 = 𝑁

0.192 ∙
1

6
∙
1

13
= 0.0025

0.192 ∙
5

6
∙
2

10
= 0.0321

ො𝑦 = 𝑉

0.0321 ∙
4

5
∙
3

13
= 0.0059

0.0321 ∙
1

5
∙
2

10
= 0.0013

ො𝑦 = 𝑁

Probabilities get smaller and smaller as we proceed, but the 

predictions remain the same.



Sequence labeling

Easy cases:
• Unambiguous words

• Solved

Difficult cases:
• Unknown words

• Solved with smoothing

• Ambiguous words
• Solved by conditioning on previously predicted tag

• Really???
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What’s the problem with this 
approach?

On the basis of the training corpus below, can 
you find an example sentence that does not get 
the correct labels?

/* dogs/N eat/V fish/N

/* cats/N eat/V mice/N

/* cats/N like/V fish/N

/* dogs/N fish/V
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Example
Training

48

𝑃 dogs 𝑁 =
2+1

7+6
𝑃 dogs 𝑉 =

0+1

4+6

𝑃 cats 𝑁 =
2+1

7+6
𝑃 cats 𝑉 =

0+1

4+6

𝑃 eat 𝑁 =
0+1

7+6
𝑃 eat 𝑉 =

2+1

4+6

𝑃 like 𝑁 =
0+1

7+6
𝑃 like 𝑉 =

1+1

4+6

𝑃 fish 𝑁 =
2+1

7+6
𝑃 fish 𝑉 =

1+1

4+6

𝑃 mice 𝑁 =
1+1

7+6
𝑃 mice 𝑉 =

0+1

4+6

Smoothed emissions:

𝑃𝑇 𝑁 𝑁 =
0+1

4+2

𝑃𝑇 𝑉 𝑁 =
4+1

4+2

𝑃𝑇 𝑁 𝑉 =
3+1

3+2

𝑃𝑇 𝑉 𝑉 =
0+1

3+2

𝑃𝑇 𝑁 ∗ =
4+1

4+2

𝑃𝑇 𝑉 ∗ =
0+1

4+2

Smoothed transitions:

/* dogs/N eat/V fish/N

/* cats/N eat/V mice/N

/* cats/N like/V fish/N

/* dogs/N fish/V

Training corpus:



Example – Prediction

fish dogs like catsTest sentence:

Computations:

49

N

V

fish dogs like

5

6
∙
3

13
= 𝟎. 𝟏𝟗𝟐

1

6
∙
2

10
= 0.033

N

0.192 ∙
1

6
∙
3

13
= 0.0074

0.192 ∙
5

6
∙
1

10
= 𝟎. 𝟎𝟏𝟔

V

0.016 ∙
4

5
∙
1

13
= 𝟎. 𝟎𝟎𝟎𝟗𝟖

0.016 ∙
1

5
∙
2

10
= 0.00064

N

cats

0.00098 ∙
1

6
∙
3

13
= 0.000038

0.00098 ∙
5

6
∙
1

10
= 𝟎. 𝟎𝟎𝟎𝟎𝟖𝟐

V

𝑃(𝑥1..𝑛, ෞ𝑦1..𝑛) =ෑ

𝑖=1

𝑛

max
𝑦𝑖∈𝑌

(𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1 )



What’s the problem?

• In our example, the transitions are strongly 
biased towards N – V – N – V ... sequences

• When transition and emission probabilities 
contradict each other, the “wrong one” may win

• The model has trouble getting out of a bad 
situation:

• Once it makes an error, the rest of the sentence is 
likely to be erroneous as well

• What would be the result of the correct 
labeling?
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Example – Prediction

fish dogs like catsTest sentence:

Computations:

51

N

V

fish dogs like

5

6
∙
3

13
= 0.192

1

6
∙
2

10
= 0.033

N

0.192 ∙
1

6
∙
3

13
= 0.0074

0.192 ∙
5

6
∙
1

10
= 0.016

N

0.0074 ∙
1

6
∙
1

13
= 0.00009

0.0074 ∙
5

6
∙
2

10
= 0.0012

V

cats

0.0012 ∙
4

5
∙
3

13
= 0.00022

0.0012 ∙
1

5
∙
1

10
= 0.000024

N

This probability is much higher than the 

one we found for N V N V: 0.000082



What’s the problem?

• One wrong decision (dogs/V) led the model on 
a suboptimal path from which it could not 
recover.

• If we “help” the model with this decision, it gets 
the rest right, and produces a much higher 
overall probability.

• The model takes decisions too early and 
cannot go back to correct a bad decision.
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What’s the problem?

What we actually compute:

𝑃 𝑥1..𝑛, ෞ𝑦1..𝑛 =ෑ
𝑖=1

𝑛

max
𝑦𝑖∈𝑌

𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1

What we really should compute:

𝑃 𝑥1..𝑛, ෞ𝑦1..𝑛 = max
𝑦1..𝑛∈𝑌𝑛

ෑ
𝑖=1

𝑛

𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1

The results are not the same...

Check all labels for one position

Check all combinations of labels for the entire sentence
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What’s the problem?

What we actually compute:

𝑃 𝑥1..𝑛, ෞ𝑦1..𝑛 =ෑ
𝑖=1

𝑛

max
𝑦𝑖∈𝑌

𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1

• Greedy/approximate inference/decoding

What we really should compute:

𝑃 𝑥1..𝑛, ෞ𝑦1..𝑛 = max
𝑦1..𝑛∈𝑌𝑛

ෑ
𝑖=1

𝑛

𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1

• Exact inference/decoding

The results are not the same...
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What’s the problem?

What we actually compute:

𝑃 𝑥1..𝑛, ෞ𝑦1..𝑛 =ෑ
𝑖=1

𝑛

max
𝑦𝑖∈𝑌

𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1

• Example: sentence of 20 words, 17 labels (UPOS)

• 20 ∙ 17 = 340 computations

What we really should compute:

𝑃 𝑥1..𝑛, ෞ𝑦1..𝑛 = max
𝑦1..𝑛∈𝑌𝑛

ෑ
𝑖=1

𝑛

𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1

• Example: sentence of 20 words, 17 labels (UPOS)

• 1720 = ~4 000 000 000 000 000 000 000 000
computations! That looks bad...
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Exact inference

𝑃 𝑥1..𝑛, ෞ𝑦1..𝑛 = max
𝑦1..𝑛∈𝑌𝑛

ෑ
𝑖=1

𝑛

𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1

• That’s one big computation for the whole 
sentence

• This computation is intractable
• But there are two tricks!

• The Viterbi algorithm includes these two tricks
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Assume 4 words, 2 tags (𝐴, 𝐵). That’s 24 = 16 computations, 112 operations:
• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 ∙ 𝑃𝐸 𝑥4 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 ∙ 𝑃𝐸 𝑥4 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 ∙ 𝑃𝐸 𝑥4 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 ∙ 𝑃𝐸 𝑥4 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 ∙ 𝑃𝐸 𝑥4 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 ∙ 𝑃𝐸 𝑥4 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 ∙ 𝑃𝐸 𝑥4 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 ∙ 𝑃𝐸 𝑥4 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵

• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 ∙ 𝑃𝐸 𝑥4 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴

• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 ∙ 𝑃𝐸 𝑥4 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴

• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 ∙ 𝑃𝐸 𝑥3 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 ∙ 𝑃𝐸 𝑥4 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵

• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 ∙ 𝑃𝐸 𝑥3 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 ∙ 𝑃𝐸 𝑥4 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵

• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 ∙ 𝑃𝐸 𝑥4 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴

• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 ∙ 𝑃𝐸 𝑥4 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴

• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 ∙ 𝑃𝐸 𝑥3 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 ∙ 𝑃𝐸 𝑥4 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵

• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 ∙ 𝑃𝐸 𝑥3 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 ∙ 𝑃𝐸 𝑥4 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵

Trick 1: Decomposing the 
product
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A lot of repetitions!



Trick 1: Decomposing the 
product
Let’s proceed one position at a time and save the 
intermediate results:

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ = 𝜋𝐴
• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ = 𝜋𝐵

• 𝜋𝐴 ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 = 𝜋𝐴𝐴
• 𝜋𝐴 ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 = 𝜋𝐴𝐵
• 𝜋𝐵 ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 = 𝜋𝐵𝐴
• 𝜋𝐵 ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 = 𝜋𝐵𝐵

• 𝜋𝐴𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 = 𝜋𝐴𝐴𝐴
• …
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That’s 2 + 4 + 8 + 16 = 30
computations, but only

2 + 8 + 24 + 48 = 82
multiplication operations.



Trick 2: The Markov 
assumption
Ultimately, we are interested in the sequence with the 
maximum probability. We can identify uninteresting paths 
and skip them.

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ = 𝜋𝐴
• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ = 𝜋𝐵

• 𝜋𝐴 ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 = 𝜋𝐴𝐴
• 𝜋𝐴 ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 = 𝜋𝐴𝐵
• 𝜋𝐵 ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 = 𝜋𝐵𝐴
• 𝜋𝐵 ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 = 𝜋𝐵𝐵

• 𝜋𝐴𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 = 𝜋𝐴𝐴𝐴
• 𝜋𝐵𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 = 𝜋𝐵𝐴𝐴
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If 𝜋𝐴𝐴 < 𝜋𝐵𝐴, then 

𝜋𝐴𝐴𝑖 < 𝜋𝐵𝐴𝑖 for any 𝑖.

We can skip all 

computations starting 

with 𝜋𝐴𝐴.



Trick 2: The Markov 
assumption
The prediction formula only depends on the 
previous label, not on all labels back to 𝑦0:

𝑃 𝑥1..𝑛, ෞ𝑦1..𝑛 = max
𝑦1..𝑛∈𝑌∗

ෑ
𝑖=1

𝑛

𝑃𝐸 𝑥𝑖 𝑦𝑖 ∙ 𝑃𝑇 𝑦𝑖 𝑦𝑖−1

This is called the (bigram) Markov assumption.

• At each position, we have to consider each label 
and each path from a previous label.

• But there is only one best path towards that 
previous label.

• The number of paths to consider does not grow 
exponentially, but remains at 𝑌 2 at each position.

60



Trick 2: The Markov 
assumption
Ultimately, we are interested in the sequence with the 
maximum probability. We can identify uninteresting paths 
and skip them.

• 𝑃𝐸 𝑥1 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦∗ = 𝜋𝐴
• 𝑃𝐸 𝑥1 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦∗ = 𝜋𝐵

• 𝜋𝐴 ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 = 𝜋𝐴𝐴
• 𝜋𝐴 ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐴 = 𝜋𝐴𝐵
• 𝜋𝐵 ∙ 𝑃𝐸 𝑥2 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐵 = 𝜋𝐵𝐴
• 𝜋𝐵 ∙ 𝑃𝐸 𝑥2 𝑦𝐵 ∙ 𝑃𝑇 𝑦𝐵 𝑦𝐵 = 𝜋𝐵𝐵

• 𝜋𝐴𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 = 𝜋𝐴𝐴𝐴
• 𝜋𝐵𝐴 ∙ 𝑃𝐸 𝑥3 𝑦𝐴 ∙ 𝑃𝑇 𝑦𝐴 𝑦𝐴 = 𝜋𝐵𝐴𝐴
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That’s 2 + 4 + 4 + 4 = 14
computations and

2 + 8 + 8 + 8 = 26
operations.



The Viterbi algorithm

HMM prediction with the two tricks is known as 
the Viterbi algorithm:

• At each position 𝑖, compute the probability of 
each possible path from position 𝑖 − 1

• Store intermediate computations in a table and 
remove low-probability paths according to the 
Markov assumption
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The Viterbi algorithm

63

Setup Max computations Multiplications

𝑚 words, 𝑛 labels Brute force 𝑚𝑛 𝑚𝑛 ∙ 2 ∙ 𝑚

Viterbi 𝑚 ∙ 𝑛2 𝑚 ∙ 𝑛2 ∙ 2

4 words, 2 labels Brute force 24 = 16 16 ∙ 2 ∙ 4 = 122

Viterbi 4 ∙ 22 = 16 16 ∙ 2 = 32

5 words, 2 labels Brute force 25 = 32 32 ∙ 2 ∙ 5 = 320

Viterbi 5 ∙ 22 = 20 20 ∙ 2 = 40

6 words, 2 labels Brute force 26 = 64 64 ∙ 2 ∙ 6 = 768

Viterbi 6 ∙ 22 = 24 24 ∙ 2 = 48

20 words, 17 labels Brute force 1720 = 4𝑒24 4𝑒24 ∙ 2 ∙ 17
= 1.4𝑒26

Viterbi 20 ∙ 172 = 5780 5780 ∙ 2 = 11560

In practice, a bit less because the first position 

of the sentence has fewer options.



Example

fish dogs like catsTest sentence:

Computations:

64

N

fish dogs like

1 ∙
5

6
∙
3

13
=

𝟓

𝟐𝟔

5

26
∙
1

6
∙
3

13
=

𝟓

𝟔𝟕𝟔

1

30
∙
4

5
∙
3

13
=

2

325

5

676
∙
1

6
∙
1

13
=

5

52728

5

312
∙
4

5
∙
1

13
=

𝟏

𝟏𝟎𝟏𝟒

cats

1

1014
∙
1

6
∙
3

13
=

1

26364

5

4056
∙
4

5
∙
3

13
=

𝟏

𝟒𝟑𝟗𝟒

V 1 ∙
1

6
∙
2

10
=

𝟏

𝟑𝟎

5

26
∙
5

6
∙
1

10
=

𝟓

𝟑𝟏𝟐

5

676
∙
5

6
∙
2

10
=

𝟓

𝟒𝟎𝟓𝟔

1

1014
∙
5

6
∙
1

10
=

𝟏

𝟏𝟐𝟏𝟔𝟖

1

30
∙
1

5
∙
1

10
=

1

1500

5

312
∙
1

5
∙
2

10
=

1

1560

5

4056
∙
1

5
∙
1

10
=

1

40560



Example

fish dogs like catsTest sentence:

Computations:

65

N

fish dogs like

1 ∙
5

6
∙
3

13
=

𝟓

𝟐𝟔

5

26
∙
1

6
∙
3

13
=

𝟓

𝟔𝟕𝟔

1

30
∙
4

5
∙
3

13
=

2

325

5

676
∙
1

6
∙
1

13
=

5

52728

5

312
∙
4

5
∙
1

13
=

𝟏

𝟏𝟎𝟏𝟒

cats

1

1014
∙
1

6
∙
3

13
=

1

26364

5

4056
∙
4

5
∙
3

13
=

𝟏

𝟒𝟑𝟗𝟒

V 1 ∙
1

6
∙
2

10
=

𝟏

𝟑𝟎

5

26
∙
5

6
∙
1

10
=

𝟓

𝟑𝟏𝟐

5

676
∙
5

6
∙
2

10
=

𝟓

𝟒𝟎𝟓𝟔

1

1014
∙
5

6
∙
1

10
=

𝟏

𝟏𝟐𝟏𝟔𝟖

1

30
∙
1

5
∙
1

10
=

1

1500

5

312
∙
1

5
∙
2

10
=

1

1560

5

4056
∙
1

5
∙
1

10
=

1

40560

NVNN



The Viterbi algorithm

Training:
• For each 𝑥, 𝑦 in training data:

• Compute and store 𝑃𝐸 𝑥 𝑦 =
𝐶𝑜𝑢𝑛𝑡(𝑥,𝑦)

𝐶𝑜𝑢𝑛𝑡(𝑦)

• For each bigram 𝑦𝑖−1, 𝑦𝑖 in training data:

• Compute and store 𝑃𝑇 𝑦𝑖|𝑦𝑖−1 =
𝐶𝑜𝑢𝑛𝑡(𝑦𝑖−1,𝑦𝑖)

𝐶𝑜𝑢𝑛𝑡(𝑦𝑖−1)

Testing/Prediction:
• Fill a 𝑚 × 𝑦 table position by position

• When reaching the end of the sentence, go back to 
find the optimal label sequence
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Same as 

before (with 

or without 

smoothing)



Credits

Andrei Markov,

1856-1922

Andrea/Andrew Viterbi,

*1935
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Readings

• Jurafsky & Martin, chapter 8 (up to 8.4)

• Jurafsky & Martin, appendix A
• Implementation details of the Viterbi algorithm
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