Language modeling

IN4080
 Natural Language Processing

Yves Scherrer

Save the date

Presentation of master thesis topics

- Monday October 9th at 15:00
- Seminar room Perl

Mandatory assignment 2

- Will be published by tomorrow
- Submission deadline: Monday October 16th

Main NLP tasks

Natural language generation

- Machine translation
- Question answering
- Grammatical error correction
- ...

Annotation (natural language understanding)

- Hate speech detection
- Sentiment analysis
- Language identification
- Syntactic analysis
-...

Sequence labeling and language modeling

HMM for sequence labeling:

Bigram language model:

What can we do with language models?

- Assign probabilities to sentences
- Choose among different hypotheses
- Disambiguation, reranking
- Score the same sentence with different language models
- Language identification, typology
- Predict the probability of the next word
- Text completion, spelling correction
- Generate entirely new sentences
- Mostly for fun ()

Probabilistic language models

- Assign a probability to the sentence $w_{1 . . n}$:

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)
$$

- We can only do that reliably if we have seen this exact sentence (several times) in the training data
- This is unlikely for most of the sentences
- Chain rule:

$$
\begin{aligned}
& P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \\
& =P\left(w_{1}\right) \cdot P\left(w_{2} \mid w_{1}\right) \cdot P\left(w_{3} \mid w_{1}, w_{2}\right) \cdot \ldots \\
& \cdot P\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
\end{aligned}
$$

- (Bigram) Markov assumption:

$$
P\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right)
$$

Probabilistic language models

- Bigram language model:

$$
\begin{gathered}
P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \\
\approx P\left(w_{1} \mid *\right) \cdot P\left(w_{2} \mid w_{1}\right) \cdot \cdots \cdot P\left(w_{n} \mid w_{n-1}\right)
\end{gathered}
$$

- Trigram language model:

$$
\begin{aligned}
& P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \\
& \approx P\left(w_{1} \mid *, *\right) \cdot P\left(w_{2} \mid *, w_{1}\right) \cdot \cdots \cdot P\left(w_{n} \mid w_{n-2}, w_{n-1}\right)
\end{aligned}
$$

- Four-gram language model:

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)
$$

$\approx P\left(w_{1} \mid *, *, *\right) \cdot P\left(w_{2} \mid *, *, w_{1}\right) \cdot \cdots \cdot P\left(w_{n} \mid w_{n-3}, w_{n-2}, w_{n-1}\right)$

Estimating the probabilities

- Maximum likely estimates for a bigram LM:

$$
\hat{P}\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{Count}\left(w_{i-1}, w_{i}\right)}{\operatorname{Count}\left(w_{i-1}\right)}
$$

- We can add some smoothing:

$$
\hat{P}\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{Count}\left(w_{i-1}, w_{i}\right)+\alpha}{\operatorname{Count}\left(w_{i-1}\right)+\alpha \cdot|V|}
$$

- Note: we assume here that the w_{i} are words. One can also use individual characters.

Example

- 3 sentences, with start and end symbols:
- Bigram probabilities, no smoothing

```
<s> | am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>
```

- $P(\mathrm{I} \mid\langle s\rangle)=$
- $P($ Sam $\mid \mathrm{am})=$
- $P(\mathrm{do} \mid \mathrm{I})=$
- $P(\langle/ s\rangle \mid \mathrm{Sam})=$
- $P($ eggs \mid ham $)=$

More smoothing techniques

Additive smoothing provides non-zero probabilities for unknown n-grams.

- In many cases, the words constituting these ngrams are actually known.
Example:
- Shakespeare produced 884,647 word tokens and 29,066 word types (V)
- This gives a theoretical number of $844,000,000$ possible bigram types $\left(V^{2}\right)$
- In Shakespeare's work, only 300,000 bigram types are realized (0.035\%)

More smoothing techniques

Backoff smoothing:

- Train several models of different orders on the same data and combine them.
- Example:
- If you have good evidence, use the 4-gram model score,
- If not, use the trigram model score,
- If not, use the bigram model score,
- If not, use the unigram model score:

$$
P\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \approx P\left(w_{1}\right) \cdot P\left(w_{2}\right) \cdot \cdots \cdot P\left(w_{n}\right)
$$

More smoothing techniques

Interpolation:

- Always use a combination of all models with different weights:

- Note: $\lambda_{4}+\lambda_{3}+\lambda_{2}+\lambda_{1}=1$

More smoothing techniques

Kneser-Ney smoothing:

- See J\&M 3.7

What can we do with language models?

- Assign probabilities to sentences
- Choose among different hypotheses
- Translation:
- $\mathrm{P}($ she is a tall woman $)>\mathrm{P}($ she is a high woman $)$
- $\mathrm{P}($ she has a high position $)>\mathrm{P}($ she has a tall position)
- Spelling correction:
- $P($ She met the prefect. $)>P($ She met the perfect.)
- P (She met the prefect match.) $<\mathrm{P}($ She met the perfect match.)
- Speech recognition:
- $P(I$ saw a van $)>P($ eyes awe of $a n)$

What can we do with language models?

- Assign probabilities to sentences
- Score the same sentence with different language models
- Language identification:
- $P_{E N}($ l like green eggs $)>P_{F R}($ l like green eggs $)$
- Compute distances between languages

What can we do with language models?

- Predict the probability of the next word
- Predictive text on phones

What can we do with language models?

- Generate entirely new sentences
- Sample w_{1} according to $\hat{P}\left(w_{1} \mid\langle s\rangle\right)$
- Sample w_{2} according to $\hat{P}\left(w_{2} \mid w_{1}\right)$
- - - .

1	-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have -Hill he late speaks; or! a more to leg less first you enter
gram	-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. -What means, sir. I confess she? then all sorts, he is trim, captain.
$\underbrace{}_{\text {gram }}$	-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done. -This shall forbid it should be branded, if renown made it empty.
$\underbrace{\text {-King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A }}_{\text {- }}$great banquet serv'd in;	
-It cannot be but so.	

What can we do with language models?

- Generate entirely new sentences
- Character-level n-gram language models:

Bigram character LM:
Fif thad yourty
Fare sid on Che as al my he sheace ing.
Thy your thy ove dievest sord wit whand of sold iset?
Commet laund hant. KINCESARGANT:
Out aboy tur Pome you musicell losts, blover.
How difte quainge to sh, And usbas ey will Chor bacterea, and mens grou:

Four-gram character LM:
First Office, masters
To part at that she may direct my brance
I would he dead. Pleaseth profit,
Then we last awaked you to again,
Far that night I'll courteous Herneath,
Of circle off.
SPEED:
Not you.

Ten-gram character LM: First Citizen:
Nay, then, that was hers, It speaks against your other service:
But since the
youth of the circumstance be spoken:
Your uncle and one Baptista's daughter.
SEBASTIAN:
Do I stand till the break off.
BIRON:
Hide thy head.

Evaluation of language

 modelsExtrinsic evaluation:

- To compare two LMs A and B, see how well they are doing in an application
- Machine translation
- Speech recognition
- Run the application with A and B, get accuracy figures, determine which one does better

Evaluation of language

models

Intrinsic evaluation:

- Use a held-out corpus and measure the probabilities given to it by A and B.
- The best language model is the one that best predicts the unseen corpus.
- Probability: $P\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{\frac{1}{n}}$
- The n-root compensates for different sentence lengths
- Perplexity: the inverse probability of the test set, normalized by the number of words:
$P P\left(w_{1}, w_{2}, \ldots, w_{n}\right)=P\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{-\frac{1}{n}}$

Perplexity

- A better model of a text is one which assigns higher probabilities to the words that actually occur in the text.
- Perplexity gives an "average" over all words in a sentence.
- Minimize perplexity = maximize probability
- Perplexity can be used as a language distance measure:
- Perplexity of applying an English language model on French \approx linguistic distance between English and French

What can we do with n-gram language models?

\square
Assign probabilities to sentences

\square
Predict the probability of the next word

区
Generate entirely new sentences

- N-gram models are just too bad for generating useful text:
- No long-distance dependencies
- No explicit syntax, no hierarchical structure
- Neural LMs can do much better!

Word vectors and embeddings
 IN4080
 Natural Language Processing

Yves Scherrer

The meaning of words

Relations between senses

The different senses of a word can be related in various ways:

- Synonyms: have the same meaning in all (or at least some) contexts
- sofa - couch, bus - coach, big - large
- Antonyms: opposites with respect to a feature of meaning
- true - false, strong - weak, up - down
- Hyponyms and hypernyms: the <hyponym> is a type of the <hypernym>
- rose \rightarrow flower, cow \rightarrow animal, car \rightarrow vehicle

Resources for lexical semantics

WordNet:

https://wordnet.princet
on.edu

- Words are grouped into synsets

- Hyponymy relations between the synsets

Relations between senses

Less well defined relations between senses:

- Similarity: have a common hypernym
- cow - horse, boy - girl
- Relatedness
- money - bank, fish - water

What does ong choi mean?

- Suppose you see these sentences:
- Ong choi is delicious sautéed with garlic.
- Ong choi is superb over rice
- Ong choi leaves with salty sauces
- And you've also seen these:
- ...spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other salty leafy greens
- Conclusion: Ongchoi is a leafy
 green like spinach, chard, or collard greens

Relations between senses

Less well defined relations between senses:

- Similarity: have a common hypernym
- cow - horse, boy - girl
- Relatedness
- money - bank, fish - water

Distributional word representations

The distributional hypothesis:

- The meaning of a word can be captured by the contexts in which it occurs.
- Words that occur in similar contexts have similar meanings.
Example (Nida 1975):
A bottle of tesgüino is on the table.
Tesgüino makes you drunk.
Everybody likes tesgüino.
We make tesgüino out of corn.
J.P. Firth, 1957:
"You shall know a word by the company it keeps."

Vector semantics

Core idea:

- Each word is represented as a point in a (multidimensional) semantic space.
- Word vectors, word embeddings
- The points are inferred from the distributions of word neighbors/contexts in text, according to the distributional hypothesis.
- Similar/related words are close to each other in this space.

Vector semantics

https://www.adityathakker.com

Vector semantics

How do we get there?

- Word-document (or term-document) matrices based on co-occurrence counts
- Count weighting with tf-idf
- Word-context matrices based on cooccurrence counts
- Dimensionality reduction (SVD, LSA)
- An alternative approach: word2vec

Term-document matrices

- One row per term/word
- One column per document
- Values represent counts of terms in documents

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

The column vectors correspond to the bag-of-words representations for document classification.

Term-document matrices

What can we do with such a matrix?

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- Compute similarity between words
- fool and wit are similar
- Compute similarity between documents
- As You Like It and Twelfth Night are similar (comedies)
- Julius Caesar and Henry V are similar (historical dramas)

Cosine similarity

Cosine similarity represents the angle between two vectors:

$$
\operatorname{cosine}(\boldsymbol{v}, \boldsymbol{w})=\frac{\boldsymbol{v} \cdot \boldsymbol{w}}{|\boldsymbol{v}| \cdot|\boldsymbol{w}|}=\frac{\sum_{i=1}^{N} v_{i} \cdot w_{i}}{\sqrt{\sum_{i=1}^{n} v_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} w_{i}^{2}}}
$$

Term-document matrices

What can we do with such a matrix?

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- Compute similarity between words
- fool and wit are similar
- cosine (fool, wit) $=\operatorname{cosine}([36,58,1,4],[20,15,2,3])=0.93$
- $\operatorname{cosine}($ fool, battle $)=\operatorname{cosine}([36,58,1,4],[1,0,7,13])=0.09$
- Compute similarity between documents
- As You Like It and Twelfth Night are similar (comedies)
- Julius Caesar and Henry V are similar (historical dramas)
- $\operatorname{cosine}(\mathrm{AYLI}, \mathrm{TN})=\operatorname{cosine}([1,114,36,20],[0,80,58,15])=0.95$
- $\operatorname{cosine}(\mathrm{JC}, \mathrm{HV})=\operatorname{cosine}([7,62,1,2],[13,89,4,3])=0.69$
- $\operatorname{cosine}(\mathrm{TN}, \mathrm{JC})=\operatorname{cosine}([0,80,58,15],[7,62,1,2])=0.81$

Term-document matrices

What can we do with such a matrix?

| | As You Like It | Twelfth Night | Julius Caesar | Henry V |
| :--- | :---: | :---: | :---: | :---: | Q: good fool

- Compute similarity between words
- Compute similarity between documents
- Information retrieval:
- Encode the query as an additional document
- Find documents that are most similar to the query

Term-document matrices

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Each word is associated with a vector that describes its meaning:

- battle is "the kind of word that occurs in Julius Caesar and Henry V"
- fool is "the kind of word that occurs in comedies, especially Twelfth Night

Vector semantics

How do we get there?

- Word-document (or term-document) matrices based on co-occurrence counts
- Count weighting with tf-idf
- Word-context matrices based on cooccurrence counts
- Dimensionality reduction (SVD, LSA)
- An alternative approach: word2vec

Count weighting

Are all words equally important?

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- Intuition: A word occurring in a large proportion of documents is not a good discriminator
- good does not contribute much to distinguishing the documents
- The importance of a word should be inversely proportional to the number of documents it occurs in

TF-IDF count weighting

- TF - term frequency:
- $t f_{t, d}$ is the frequency of term t in document d
- DF - document frequency:
- $d f_{t}$ is the number of documents containing term t
- IDF - inverse document frequency:
- $i d f_{t}=\frac{1}{d f_{t}}$
- Normalize by the collection size: $\frac{N}{d f_{t}}$
- By convention, take the $\log : \log \frac{N}{d f_{t}}$
- TF-IDF: $t f_{t, d} \cdot \log \frac{N}{d f_{t}}$

TF-IDF count weighting

Raw counts:

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

TF-IDF weights:

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle	0.074	0	0.22	0.28	
good	0	0	0	0	
fool	0.019	0.021	0.0036	0.0083	
wit	0.049	0.044	0.018	0.022	
		TF-IDF did its job!			

Vector semantics

How do we get there?

- Word-document (or term-document) matrices based on co-occurrence counts
- Count weighting with tf-idf
- Word-context matrices based on cooccurrence counts
- Dimensionality reduction (SVD, LSA)
- An alternative approach: word2vec

Word-context matrices

- One row per term/word
- One column per context term/word
- The rows and columns may be the same, but do not have to
- Values represent counts of words within the context of another word

	aardvark	\ldots	computer	data	result	pie	sugar	\ldots
cherry	0	\ldots	2	8	9	442	25	\ldots
strawberry	0	\ldots	0	0	1	60	19	\ldots
digital	0	\ldots	1670	1683	85	5	4	\ldots
information	0	\ldots	3325	3982	378	5	13	\ldots

Word-context matrices

What is the context of a word?

- The same sentence
- Add a pinch of sugar to the cherries and boil for 10 minutes.
- In the digital age, information is the global currency.
- n words to the left and to the right
- Add a pinch of [sugar to the cherries and boil for] 10 $n=3 \square$ minutes.
- In [the digital age, information is the global] currency.
- Often, stopwords are not counted
- Add a [pinch of sugar to the cherries and boil for 10] $n=2 \square$ minutes.
- In the [digital age, information is the global currency.]

Word-context matrices

What can we do with such a matrix?

	aardvark	\ldots	computer	data	result	pie	sugar	\ldots
cherry	0	\ldots	2	8	9	442	25	\ldots
strawberry	0	\ldots	0	0	1	60	19	\ldots
digital	0	\ldots	1670	1683	85	5	4	\ldots
information	0	\ldots	3325	3982	378	5	13	\ldots

- Compute cosine similarity between words
- Cherry and strawberry are similar
- Digital and information are similar
- Compute cosine similarity between context words (columns)
- Similar outcome as for rows, but not usually done

Vector semantics

How do we get there?

- Word-document (or term-document) matrices based on co-occurrence counts
- Count weighting with tf-idf
- Word-context matrices based on cooccurrence counts
- Dimensionality reduction (SVD, LSA)
- An alternative approach: word2vec

Dimensionality reduction

- Word-context vectors are sparse
- Most values are 0
- Most words never co-occur with strawberry
- In particular when choosing small context sizes

	aardvark	\ldots	computer	data	result	pie	sugar	\ldots
cherry	0	\ldots	2	8	9	442	25	\ldots
strawberry	0	\ldots	0	0	1	60	19	\ldots
digital	0	\ldots	1670	1683	85	5	4	\ldots
information	0	\ldots	3325	3982	378	5	13	\ldots

- Drawbacks:
- Inefficient
- Lack generalization capabilities

Dimensionality reduction

- Reduce the number of columns to a fixed size m (typically in the range 50 ... 500)
- e.g. using Singular Value Decomposition (SVD)
- The new columns represent abstract properties, not words:

	leash	walk	run	owner	leg	bark			u_{A}	u_{B}	u_{C}	u_{D}
dog	3	5	1	5	4	2		dog	0.2	0.3	0	0.7
cat	0	3	3	1	5	0		cat	0.7	0.2	0	0.8
lion	0	3	2	0	1	0		lion	0.9	0.1	0	0.8
light	0	0	0	0	0	0		light	0	0	0.7	0
bark	1	0	0	2	1	0		bark	0.3	0.9	0.1	0.6
car	0	0	4	3	0	0	car	0	0.3	0.6	0	

Dimensionality reduction

- The combination of word-context vectors with SVD dimensionality reduction is known as LSA (latent semantic analysis - Deerwester et al. 1990).
- Other combinations are possible, e.g. using PCA (principal component analysis).
- We typically use 100-500 target dimensions, but can use as few as 2 for visualization.

Word embeddings

- There is a direct way to obtain dense wordcontext vectors, by using neural networks: word2vec
- Details a bit later in this course
- More recent developments:
- FastText
- Contextualized embeddings: BERT
- The Python module gensim is really useful for all kinds of word-vector-related experiments!

What can we do with word and document vectors?

Term-document vectors:

- Use document vectors as bag-of-words representation for text classification
- TF-IDF weighting may be helpful
- Dimensionality reduction can be applied
- Compute similarities between documents + find most similar documents to a given query
- TF-IDF weighting is considered standard
- Recent approaches use dense vectors from NNs

What can we do with word and document vectors?

Word-context vectors:

- Use word vectors as feature vectors for sequence labeling tasks
- Dimensionality reduction is required, otherwise it is just a one-hot vector
- Compute similarities between words
- Dimensionality reduction considered standard
- Specific research questions: analogy, semantic change, bias detection

What can we do with word and document vectors?

Word-context vectors:

- Can we use word vectors as bag-of-words representation for text classification?
- Continuous bag-of-words model (CBOW): Average the weight vectors of all words occurring in the document

$$
\boldsymbol{v}_{\boldsymbol{a v g}}(x)=\frac{1}{|x|} \cdot \sum_{w \in x} \boldsymbol{v}_{\boldsymbol{w}}
$$

Readings

- Jurafsky \& Martin, chapter 3
- N -gram language models
- Jurafsky \& Martin, chapter 6
- Vector semantics and embeddings

