Neural networks (Just some basics...)

IN4080 Natural Language Processing

Yves Scherrer

Linear models for text classification

Example: Determine if a text has positive sentiment.

- w = [0.2, 0.3, 0.9, 0.5]
- x = [0.5, 0.6, 0.1, 1]

The last (or first) element of the feature vector is typically always set to 1. This is called the **bias term**.

• $w \cdot x = 0.1 + 0.18 + 0.09 + 0.5 = 0.87$

•
$$y = \sigma(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x})}} = \frac{1}{1 + e^{-0.87}} = 0.70$$

Linear models Training

Example: Determine if a text has positive sentiment.

Linear models Multi-class prediction

Example: Determine the dominant sentiment of a text.

Activation functions

Example: Determine the dominant sentiment of a text.

Two-step classification

Idea:

- Partition the collection into e.g. 100 text classes
- Base the sentiment decision on the text class
- Let's use the output of the first model as the input features of the second model.

Activation functions

The **softmax** function is costly due to the normalization.

• In the hidden layers, we don't care about proper probability distributions and can use simpler activation functions (i.e. element-wise functions).

Activation functions

tanh ReLu (Rectified Linear Unit)

Similar to sigmoid, but often works better.

Very simple and often used.

Why hidden layers?

- Perceptron and LR are linear classifiers
 - The decision boundary (for a binary prediction problem) is one straight line

- There are relatively simple problems that cannot be solved with a linear classifier
 - For example, the XOR problem

The XOR problem

Let's imagine a world where:

- People have either light or dark hair
- People have either light or dark eyes
- People are right-handed whenever their hair and eye color matches, and left-handed when it doesn't match

Extended features

We can extend the feature vector with combinations of existing features:

$$[x_1, x_2] \implies [x_1, x_2, x_1 * x_2, x_1^2 + x_2^2, ...]$$

• Datasets which are not linearly separable may become separable when using extended features.

Let's try:

x = [eyes, hair, (eyes - hair) * (hair - eyes)]

•
$$x = [0, 0, 0]$$
 $y = 0$
• $x = [0, 1, -1]$ $y = 1$
• $x = [1, 0, -1]$ $y = 1$
• $x = [1, 1, 0]$ $y = 0$
• $x = [1, 1, 0]$ $y = 0$
• $x = [1, 1, 0]$ $y = 0$
• $x = [1, 1, 0]$ $y = 0$

14

eves

Extended features

x = [eyes, hair, (eyes - hair) * (hair - eyes)]

- How did we figure that out???
 - XOR can be defined as $(A \lor \neg B) \land (B \lor \neg A)$
- Features have to be defined manually
- Real-life features generally don't correspond to propositional logic functions...

The XOR problem in a neural network

Why does this work?

• This only works for a particular set of weight values in W and U. But these can be learned automatically.

Feed-forward neural networks

Feed-forward neural networks

- All arrows go "upwards"
- Also called **multi-layer perceptron** (for historical reasons)
- Input units x_i , hidden units h_i , output units y_i

Feed-forward neural networks

FFN with 1 layer = logistic regression

Binary LR:

Multinomial LR:

More layers can be added analogously

Two-layer networks **Binary:**

Multinomial:

Training neural networks

Linear models – Training

Example: Determine if a text has positive sentiment.

Training a 2-layer network

- For every training tuple (*x*, *y*):
 - Run **forward** computation to find our estimate \hat{y}
 - Run **backward** computation to update weights:
 - For every output node:
 - Compute loss *L* between true *y* and the estimated \hat{y}
 - For every weight u from hidden layer to the output layer:
 - Update the weight
 - For every hidden node:
 - Assess "how much blame it deserves for the current answer"
 - For every weight *w* from input layer to the hidden layer:
 - Update the weight

For binary logistic regression, we typically use the **cross-entropy loss**:

Gradient descent for LR

Use the **derivative** of the loss function with respect to weights

$$\frac{d}{dw}L(\hat{y},y) = \frac{d}{dw}L(f(x;w),y)$$

to tell us how to adjust weights for each training item:

$$w_{i,j} \leftarrow w_{i,j} - \lambda \frac{d}{dw_{i,j}} L(\hat{y}, y)$$

For logistic regression:

$$\frac{d}{dw_j}L_{CE}(\hat{y}, y) = (\sigma(w \cdot x) - y) \cdot x_j$$

Gradient descent

A neural network layer is essentially the same as a logistic regression classifier.

• Chain rule: if f(x) = u(v(x))then $\frac{df}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx}$

- Idea:
 - 1. Compute the derivative of the loss
 - 2. Compute the derivative of the activation function
 - 3. Compute the derivative of the dot product

Computation graphs

- What if we have a neural network with several layers?
 - We need the derivative of the loss with respect to each weight in **every layer** of the network.
 - But the loss can only be computed at the end of the network.

Solution: backpropagation

- "Distributes" the loss gradient over all the layers.
- Relies on **computation graphs**.
- A computation graph represents the process of computing a mathematical expression.

L(a,b,c) = c(a+2b)

Computations:

- d = 2 * b
- e = a + d

$$L = c * e$$

Backpropagation in a two-layer network

33

Summary

To train a neural network, we need to:

- Be able to represent the network as a computation graph
- Use only differentiable operations
 - Dot product is ok
 - Sigmoid, tanh and ReLU are also ok
 - Cross-entropy loss is usually fine
- Use a toolkit that knows how to do the complicated differentiation stuff automatically
 - Write the forward pass function and let it determine the backward pass function

Word vectors and embeddings

IN4080 Natural Language Processing

Yves Scherrer

Vector semantics

How do we get there?

- Word-document (or term-document) matrices based on co-occurrence counts
 - Count weighting with tf-idf
- Word-context matrices based on cooccurrence counts
 - Dimensionality reduction (SVD, LSA)
 - Makes the vectors short and dense
- An alternative approach: word2vec
 - Creates short and dense vectors directly

Why short and dense vectors?

- Easier to use as feature vectors in machine learning (fewer weights to tune)
- Generalize better than explicit counts
- Capture semantic relations (synonymy, ...) better

- Count-based methods:
 - Count how often each word w occurs near "apricot"
- Alternative: predict rather than count
 - How likely is word w to show up near "apricot"?
- We don't actually care about this task, but we take the hidden representations of the network as the word embeddings.
- This is an instance of **self-supervision**:
 - Words that occur near "apricot" in the corpus can act as likely answers.
 - Words that never occur near "apricot" in the corpus can act as unlikely answers.
 - No need for human annotation.

First idea: a neural bigram language model

- Input: one-hot vector of word w_t
- One hidden layer
- Output: probability distribution over w_{t+1}

Continuous bag-of-words (CBOW):

 Input: concatenation (or sum) of context word vectors

 $W_{t-k}, \dots, W_{t-1}, W_{t+1}, \dots, W_{t+k}$

• Output: probability distribution for target word w_t

Skip-gram:

- The opposite of CBOW
- Target word as input
- Context words as output
- This requires 2k softmax calculations
 - Complicated
 - Expensive (vocabulary vectors are very large)

Skip-gram with negative sampling

- Reformulate model as a binary classification task:
 - Input: one-hot vectors of two words w_t and w_c
 - Output: probability that w_c occurs in the context of w_t
- We need two types of training examples:
 - Word pairs with high probability (positive examples)
 - Word pairs with low probability (negative examples)
- Train a binary classifier on this data
 - Feed-forward neural network
 - A logistic regression classifier works just fine...

Training data

... lemon, a tablespoon of apricot preserves or a ...

c1 c2 t c3 c4

- For each positive example, we create k negative examples
 - Use any random word that isn't w_t

positive examples +				
t	С			
apricot	tablespoon			
apricot	of			
apricot	preserves			
apricot	or			

negative examples -					
t	c	t	c		
apricot	aardvark	apricot	twelve		
apricot	puddle	apricot	hello		
apricot	where	apricot	dear		
apricot	coaxial	apricot	forever		

Computing context probabilities

- Given two vectors w and c, we can compute their similarity using the dot product: $w \cdot c$
 - Note: cosine similarity is just a normalized dot product, and we don't need this type of normalization here.
- The dot product gives us any number. How can we convert it into a probability?
 - Sigmoid function (binary logistic regression):

$$P(+|\boldsymbol{w},\boldsymbol{c}) = \sigma(\boldsymbol{w}\cdot\boldsymbol{c}) = \frac{1}{1+e^{-(\boldsymbol{w}\cdot\boldsymbol{c})}}$$

 Wait a minute: we don't have these vectors – wasn't the whole point to create them???

Computing context probabilities

Training procedure:

- Randomly initialize two vectors for each word of the dataset
 - One for its use as target word (W)
 - One for its use as context word (C)
- Pick an example from the training data (positive or negative)
- Predict probability
- Compute loss and update vectors based on gradient
- Pick next example

Training word embeddings

Two sets of embeddings

- SGNS learns two sets of embeddings:
 - Embeddings for the target words w_i
 - Embeddings for the context words c_i
- It is common to just add them together, so word *i* is represented by the vector $w_i + c_i$.
 - That's what is commonly referred to by **word2vec**.

Effect of window size

- Small windows (±2 context words):
 - The nearest words are **syntactically similar** words in the same taxonomy (e.g., same parts of speech).
- Large windows (± 5 context words):
 - The nearest words are **related** words in the same semantic fields.

Applications of word vectors

Word vectors or embeddings

- Each word is represented by a vector of real numbers
- Similarity between words can be measured by cosine similarity
- A word can be similar to one word in some dimensions and other words in other dimensions

			Dimensio	ons	
	dog	-0.4	0.37	0.02	-0.34
	cat	-0.15	-0.02	-0.23	-0.23
10	lion	0.19	-0.4	0.35	-0.48
tor	tiger	-0.08	0.31	0.56	0.07
vec	elephant	-0.04	-0.09	0.11	-0.06
prd	cheetah	0.27	-0.28	-0.2	-0.43
Ň	monkey	-0.02	-0.67	-0.21	-0.48
	rabbit	-0.04	-0.3	-0.18	-0.47
	mouse	0.09	-0.46	-0.35	-0.24
	rat	0.21	-0.48	-0.56	-0.37

https://medium.com/@jayeshbahire

Analogical relations

• "Apple is to tree as grape is to vine."

- "Man is to king as women is to _____."
 - $v_{king} v_{man} + v_{woman} \approx v_{queen}$
- "Paris is to France as Rome is to ____."
 - $v_{France} v_{Paris} + v_{Rome} \approx v_{Italy}$

Analogical relations

Analogical relations

Lexical semantic change

~30 million books, 1850-1990, Google Books data

J&M

Bias

- Man is to computer programmer as woman is to _____.
 - $v_{programmer} v_{man} + v_{woman} \approx v_{homemaker}$
- Different adjectives are associated with:
 - male and female terms
 - typical black names and typical white names
- Male and female terms end up relatively far apart in the vector space, even if their meaning is the same.

Bias

Debiasing:

- Neutralize the biases
- Should we debias?
- When should we (not) debias?

https://vagdevik.wordpress.com/2018/ 07/08/debiasing-word-embeddings

Demo

- Collection of pretrained word embeddings for various languages:
 - <u>http://vectors.nlpl.eu/</u>
- Interactive visualization of word similarities
 - http://vectors.nlpl.eu/explore/embeddings/en/

Evaluation of embeddings

Intrinsic evaluation:

- WordSim-353:
 - Broader "semantic relatedness"

• SimLex-999:

- Narrower: similarity
- Manually annotated for similarity

Word1	Word2	POS	Sim-score	
old	new	Α	1.58	
smart	intelligent	Α	9.2	
plane	jet	N	8.1	
woman	man	N	3.33	
word	dictionary	N	3.68	
create	build	V	8.48	
get	put	V	1.98	
keep	protect	V	5.4	

Use cases for word embeddings

- Document classification
- Language modeling

Neural document classification

Neural document classification

Maybe like this?

Neural document classification

- Issue: texts come in different lengths...
 - The graph in the previous slide uses only the first three words.
- Solution 1:
 - Use as many vectors as the length of the longest document.
 - Set vector values of "unused" words to zero.
 - That will be a very long vector...
- Solution 2 (pooling):
 - Create a single "sentence embedding" that combines the embeddings of its words.
 - Take the mean of all the word embeddings
 - Take the element-wise maximum of all embeddings

Neural language models

- This was for producing word embeddings. Now we assume that we have them.
- We can use more than one input word.

Neural language models

Neural language models

- This model has serious drawbacks:
 - Not efficient, need to run the same embeddings several times through the network.
 - Context is limited to window size.
- But neural LMs still work better than probabilistic ones.

Example:

- Training data:
 - Seen: I have to make sure that the cat gets fed.
 - Not seen: dog gets fed
- Test data:
 - I forgot to make sure that the dog gets _____
 - A probabilistic LM can't predict fed
 - A neural LM can use the similarity of cat and dog embeddings to generalize and predict fed after dog.