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Linear models for text 
classification
Example: Determine if a text has positive sentiment.

𝒙

𝒘

The features are typically 
defined manually (e.g. 
bag of words).

The features and weights 
can be represented as 
vectors 𝒙 and 𝒘.

The prediction score 
corresponds to the dot 
product: 𝑧 = 𝒙 % 𝒘

% =

2

Logistic regression models 
add a sigmoid function:
𝑃 𝑦 = 1 𝑥 =

1
1 + exp(−𝑧)



Example
• 𝒘 = 0.2, 0.3, 0.9, 0.5
• 𝒙 = 0.5, 0.6, 0.1, 1

• 𝒘 - 𝒙 = 0.1 + 0.18 + 0.09 + 0.5 = 0.87

• 𝑦 = 𝜎 𝒘 - 𝒙 = !
!"#!(𝒘$𝒙)

= !
!"#!'.)*

= 0.70
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The last (or first) element of 
the feature vector is 

typically always set to 1. 
This is called the bias term.



Linear models
Training
Example: Determine if a text has positive sentiment.

𝒙

𝒘

Correct answer

Start with random weights.
Predict first example.
Determine how far off the 
correct answer is (loss).
Adjust the weights 
depending on the 
derivative of the loss 
(gradient descent).
Repeat with next example.

4



Linear models
Multi-class prediction
Example: Determine the dominant sentiment of a text.

𝒙

𝑾

Every class gets its own 
weight vector, resulting in 
a matrix.

Compute the matrix-vector 
product: 𝒛 = 𝒙 % 𝑾

Probability distribution 
over three classes
(e.g. positive, negative, 
neutral) with softmax:

exp(𝒘𝒚 / 𝒙)
∑"!∈$ exp(𝒘𝒚% / 𝒙)

% =

5



Activation functions
Example: Determine the dominant sentiment of a text.

𝒙

𝑾

Several types of S-
shaped (“sigmoid”) 
functions can be used 
here.

This part is also called 
activation function.
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Two-step
classification
Idea:
• Partition the 

collection into e.g. 
100 text classes

• Base the sentiment 
decision on the text 
class

Let’s use the output 
of the first model as 
the input features of 
the second model.

This is called a 
hidden layer.
Models with hidden 
layers are called 
neural networks.

Both weight matrices 
can be trained in a 
single pass: 
backpropagation.
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Activation functions
The softmax function is costly due to the 
normalization.

• In the hidden layers, we don’t care about proper 
probability distributions and can use simpler 
activation functions (i.e. element-wise functions).
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Sigmoid:

𝑦 = 𝜎(𝑧)



Activation functions
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tanh ReLu (Rectified Linear Unit)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)
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Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = max(z,0) (7.6)

Similar to sigmoid, but often 
works better.

Very simple and often used.



Neural networks
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The size of the input vector is 
defined by the number of distinct 
words in the training corpus.

The size of the 
prediction vector is 
defined by the 
number of classes.

Several hidden layers can be added.
Neural networks with more than one 
hidden layer are called deep models. The size of the 

hidden layer vectors 
and the number of 
hidden layers can 
be freely chosen.



Why hidden layers?
• Perceptron and LR are

linear classifiers
• The decision boundary (for

a binary prediction problem)
is one straight line

• There are relatively simple
problems that cannot be
solved with a linear classifier

• For example, the XOR problem
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The XOR problem
Let’s imagine a world where:

• People have either light or dark hair
• People have either light or dark eyes
• People are right-handed whenever their hair and 

eye color matches, and left-handed when it doesn’t 
match
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Light

Dark

Light Dark

Hair

Eyes

R

RL

L

That’s not a 
straight line…



0 = light, 1 = dark
x1 = eyes, x2 = hair

The XOR problem
𝑥 = 0, 0 ⟹ 𝑦 = 0
𝑥 = 0, 1 ⟹ 𝑦 = 1
𝑥 = 1, 0 ⟹ 𝑦 = 1
𝑥 = 1, 1 ⟹ 𝑦 = 0
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0 = right-handed
1 = left-handed

0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a)  x1 AND x2 b)  x1 OR x2 c)  x1 XOR x2

?

It is impossible to define 
a weight vector 𝒘 that 
produces the correct 

predictions.



Extended features
We can extend the feature vector with combinations 
of existing features:

𝑥!, 𝑥" ⟹ 𝑥!, 𝑥", 𝑥! ∗ 𝑥", 𝑥!" + 𝑥"", …
• Datasets which are not linearly separable may 

become separable when using extended features.
Let’s try:

𝑥 = [𝑒𝑦𝑒𝑠, ℎ𝑎𝑖𝑟, 𝑒𝑦𝑒𝑠 − ℎ𝑎𝑖𝑟 ∗ ℎ𝑎𝑖𝑟 − 𝑒𝑦𝑒𝑠 ]
• 𝑥 = 0, 0, 0  𝑦 = 0
• 𝑥 = 0, 1, −1  𝑦 = 1
• 𝑥 = 1, 0, −1  𝑦 = 1
• 𝑥 = 1, 1, 0  𝑦 = 0
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Extended features
𝑥 = [𝑒𝑦𝑒𝑠, ℎ𝑎𝑖𝑟, 𝑒𝑦𝑒𝑠 − ℎ𝑎𝑖𝑟 ∗ ℎ𝑎𝑖𝑟 − 𝑒𝑦𝑒𝑠 ]

• How did we figure that out???
• XOR can be defined as (𝐴 ∨ ¬𝐵) ∧ (𝐵 ∨ ¬𝐴)

• Features have to be defined manually
• Real-life features generally don’t correspond to 

propositional logic functions…
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The XOR problem in
a neural network
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𝒙 = [𝑥!, 𝑥"]

𝒉 = [ℎ!, ℎ"]

𝒚 = [𝑦!]

𝑾 = 1 −1
−1 1

𝑼 = 1
1
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𝑦

ℎ % 𝑈

ℎ
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𝑥

0

0

[0 0]

[0 0]

[0 0]

1

1

[0 1]

[−1 1]

[0 1]

1

1

[1 0]

[1 − 1]

[1 0]

0

0

[0 0]

[0 0]

[1 1]



Why does this work?
The original space: The new hidden space:

• This only works for a particular set of weight 
values in 𝑊 and 𝑈. But these can be learned 
automatically.
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Feed-forward
neural networks
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Feed-forward
neural networks
• All arrows go “upwards”
• Also called multi-layer perceptron

(for historical reasons)
• Input units 𝑥*, hidden units ℎ*,

output units 𝑦*
8 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS
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Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight vector wi and bias bi for each unit i into a single weight matrix W and
a single bias vector b for the whole layer (see Fig. 7.8). Each element Wji of the
weight matrix W represents the weight of the connection from the ith input unit xi to
the jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now the hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following, using the
sigmoid function s :

h = s(Wx+b) (7.8)

Notice that we’re applying the s function here to a vector, while in Eq. 7.3 it was
applied to a scalar. We’re thus allowing s(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have n0
represent the number of inputs, so x is a vector of real numbers of dimension n0,
or more formally x 2 Rn0 , a column vector of dimensionality [n0,1]. Let’s call the
hidden layer layer 1 and the output layer layer 2. The hidden layer has dimensional-
ity n1, so h 2 Rn1 and also b 2 Rn1 (since each hidden unit can take a different bias
value). And the weight matrix W has dimensionality W 2 Rn1⇥n0 , i.e. [n1,n0].

Take a moment to convince yourself that the matrix multiplication in Eq. 7.8 will
compute the value of each h j as s

�Pn0
i=1 Wjixi +b j

�
.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single
output node, and its value y is the probability of positive versus negative sentiment.

𝑊

𝑈

𝒙

𝒉

𝒚

𝑏

1



Feed-forward
neural networks
FFN with 1 layer = logistic regression

Binary LR:   Multinomial LR:

20

𝒙

𝒘

𝑦 = 𝜎 𝒘 % 𝒙

𝒙

𝑾

𝒚 = softmax 𝑾 % 𝒙

𝑦 is a single 
number

𝑾 is a matrix, 
𝒚 is a vector



Feed-forward
neural networks
Two-layer networks
Binary:   Multinomial:
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𝒉 = 𝜎 𝑾 % 𝒙

𝑾 𝑾

𝑼𝒖

𝑦 = 𝜎 𝒖 % 𝒉

𝒉 = 𝜎 𝑾 % 𝒙

𝒚 = softmax 𝑼 % 𝒉

The activation 
function is applied 

element-wise

The activation 
function is applied 

element-wise

This needs to be a 
softmax to get 

proper probabilities

𝒙 𝒙

More layers can be 
added analogously



Training neural 
networks
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Linear models – Training
Example: Determine if a text has positive sentiment.

𝒙

𝒘

Correct answer

Start with random weights.
Predict first example.
Determine how far off the 
correct answer is (loss).
Adjust the weights 
depending on the 
derivative of the loss 
(gradient descent).
Repeat with next example.

23

Forward 
pass

Backward 
pass



Training a 2-layer network
• For every training tuple (𝑥, 𝑦):

• Run forward computation to find our estimate /𝑦
• Run backward computation to update weights: 

• For every output node:
• Compute loss 𝐿 between true 𝑦 and the estimated ,𝑦
• For every weight 𝑢 from hidden layer to the output layer:

• Update the weight
• For every hidden node:

• Assess “how much blame it deserves for the current 
answer”

• For every weight 𝑤 from input layer to the hidden layer:
• Update the weight
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Loss for LR
For binary logistic regression, we typically use 
the cross-entropy loss:

𝐿/0 C𝑦, 𝑦 = − log 𝑝 𝑦 𝑥
= − 𝑦 log C𝑦 + 1 − 𝑦 log 1 − C𝑦
= − 𝑦 log 𝜎(𝑤 - 𝑥) + 1 − 𝑦 log 1 − 𝜎(𝑤 - 𝑥)

25

Goal: maximize probability 
of the correct label Binary classification: 

only two options J𝑦 
and 1 − J𝑦

J𝑦 = 𝜎(𝑤 % 𝑥)



Gradient descent for LR
Use the derivative of the loss function with respect 
to weights

𝑑
𝑑𝑤

𝐿 5𝑦, 𝑦 =
𝑑
𝑑𝑤

𝐿 𝑓 𝑥;𝑤 , 𝑦

to tell us how to adjust weights for each training 
item:

𝑤#,% ← 𝑤#,% − 𝜆
𝑑

𝑑𝑤#,%
𝐿 5𝑦 , 𝑦

For logistic regression:
𝑑
𝑑𝑤%

𝐿&'( 5𝑦, 𝑦) = 𝜎 𝑤 = 𝑥 − 𝑦 = 𝑥%
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Gradient descent
A neural network layer is essentially the same as 
a logistic regression classifier.
• Chain rule: if 𝑓 𝑥 = 𝑢(𝑣 𝑥 ) 

then 12
13
= 14

15
- 15
13

• Idea:
1. Compute the derivative of the loss
2. Compute the derivative of the activation function
3. Compute the derivative of the dot product

27
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Computation graphs
• What if we have a neural network with several 

layers?
• We need the derivative of the loss with respect to 

each weight in every layer of the network.
• But the loss can only be computed at the end of the 

network.
• Solution: backpropagation

• “Distributes” the loss gradient over all the layers.
• Relies on computation graphs.
• A computation graph represents the process of 

computing a mathematical expression.
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Example
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e=a+d

d = 2b L=ce

a

b

c

Computations:



Example
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Computations:



Example
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e=d+a

d = 2b L=ce

a=3

b=1

e=5

d=2 L=-10

 

a

b

c backward pass
c=-2

14 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

e=a+d

d = 2b L=ce

3

1

-2

e=5

d=2 L=-10

forward pass

a

b

c

Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :
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Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):
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e = a+d :
∂e
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= 1,
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In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)



Example

32
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= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.
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Backpropagation in a
two-layer network
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to compute these derivatives. Fig. 7.11 shows the backward pass. At each node we
need to compute the local partial derivative with respect to the parent, multiply it by
the partial derivative that is being passed down from the parent, and then pass it to
the child.
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Figure 7.11 Computation graph for the function L(a,b,c) = c(a+2b), showing the back-
ward pass computation of ∂L

∂a , ∂L
∂b , and ∂L

∂c .

Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1] +b[2]

a[2] = s(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid s :

ds(z)
dz

= s(z)(1�s(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1� tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

⇢
0 f or z < 0
1 f or z � 0 (7.30)
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Summary
To train a neural network, we need to:

• Be able to represent the network as a computation 
graph

• Use only differentiable operations
• Dot product is ok
• Sigmoid, tanh and ReLU are also ok
• Cross-entropy loss is usually fine

• Use a toolkit that knows how to do the complicated  
differentiation stuff automatically

• Write the forward pass function and let it determine the 
backward pass function

34



Word vectors and 
embeddings

IN4080
Natural Language Processing

Yves Scherrer



Vector semantics
How do we get there?
• Word-document (or term-document) matrices 

based on co-occurrence counts
• Count weighting with tf-idf

• Word-context matrices based on co-
occurrence counts

• Dimensionality reduction (SVD, LSA)
• Makes the vectors short and dense

• An alternative approach: word2vec
• Creates short and dense vectors directly
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Why short and dense 
vectors?
• Easier to use as feature vectors in machine 

learning (fewer weights to tune)
• Generalize better than explicit counts
• Capture semantic relations (synonymy, …) 

better
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Word embeddings

38

• Count-based methods:
• Count how often each word 𝑤 occurs near “apricot”

• Alternative: predict rather than count
• How likely is word 𝑤 to show up near “apricot”?

• We don’t actually care about this task, but we take 
the hidden representations of the network as the 
word embeddings.

• This is an instance of self-supervision:
• Words that occur near “apricot” in the corpus can act as 

likely answers.
• Words that never occur near “apricot” in the corpus can 

act as unlikely answers.
• No need for human annotation.



Word embeddings
First idea: a neural bigram language model

• Input: one-hot vector of word 𝑤L
• One hidden layer
• Output: probability distribution over 𝑤LMN
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Word embeddings
Continuous bag-of-words 
(CBOW):

• Input: concatenation (or sum) 
of context word vectors
𝑤LOP, … , 𝑤LON,𝑤LMN, … , 𝑤LMP

• Output: probability distribution 
for target word 𝑤L
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Word embeddings
Skip-gram:

• The opposite of CBOW
• Target word as input
• Context words as output

• This requires 2𝑘 softmax
calculations

• Complicated
• Expensive (vocabulary

vectors are very large)
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Skip-gram with negative 
sampling
• Reformulate model as a binary classification 

task:
• Input: one-hot vectors of two words 𝑤L and 𝑤Q
• Output: probability that 𝑤Q occurs in the context of 
𝑤L

• We need two types of training examples:
• Word pairs with high probability (positive examples)
• Word pairs with low probability (negative examples)

• Train a binary classifier on this data
• Feed-forward neural network
• A logistic regression classifier works just fine…
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Training data
... lemon, a tablespoon of apricot preserves   or a ... 

c1      c2    t c3       c4

• For each positive example, we create 𝑘
negative examples

• Use any random word that isn’t 𝑤L

6.7 • WORD2VEC 17

Equation 6.19 give us the probability for one word, but we need to take account
of the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.21)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.22)

In summary, skip-gram trains a probabilistic classifier that, given a test target
word t and its context window of k words c1:k, assigns a probability based on how
similar this context window is to the target word. The probability is based on apply-
ing the logistic (sigmoid) function to the dot product of the embeddings of the target
word with each context word. We could thus compute this probability if only we
had embeddings for each word target and context word in the vocabulary. Let’s now
turn to learning these embeddings (which is the real goal of training this classifier in
the first place).

6.7.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby.

Let’s start by considering a single piece of the training data, from the sentence
above:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot preserves
apricot or

negative examples -
t c t c
apricot aardvark apricot twelve
apricot puddle apricot hello
apricot where apricot dear
apricot coaxial apricot forever

For training a binary classifier we also need negative examples, and in fact skip-
gram uses more negative examples than positive examples, the ratio set by a param-
eter k. So for each of these (t,c) training instances we’ll create k negative samples,
each consisting of the target t plus a ‘noise word’. A noise word is a random word
from the lexicon, constrained not to be the target word t. The right above shows the
setting where k = 2, so we’ll have 2 negative examples in the negative training set
� for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
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Computing context 
probabilities
• Given two vectors 𝒘 and 𝒄, we can compute 

their similarity using the dot product: 𝒘 - 𝒄
• Note: cosine similarity is just a normalized dot 

product, and we don’t need this type of 
normalization here.

• The dot product gives us any number. How can 
we convert it into a probability?

• Sigmoid function (binary logistic regression):
𝑃 + 𝒘, 𝒄 = 𝜎 𝒘 7 𝒄 =

1
1 + 𝑒O(𝒘%𝒄)

• Wait a minute: we don’t have these vectors – 
wasn’t the whole point to create them???
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Computing context 
probabilities
Training procedure:
• Randomly initialize two vectors for 

each word of the dataset
• One for its use as target word (𝑾)
• One for its use as context word (𝑪)

• Pick an example from the training 
data (positive or negative)

• Predict probability
• Compute loss and update vectors 

based on gradient
• Pick next example
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Training word embeddings
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W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

Goal:
• Make positive 

pairs more likely
• Make negative 

pairs less likely



Two sets of embeddings
• SGNS learns two sets of embeddings:

• Embeddings for the target words 𝑤S
• Embeddings for the context words 𝑐S

• It is common to just add them together, so 
word 𝑖 is represented by the vector 𝑤* + 𝑐*.

• That’s what is commonly referred to by word2vec.



Effect of window size
• Small windows (±2 context words):

• The nearest words are syntactically similar words 
in the same taxonomy (e.g., same parts of speech).

• Large windows (±5 context words):
• The nearest words are related words in the same 

semantic fields.
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Applications of word 
vectors
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Word vectors or 
embeddings
• Each word is represented 

by a vector of real 
numbers

• Similarity between words 
can be measured by 
cosine similarity

• A word can be similar to 
one word in some 
dimensions and other 
words in other dimensions
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Analogical relations
• “Apple is to tree as grape is to vine.”

• “Man is to king as women is to ___.”
• 𝑣PSTU − 𝑣VWT + 𝑣XYVWT ≈ 𝑣Z[\\T

• “Paris is to France as Rome is to ___.”
• 𝑣]^WTQ\ − 𝑣_W^S` + 𝑣aYV\ ≈ 𝑣bLWcd
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For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of ±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of ±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy/Relational Similarity: Another semantic property of embeddings is their
ability to capture relational meanings. In an important early vector space model of
cognition, Rumelhart and Abrahamson (1973) proposed the parallelogram modelparallelogram

model
for solving simple analogy problems of the form a is to b as a* is to what?. In such
problems, a system given a problem like apple:tree::grape:?, i.e., apple is to tree as
grape is to , and must fill in the word vine. In the parallelogram model, illus-
trated in Fig. 6.15, the vector from the word apple to the word tree (=

#       »
apple� #   »tree)

is added to the vector for grape ( #        »grape); the nearest word to that point is returned.

tree

apple

grape
vine

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson,
1973): the location of

#     »
vine can be found by subtracting #   »tree from

#       »
apple and adding #       »grape.

In early work with sparse embeddings, scholars showed that sparse vector mod-
els of meaning could solve such analogy problems (Turney and Littman, 2005), but
the parallelogram method received more modern attention because of its success
with word2vec or GloVe vectors (Mikolov et al. 2013b, Levy and Goldberg 2014b,
Pennington et al. 2014). For example, the result of the expression (

#     »
king)� #     »man+

#            »woman is a vector close to #         »queen. Similarly,
#      »
Paris� #           »

France+
#     »
Italy) results in a

vector that is close to
#         »
Rome. The embedding model thus seems to be extracting rep-

resentations of relations like MALE-FEMALE, or CAPITAL-CITY-OF, or even COM-
PARATIVE/SUPERLATIVE, as shown in Fig. 6.16 from GloVe.

For a a:b::a*:b* problem, meaning the algorithm is given a, b, and a* and must
find b*, the parallelogram method is thus:

b̂⇤ = argmax
x

distance(x,a⇤ �a+b) (6.41)

with the distance function defined either as cosine or as Euclidean distance.
There are some caveats. For example, the closest value returned by the paral-

lelogram algorithm in word2vec or GloVe embedding spaces is usually not in fact
b* but one of the 3 input words or their morphological variants (i.e., cherry:red ::



Analogical relations

J&M



Analogical relations

J&M



Lexical semantic change
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~30 million books, 1850-1990, Google Books data

J&M



Bias

55

• Man is to computer programmer as woman is 
to ___.

• 𝑣e^YU^WVV\^ − 𝑣VWT + 𝑣XYVWT ≈ 𝑣fYV\VWP\^
• Different adjectives are associated with:

• male and female terms
• typical black names and typical white names

• Male and female terms end up relatively far 
apart in the vector space, even if their meaning 
is the same.



Bias
Debiasing:
• Neutralize the biases

• Should we debias?
• When should we (not) 

debias?
https://vagdevik.wordpress.com/2018/
07/08/debiasing-word-embeddings

https://vagdevik.wordpress.com/2018/07/08/debiasing-word-embeddings
https://vagdevik.wordpress.com/2018/07/08/debiasing-word-embeddings


Demo
• Collection of pretrained word embeddings for 

various languages:
• http://vectors.nlpl.eu/

• Interactive visualization of word similarities
• http://vectors.nlpl.eu/explore/embeddings/en/
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http://vectors.nlpl.eu/explore/embeddings/en/


Evaluation of embeddings
Intrinsic evaluation:
• WordSim-353:

• Broader “semantic relatedness”
• SimLex-999:

• Narrower: similarity
• Manually annotated

for similarity



Use cases for word 
embeddings

• Document classification
• Language modeling
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Neural document 
classification

60

𝑾

𝑼

𝒉 = 𝜎 𝑾 % 𝒙

𝒚 = softmax 𝑼 % 𝒉

𝒙

The size of the input 
vector is defined by the 
number of distinct words 
in the training corpus 
(bag of words).

The size of the prediction 
vector is defined by the 
number of classes.

We can use 
pretrained word 
embeddings here. 
How?



Neural document 
classification
Maybe like this?
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Neural document 
classification
• Issue: texts come in different lengths…

• The graph in the previous slide uses only the first three 
words.

• Solution 1:
• Use as many vectors as the length of the longest 

document.
• Set vector values of “unused” words to zero.
• That will be a very long vector…

• Solution 2 (pooling):
• Create a single ”sentence embedding” that combines 

the embeddings of its words.
• Take the mean of all the word embeddings
• Take the element-wise maximum of all embeddings
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Neural language models
Recall our
first attempt:

• This was for producing word embeddings. Now we 
assume that we have them.

• We can use more than one input word.
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Neural language models
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Sliding window (of length 3)



Neural language models
• This model has serious drawbacks:

• Not efficient, need to run the same embeddings several times 
through the network.

• Context is limited to window size.
• But neural LMs still work better than probabilistic ones.
Example:

• Training data:
• Seen: I have to make sure that the cat gets fed. 
• Not seen: dog gets fed

• Test data:
• I forgot to make sure that the dog gets ___
• A probabilistic LM can't predict fed
• A neural LM can use the similarity of cat and dog embeddings to 

generalize and predict fed after dog.

65


