Language modeling

IN4080
Natural Language Processing

Yves Scherrer

Save the date

Presentation of master thesis topics
* Monday October 9th at 15:00
« Seminar room Perl

Mandatory assignment 2
* Will be published by tomorrow
« Submission deadline: Monday October 16th

Main NLP tasks

Natural language Annotation (natural
generation language understanding)
5
I
- N
* Machine translation * Hate speech detection
« Question answering » Sentiment analysis
« Grammatical error » Language identification

correction » Syntactic analysis

Sequence labeling and
language modeling

HMM for sequence labeling:

PRON AUX VERB ADV

We can come tomorrow

Bigram language model:

P(We| %) P(can|We) P(come|can) P(tomorrow|come)

What can we do with
language models?

» Assign probabilities to sentences

« Choose among different hypotheses
« Disambiguation, reranking

« Score the same sentence with different language
models

« Language identification, typology

 Predict the probability of the next word

» Text completion, spelling correction

* Generate entirely new sentences
* Mostly for fun ©

Probabilistic language
models

« Assign a probability to the sentence w, ,;:
P(Wl, Wy, W3, ..., WTL)
* We can only do that reliably if we have seen this
exact sentence (several times) in the training data

 This is unlikely for most of the sentences

 Chain rule:
P(Wl,Wz,Wg, ...,Wn)
= P(wq) - P(wy| wy) - P(ws|wy,wy) - -
- P(wy|wy, wy, .., Wy q)

* (Bigram) Markov assumption:
P(wi|lwy, ...,w;_1) = P(w;|w;_1)

Probabilistic language

models
Sequences of

* Bigram language model: > words

P(Wl,Wz,WB, ""WTL)
~ P(wq]| =) - P(wylwy) - -+ P(wy|wy_q)

: Sequences of
* Trigram language model: / 3 words
W)

P(wq,wy, ws, ..
~ P(wq| *%) - P(wa| %, wy) - -+ P(Wp|Wp_2, Wwp—1)
* Four-gram language model: 4 Sequences of
P(Wl,Wz,WB, ...,Wn) 4 words

~ P(Wll *1*1*)) P(W2| *, %, Wl) vt P(Wnlwn—B:Wn—ZrWn—l)

Estimating the probabilities

« Maximum likely estimates for a bigram LM:
~ Count(w;_1, w;)
P(wilw;_1) =

Count(w;_q)

* We can add some smoothing:
Count(w;_1,w;) + «

Count(w;_1) + a - |V|

P(wilw;_q) =

* Note: we assume here that the w; are words.
One can also use individual characters.

Example

« 3 sentences, with start and end symbols:
» Bigram probabilities, no smoothing
<s>|am Sam </s>

<s>Sam | am </s>
<s> | do not like green eggs and ham </s>

* P(I(s)) =

e P(Sam|am) =
* P(dol|l) =

* P({/s}|Sam) =
* P(eggs|lham) =

More smoothing techniques

Additive smoothing provides non-zero
probabilities for unknown n-grams.

* [n many cases, the words constituting these n-
grams are actually known.

Example:

« Shakespeare produced 884,647 word tokens and
29,066 word types (V)

 This gives a theoretical number of 844,000,000
possible bigram types (V?4)

* In Shakespeare’s work, only 300,000 bigram types
are realized (0.035%)

10

More smoothing techniques

Backoff smoothing:

* Train several models of different orders on the
same data and combine them.

« Example:

* |[f you have good evidence, use the 4-gram model
score,

* |f not, use the trigram model score,
* |f not, use the bigram model score,

* |f not, use the unigram model score:
P(W11 W3, W3, ,Wn) ~ P(Wl)) P(WZ) T P(Wn)

11

More smoothing techniques

Interpolation:

* Always use a combination of all models with
different weights:
P(Wi |Wi—3» Wi—Z; Wi—l) Four-gram model
= Ayg * Pp(Wi|Wi_3, wi_p, w;_1)
+ A3 - Ps(wi|wi_p, wi_q)
+ A, - Po(wi|lwi_q)

* ; Bigram model
T /11 P1 (Wl) Unigram model J

Trigram model

*Note: 1, + 13+, + 4, =1

12

More smoothing techniques

Kneser-Ney smoothing:
» See J&M 3.7

13

What can we do with
language models?

 Assign probabilities to sentences
« Choose among different hypotheses

* Translation:
* P(she is a tall woman) > P(she is a high woman)
« P(she has a high position) > P(she has a tall position)

» Spelling correction:

« P(She met the prefect.) > P(She met the perfect.)

« P(She met the prefect match.) < P(She met the perfect
match.)

« Speech recognition:
* P(I saw a van) > P(eyes awe of an)

14

What can we do with
language models?

 Assign probabilities to sentences

« Score the same sentence with different language
models

« Language identification:
« Ppy(l like green eggs) > Prr(l like green eggs)

~ turkish
/

: D
- Compute distances s
between languages “...

https://gramatica.usc.es/~gamallo/
artigos-web/PHYSICA2017.pdf

15

https://gramatica.usc.es/~gamallo/artigos-web/PHYSICA2017.pdf
https://gramatica.usc.es/~gamallo/artigos-web/PHYSICA2017.pdf

What can we do with
language models?

 Predict the probability of the
next word

* Predictive text on phones

Remind me to tell you about our
trip to the mountains!

AP | forgot all about that! Can't| o

wait believe remember
giwlefrre=yTori jolp

afsldiflglhlijtk]!

https://support.apple.com/en-
in/quide/iphone/iphd4ea90231/ios

16

https://support.apple.com/en-in/guide/iphone/iphd4ea90231/ios
https://support.apple.com/en-in/guide/iphone/iphd4ea90231/ios

What can we do with
language models?

* Generate entirely new sentences
« Sample w, according to P(wq[(s)) Models frained on

» Sample w, according to P(w,|w;) Shakespeare texts
. (J&M Fig. 3.4)

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live

2 king. Follow.
gram —What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 ’tis done.

gram —This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 great banquet serv’d in;
gram —It cannot be but so.

17

What can we do with

language models?

« Generate entirely new sentences
« Character-level n-gram language models:

Bigram character LM: Four-gram character LM:
Fif thad yourty First Office, masters

Fare sid on Che as al my he To part at that she may direct
sheace ing. my brance

Thy your thy ove dievest sord | would he dead. Pleaseth
wit whand of sold iset? profit,

Commet laund hant. Then we last awaked you to
KINCESARGANT: again,

Out aboy tur Pome you Far that night I'll courteous
musicell losts, blover. Herneath,

How difte quainge to sh, Of circle off.

And usbas ey will Chor SPEED:

bacterea, and mens grou: Not you.

https://nbviewer.org/qist/yoavg/d76121dfde2618422139

Ten-gram character LM:
First Citizen:

Nay, then, that was hers,

It speaks against your other
service:

But since the

youth of the circumstance be
spoken:

Your uncle and one Baptista's
daughter.

SEBASTIAN:

Do | stand till the break off.
BIRON:

Hide thy head.

18

https://nbviewer.org/gist/yoavg/d76121dfde2618422139

Evaluation of language
models

Extrinsic evaluation:

* To compare two LMs A and B, see how well
they are doing in an application
* Machine translation
» Speech recognition

* Run the application with A and B, get accuracy
figures, determine which one does better

19

Evaluation of language
models

Intrinsic evaluation:

» Use a held-out corpus and measure the
probabilities given to it by A and B.

* The best language model is the one that best

predicts the unseen corpus.
1

* Probability: P(wy,w,, ..., w,,)n
* The n-root compensates for different sentence
lengths

* Perplexity: the inverse probability of the test
set, normalized by the number of words:

PP(wy,wy, ...,wy) = P(Wy,wy, ..., W,,) n

20

Perplexity

A better model of a text is one which assigns
higher probabilities to the words that actually
occur in the text.

« Perplexity gives an “average” over all words in
a sentence.
* Minimize perplexity = maximize probability

» Perplexity can be used as a language distance
measure:

 Perplexity of applying an English language model
on French = linguistic distance between English
and French

What can we do with n-gram
language models?

Assign probabilities to sentences
Predict the probability of the next word

Generate entirely new sentences

* N-gram models are just too bad for
generating useful text:

* No long-distance dependencies
* No explicit syntax, no hierarchical structure

 Neural LMs can do much better!

22

Word vectors and
embeddings

IN4080
Natural Language Processing

Yves Scherrer

The meaning of words

/'peps/,US. /'pepar/

Forms: OE peopor (rare), OE pipcer (transmission egef¥, OE pipor, Qfpiphr (rare .
Frequency (in current use):

Etymology: A borrowing from Latin,Jé on: Latin piper.

< classical Latin piper, a loanye#® < Indo-Aryan (as is ancient#reek sgg#ept); compare Sar

1. The spicgefThe plant.
1.

hot pungent spice derived fro e prepayéd fruits (peppercorns) of
the pepper plant, Piper nigrum (g€e sense 2gf] used from early times to
season food, either whole or g#gbund to poyfder (often in association with
salt). Also (locally, chiefly#ith distingy#hing word): a similar spice
derived from the fruitg/6f certain othgf species of the genus Piper; the
fruits themselves.

The ground spiggfrom Piper nigrum copfles in two forms, the more pungent black pepper, produced
from black ggbpercorns, and the mildgl white pepper, produced from white peppercorns: see BLACK
adj. andp#Special uses 5a, PEpPERGAN 1. 12, and wiTE adj. and n.” Special uses 7b(a).

e plant Piper nijgfrum (family Piperaceae), a climbing shrub
indigenous to Souff Asia and also cultivated elsewhere in the tropics,
which has alterpdte stalked entire leaves, with pendulous spikes of small
green flowergfpposite the leaves, succeeded by small berries turning red
when ripe Also more widely: any plant of the genus Piper or the family
Piperacgfe.

su. with distinguishing word: any of numerous plants of other
amilies having hot pungent fruits or leaves which resemble pepper (1a)
in taste and in some cases are used as a substitute for it.

lemma sense

/ definition
a U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE 1. 3.

a Any of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguishing word): any variety of the
C. annuum Longum group, with elongated fruits having a hot, pungent

tacta tha conrca af cavvanna chilli nawdor nanrilza _ate ar of tha

« A word with several senses is called
polysemous.

* |f two different words look and sound
the same, they are called homonyms.

* How to tell the difference between one
word with several senses, and two
words?

« Etymology (common origin) may help,
but not always...

24

Relations between senses

The different senses of a word can be related in
various ways:

* Synonyms: have the same meaning in all (or
at least some) contexts
 sofa — couch, bus — coach, big — large

« Antonyms: opposites with respect to a feature
of meaning

e true — false, strong — weak, up — down
 Hyponyms and hypernyms: the <hyponym>
IS a type of the <hypernym>

* rose — flower, cow — animal, car — vehicle
25

Resources for lexical

semantics

WordNet: lounge, waiting

https://wordnet.princet SRR

on.edu sofa, couch, lounge

» Words are grouped couch (psych.
bench)

into synsets

couch (coat of paint)

\
\
\

* Hyponymy relations
between the synsets

motor vehicle

motorcar

| compact ' 'gas guzzler'
26

hatch-back

https://wordnet.princeton.edu/
https://wordnet.princeton.edu/

Relations between senses

Less well defined relations between senses:

» Similarity: have a common hypernym
* COW — horse, boy — girl

* Relatedness
* money — bank, fish — water

27

What does ong choi mean?

e Suppose you see these
sentences:

» Ong choi is delicious sauteed
with garlic.
» Ong choi is superb over rice

* Ong choi leaves with salty
sauces

* And you've also seen these:

* ...Spinach sautéed with garlic
over rice

» Chard stems and leaves are
delicious

» Collard greens and other salty
leafy greens

« Conclusion: Ongchoi is a leafy
green like spinach, chard, or
collard greens

(J&M chapter 3)

Relations between senses

Less well defined relations between senses:

» Similarity: have a common hypernym
* COW — horse, boy — girl

* Relatedness
* money — bank, fish — water

Related (first-order
association, syntagmatic)

. delicious
ong chol
Similar (second-
order association, I sauteed with garlic
paradigmatic) :
spinach

over rice 29

Distributional word
representations

The distributional hypothesis:

* The meaning of a word can be captured by the
contexts in which it occurs.

. Words that occur in similar contexts have similar
meanings.

Example (Nida 1975):

A bottle of tesguino is on the table.
Tesguino makes you drunk.
Everybody likes tesguino.

We make tesguino out of corn.

J.P. Firth, 1957:

“You shall know a word by the company it keeps.”

30

Vector semantics

Core idea:

« Each word is represented as a point in a
(multidimensional) semantic space.

* Word vectors, word embeddings

* The points are inferred from the distributions of
word neighbors/contexts in text, according to
the distributional hypothesis.

o Similar/related words are close to each other in
this space.

31

Vector semantics

cake

keep fry fat whill

mﬂthe“ his hie corn
food their

2 o water into an BYwereql] or

oven cloan are
wapdry en . from utthed this e

remove off Iighl. whi ilh“'ﬂs Dohat

. ke
your Juice who Whiteup € I‘or o it her she Y‘ma
il out atthem but gg see

let re Some hard just
gﬁe through agaifiar havef'm . r h will
dish each hamegone WOl there ™ Lo
o pot teﬁbe quithusgan™®® - o
nan upon . dhorpughhydra ﬂ“ay anly
COVEer serve ., mbs way no

lemon like other
itle: few logelhmnm

mi.2)
g
o

8

(=%

Blfices

about

servabl
tIs"’%ﬂl‘nﬂ' s ULIH than .

I best .. Mkankioo
mpégmlargeama o use much
frash |
adagar 0 e thick

chibss milk used . DECES
bread mea
o . rice oreen cooked 32 Slmﬁm
yol ?tas at cm‘:r{l!meﬂ:l
brown
pudding
bﬁﬂeﬁ swaet gu

more peel

A00
L

https://www.adityathakker.com

. hour =
spices # w (od28h) meat

before pie
I
mgbake

%wnm Imaspoan

teasmnlul
spoontl ¥ '""’E{'lp

F'Iacq:me H:MM?W mixture Whreeunds

ve many)
hot ﬂ" its paste |mm|-“

beaten hall Pieces,

methods sauce =y s

'T'“5

onion

32

Vector semantics

How do we get there?

» Word-document (or term-document) matrices
based on co-occurrence counts

« Count weighting with tf-idf

 Word-context matrices based on co-
occurrence counts

« Dimensionality reduction (SVD, LSA)
* An alternative approach: word2vec

33

Term-document matrices

* One row per term/word
* One column per document
 Values represent counts of terms in documents

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

The column vectors correspond to the bag-of-words
representations for document classification.
34

Term-document matrices

What can we do with such a matrix?

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7} 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

« Compute similarity between words
* fool and wit are similar

« Compute similarity between documents

* As You Like It and Twelfth Night are similar
(comedies)

 Julius Caesar and Henry V are similar (historical
dramas)

35

Cosine similarity

Cosine similarity represents the angle between

two vectors:

cosine(v,w) = v

Henry V [4,13]

Julius Caesar [1,7]
As You Like It /36,1]

>

I

11771

) JE vl Jz

from scipy import spatial

c = spatial.distance.cosine(v, w)

Twelfth Night /58,0/
|

e
5 10

fool

|
15 20 25 30 35 40 45 50 55 60

36

Term-document matrices

What can we do with such a matrix?

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 115!
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

« Compute similarity between words
» fool and wit are similar

» cosine(fool, wit) = cosine([36,58,1,4],[20,15,2,3]) = 0.93
» cosine(fool, battle) = cosine(|36,58,1,4],[1,0,7,13]) = 0.09
« Compute similarity between documents

» As You Like It and Twelfth Night are similar (comedies)
» Julius Caesar and Henry V are similar (historical dramas)

* cosine(AYLI, TN) = cosine([1,114,36,20],[0,80,58,15]) = 0.95
* cosine(JC,HV) = cosine([7,62,1,2],[13,89,4,3]) = 0.69
» cosine(TN,]C) = cosine([0,80,58,15],[7,62,1,2]) = 0.81

37

Term-document matrices

What can we do with such a matrix?

As You Like It Twelfth Night Julius Caesar Henry V Q: good fool
battle 1 0 7 13 0
good 114 80 62 89 1
fool 36 58 1 4 1
wit 20 15 2 3 0

« Compute similarity between words
« Compute similarity between documents

 Information retrieval:
* Encode the query as an additional document
* Find documents that are most similar to the query

38

Term-document matrices

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 |4
good 114 80 62 89

fool 36 58 1 -
wit 20 15 2 5

Each word is associated with a vector that
describes its meaning:

o pattle is "the kind of word that occurs in Julius
Caesar and Henry V"

 fool is "the kind of word that occurs in comedies,
especially Twelfth Night

39

Vector semantics

How do we get there?

» Word-document (or term-document) matrices
based on co-occurrence counts

« Count weighting with tf-idf

 Word-context matrices based on co-
occurrence counts

« Dimensionality reduction (SVD, LSA)
* An alternative approach: word2vec

40

Count weighting

Are all words equally important?

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

* Intuition: A word occurring in a large proportion
of documents is not a good discriminator

* good does not contribute much to distinguishing the
documents

* The importance of a word should be inversely pro-
portional to the number of documents it occurs in

41

TF-IDF count weighting

* TF — term frequency:
* tf;q is the frequency of term t in document d

 DF — document frequency:
 df; is the number of documents containing term ¢t

 IDF — inverse document frequency:

1
[.d —_ —
idfy af, .
« Normalize by the collection size: r
t
. By convention, take the log: log — Implementation:
fe replace Scikit-Learn

« TF-IDF: tf; 4 - log —

CountVectorizer by
dft TfldfVectorizer

42

TF-IDF count weighting

Raw counts:
As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3
TF-IDF weights:
As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

AN

TF-IDF did its job!

43

Vector semantics

How do we get there?

» Word-document (or term-document) matrices
based on co-occurrence counts

« Count weighting with tf-idf

 \Word-context matrices based on co-
occurrence counts

« Dimensionality reduction (SVD, LSA)
* An alternative approach: word2vec

44

Word-context matrices

* One row per term/word

* One column per context term/word

* The rows and columns may be the same, but do not
have to

 Values represent counts of words within the
context of another word

aardvark .. computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 0 | 60 19
digital 0 1670 1683 85 5 4
information 0 3325 3982 378 5 13

45

Word-context matrices

What is the context of a word?

* The same sentence

« Add a pinch of sugar to the cherries and boil for 10
minutes.

* In the digital age, information is the global currency.
* n words to the left and to the right

« Add a pinch of [sugar to the cherries and boil for] 10
n=3 % minutes.

* In [the digital age, information is the global] currency.
» Often, stopwords are not counted

« Add a [pinch of sugar to the cherries and boil for 10]
n=2 minutes.

« In the [digital age, information is the global currency.]

46

Word-context matrices

What can we do with such a matrix?

aardvark ... computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 0 1 60 19
digital (0 167(_) 165_;3 82 § 4)
information 0 3325 3982 378 S 13

« Compute cosine similarity between words
« Cherry and strawberry are similar
* Digital and information are similar

« Compute cosine similarity between context
words (columns)

« Similar outcome as for rows, but not usually done
47

Vector semantics

How do we get there?

» Word-document (or term-document) matrices
based on co-occurrence counts

« Count weighting with tf-idf

 Word-context matrices based on co-
occurrence counts

« Dimensionality reduction (SVD, LSA)
* An alternative approach: word2vec

48

Dimensionality reduction

» Word-context vectors are sparse

* Most values are O

* Most words never co-occur with strawberry
* In particular when choosing small context sizes

aardvark ... computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 0 1 60 19
digital (0 1670 1683 85 5 4)
information 0 3325 3982 378 5 13
» Drawbacks:
* |nefficient

» Lack generalization capabilities

49

Dimensionality reduction

 Reduce the number of columns to a fixed size
m (typically in the range 50 ...500)

* €.g. using Singular Value Decomposition (SVD)
* The new columns represent abstract

properties, not words:

leash | walk | run | owner | leg | bark Uy | Ug | Uc
dog 3 5 1 5 4 2 dog (02|03 O
cat 0 3 3 1 5 0 cat 0.7 1 02| O
lion 0 3 2 0 1 0 » lion [09 (01| O
light 0 0 0 0 0 0 light | O 0 | 0.7
bark 1 0 0 2 1 0 bark | 0.3 | 0.9 | 0.1
car 0 0 4 3 0 0 car 0 | 0.3]0.6

0.7
0.8
0.8

0.6

50

Dimensionality reduction

* The combination of word-context vectors with
SVD dimensionality reduction is known as LSA
(latent semantic analysis — Deerwester et al.

1990).

« Other combinations are possible, e.g. using
PCA (principal component analysis).

* We typically use 100-500 target dimensions,
but can use as few as 2 for visualization.

51

Word embeddings

* There is a direct way to obtain dense word-
context vectors, by using neural networks:
word2vec

e Details a bit later in this course

* More recent developments:
* FastText
« Contextualized embeddings: BERT

« The Python module gensim is really useful for
all kinds of word-vector-related experiments!

52

What can we do with word
and document vectors?

Term-document vectors:

« Use document vectors as bag-of-words
representation for text classification

* TF-IDF weighting may be helpful
« Dimensionality reduction can be applied

« Compute similarities between documents +
find most similar documents to a given query

* TF-IDF weighting is considered standard
« Recent approaches use dense vectors from NNs

53

What can we do with word
and document vectors?

Word-context vectors:

 Use word vectors as feature vectors for
sequence labeling tasks

» Dimensionality reduction is required, otherwise it is
just a one-hot vector
« Compute similarities between words
» Dimensionality reduction considered standard

« Specific research questions: analogy, semantic
change, bias detection

o4

What can we do with word
and document vectors?

Word-context vectors:

« Can we use word vectors as bag-of-words
representation for text classification?

« Continuous bag-of-words model (CBOW):
Average the weight vectors of all words occurring in
the document

1
avg(x) — |x| z Uy

WEX

95

Readings

 Jurafsky & Martin, chapter 3

* N-gram language models

 Jurafsky & Martin, chapter 6

* Vector semantics and embeddings

56

