Neural networks
(Just some basics...)

IN4080
Natural Language Processing

Yves Scherrer

Linear models for text
classification

Example: Determine if a text has positive sentiment.

The prediction score Logistic regression models
corresponds to the dot add a sigmoid functllon:
product: z =x -w : Py =1lx) = 5 e
(T =
v The features and weights
can be represented as
vectors x and w.
The features are typically
defined manually (e.g. i _EEE__

bag of words). 7 x

Example

This is called the bias term.

w =1[0.2,0.3,0.9,0.5] The last (or first) element of
the feature vector is
«x =10.5,0.6,0.1, 1] typically always set to 1.

*w-x=0.1+0.18+0.09 + 0.5 = 0.87

11
1+e~Wx) 147087

Linear models
Training
Example: Determine if a text has positive sentiment.

Correct answer

Start with random weights.

: Predict first example.
Determine how far off the
correct answer is (loss).
Adjust the weights

w depending on the
derivative of the loss
(gradient descent).
Repeat with next example.

Linear models
Multi-class prediction

Example: Determine the dominant sentiment of a text.

product: z=x-W

(e.g. positive, negative,
neutral) with softmax:
exp(wy, - x)
2yrey €Xp(Wy, - X)

: Probability distribution
Compute the matrix-vector g over three classes

|14

Every class gets its own

weight vector, resulting in
a matrix.

[T [.
X

Activation functions

Example: Determine the dominant sentiment of a text.

This part is also called
activation function.

S

-

Several types of S-
shaped (“sigmoid”)
functions can be used

here.

//l

a6
=
04
/
a2 /
B El G
*

Two-step
classification
Both weight matrices

Idea: can be trained in a

 Partition the single pass:
collection into e.qg. backpropagation.
100 text classes

* Base the sentiment —
decision on the text This is called a
hidden layer.

class Models with hidden

Let’s use the output layers are called
] neural networks.
of the first model as

the input features of
the second model.

Activation functions

The softmax function is costly due to the
normalization.
* In the hidden layers, we don’t care about proper

probability distributions and can use simpler
activation functions (i.e. element-wise functions).

1.0

Sigmoid: |
Yy = O'(Z) 0.6 yzl/(l _|_e—2)
Y

0.4

0.2

0.0'

=
o

tanh(z)
o
o

y
S
Ul

=
o

Activation functions

tanh ReLu (Rectified Linear Unit)

10

0.5 5
]
et —e ¢ =

= s = max(z,0
Y e Y ())
=10 =5 0 5 10 _1_010 _5 0 5 10
Similar to sigmoid, but often Very simple and often used.

works better.

The size of the

N e u ra I n etwo rks prediction vector is

defined by the
number of classes.

Several hidden layers can be added.
Neural networks with more than one

hidden layer are called deep models. The size of the

hidden layer vectors
and the number of
hidden layers can
be freely chosen.

£

words in the training corpus. H EEE

The size of the input vector is
defined by the number of distinct

10

Why hidden layers?

* Perceptron and LR are .
linear classifiers ,
* The decision boundary (for .

a binary prediction problem) 'A. .

IS one straight line

* There are relatively simple
problems that cannot be
solved with a linear classifier

* For example, the XOR problem

11

The XOR problem

Let's imagine a world where:
» People have either light or dark hair
* People have either light or dark eyes

* People are right-nanded whenever their hair and
eye color matches, and left-handed when it doesn’t
match

Dark +

Hair That's not a

straight line...

Light +

12

The XOR problem

X
0 = light, 1 = dark X
X4 = eyes, X, = hair X
X

<22,
I O™ ® 1
0 O O TN 0

0 1

=[0,0] =y =0
=[0,1] =y =
=11,0] =y =
=[L,1]=y=
XzA
O O
o— %
0 <1

b) x; OR x5

0 = right-handed
1 = left-handed

It is impossible to define
a weight vector w that
produces the correct

predictions.
X2A
[O
?
O ® X
0 1
¢) x; XOR x,

13

Extended features

We can extend the feature vector with combinations
of existing features:

[x1, 2] = o1, %2, %1 % X3, %7 + x5, ...]

» Datasets which are not linearly separable may
become separable when using extended features.

Let's try:
x = [eyes, hair, (eyes — hair) = (hair — eyes)]

« x =1[0,0,0] y =20 ~

~ wnn 0+
cx=[0,1,-1 y=1 §3 © ©
- x=[1,0-1 y=1 !
~x=[1,10] y=0 25.4i 0 O

Extended features
x = [eyes, hair, (eyes — hair) * (hair — eyes)]

* How did we figure that out???
« XOR can be definedas (AV =B) A (BV —A4)

» Features have to be defined manually

» Real-life features generally don’t correspond to
propositional logic functions...

15

The XOR problem in
a heural network

y 0 1 1 0 y = [yi]
ReLU

B =[]

h [0 O] [0 1] [1 O] [0 0] L1 h=[hy,h;y]
ReLU

x-w 00 [-11] [1 -1 [oo] [
EWZ[—11 _11]

(1] x=[xq,x;]

16

X [0 0] [0 1] [1 0] 11 1]

Why does this work?

The original space: The new hidden space:

171 @ (0 171 @
hair h,
01 @ O 01 @)
0 eyes 1 0 hy 1

* This only works for a particular set of weight
values in W and U. But these can be learned
automatically.

17

Feed-forward
neural networks

Feed-forward
heural networks

* All arrows go “upwards”

 Also called multi-layer perceptron
(for historical reasons)

* Input units x;, hidden units h;,
output units y;

Feed-forward
heural networks

FFN with 1 l[ayer = logistic regression

Binary LR: Multinomial LR:
* y=0cw:-x) (W] y=softmax(W - x)

[[T B x ([x

y is a single W is a matrix,
W number w y is a vector

20

Feed-forward
n e u ra I n etwo rks More layers can be
% added aynalogously

Two-layer networks

Binary: Multinomial:
B y=0(u-h) (W1 y=softmax(U - h)
This needs to be a
u U softmax to get
proper probabilities
1N h=ocW-Xx) W W h=c(W- x)

The activation
W function is applied
element-wise

The activation
W' function is applied
element-wise

H EEE

21

Training neural
networks

Linear models — Training

Example: Determine if a text has positive sentiment.

Forward
pass

Backward
pass

Correct answer

Start with random weights.
Predict first example.
Determine how far off the
correct answer is (loss).
Adjust the weights
depending on the
derivative of the loss
(gradient descent).
Repeat with next example.

A

X

23

Training a 2-layer network

 For every training tuple (x, y):
* Run forward computation to find our estimate y

* Run backward computation to update weights:
« For every output node:
« Compute loss L between true y and the estimated y
« For every weight u from hidden layer to the output layer:
« Update the weight
* For every hidden node:

 Assess “how much blame it deserves for the current
answer’

« For every weight w from input layer to the hidden layer:
« Update the weight

24

Loss for LR

For binary logistic regression, we typically use
the cross-entropy loss:

Goal: maximize probability
of the correct label

Leg(,y) = —logp(ylx)
=—[y logy + (1 —y)log(1—)]
= —[ly logo(w-x)+ (1 —y)log(1 —a(w:x))]

y=0o(w-x)

Binary classification:
only two options y
and1 -9

25

Gradient descent for LR

Use the derivative of the loss function with respect
to weights .

., d |
EL(% y) = %L(f(x, w),y)

to tell us how to adjust weights for each training
item:
A d Ly,y)
W.’.(_W,,._ S y’y
T T dwy,

For logistic regression:

d—%_LCE()?»Y) =(ow-x)—y) ' Xj

26

Gradient descent

A neural network layer is essentially the same as

a logistic regression classifier.

e Chain rule: if f(x) = u(v(x))
df _ du . dv

then — =
dx dv dx

* |dea:
1. Compute the derivative of the loss
2. Compute the derivative of the activation function

3. Compute the derivative of the dot product

27

Computation graphs

* \What if we have a neural network with several
layers?
* We need the derivative of the loss with respect to
each weight in every layer of the network.

 But the loss can only be computed at the end of the
network.

 Solution: backpropagation
 “Distributes” the loss gradient over all the layers.

* Relies on computation graphs.

« A computation graph represents the process of
computing a mathematical expression.

28

Example

L(a,b,c) = c(a+2b)

Computations:
g = 25D
e = a+d

L. = exe

29

Example

L(a,b,c) = c(a+2b)

forward pass

i —

Computations:
g = 2%b
e = a+d
L. = iexe

[=-10

30

% — %% L=ce : %:c (9_L:
9=3 da de da de dc
oL %@% e=a+d : %:1,%:
Je 9d Ib oad
%_2

backward pass

31

oL 9L de [—ee: 9L__90L_
=3 94 de da de " dc
IL OL de dd e—atd . 26-19¢_
b ~ 9edd b oa o4
d=2b : %—2

oL
e =5
backward pass

32

Backpropagation in a
two-layer network

208 — 6(2)(1-0(2)

dz {lfor z>0

33

Summary

To train a neural network, we need to:

* Be able to represent the network as a computation
graph
« Use only differentiable operations
« Dot product is ok
« Sigmoid, tanh and RelLU are also ok
« Cross-entropy loss is usually fine
« Use a toolkit that knows how to do the complicated
differentiation stuff automatically

« Write the forward pass function and let it determine the
backward pass function

Word vectors and
embeddings

IN4080
Natural Language Processing

Yves Scherrer

Vector semantics

How do we get there?

» Word-document (or term-document) matrices
based on co-occurrence counts

« Count weighting with tf-idf
 Word-context matrices based on co-

occurrence counts
« Dimensionality reduction (SVD, LSA)

 Makes the vectors short and dense

* An alternative approach: word2vec
» Creates short and dense vectors directly

36

Why short and dense
vectors?

e Easier to use as feature vectors in machine
learning (fewer weights to tune)

* Generalize better than explicit counts

« Capture semantic relations (synonymy, ...)
better

37

Word embeddings

* Count-based methods:
» Count how often each word w occurs near “apricot”

 Alternative: predict rather than count
* How likely is word w to show up near “apricot”?

* We don't actually care about this task, but we take
the hidden representations of the network as the
word embeddings.

* This is an instance of self-supervision:

 Words that occur near “apricot” in the corpus can act as
likely answers.

- Words that never occur near “apricot” in the corpus can
act as unlikely answers.

* No need for human annotation.

38

Word embeddings

First idea: a neural bigram language model
* Input: one-hot vector of word w;
* One hidden layer
« Output: probability distribution over w ¢

Input layer Projection layer Output layer

. _ probabilities of
l;ho't input vector embedding for w; context words
i N - — —~ i
X, |@ T m— o :
o
W W :
:) :
° = °:
@ —— — | o
IX|V| 2 1XV]

39

Word embeddings

Continuous bag-of-words
(CBOW):
* |Input: concatenation (or sum)
of context word vectors
Wty ey W, W1, oy Witk

Wik

« Output: probability distribution

for target word w;

Wik

g‘ Input layer
o \
of \
. Wy
o _
] \ \ Hidden layer BOutput layer
0 . | 7 o
O Vo8 O
. N\ /[0 ; :
o WV'N \ éh’ W N<V ol Wt
. 4 o . .
2 /Nedim b
4 ‘ k V-dim
O]
8 WV-."\
o This is a good
| dense vector
o/ cxr-dim | representation
of wy.

40

Word embeddings

Skip-gram: 7 Ouputlayer
* The opposite of CBOW o Weog
» Target word as input A
Input layer
» Context words as output : :
W, o 0 Vi1
* This requires 2k softmax o e
calculations 0
« Complicated o Weak
: This is a good =
« Expensive (vocabulary dense vector o
vectors are very large) representation CxP-dim
of w;.

41

Skip-gram with negative
sampling

. Refkormulate model as a binary classification
task:

* |[nput: one-hot vectors of two words w; and w,

 Output: probability that w,. occurs in the context of
Wi

* We need two types of training examples:
« Word pairs with high probability (positive examples)
« Word pairs with low probability (negative examples)

* Train a binary classifier on this data
« Feed-forward neural network
 Alogistic regression classifier works just fine...

42

Training data

tablespoon of apricot preserves or
cl c2 t c3 c4

e For each positive example, we create k
negative examples

» Use any random word that isn’t w;

positive examples + negative examples -

t C t C t C
apricot tablespoon apricot aardvark apricot twelve
apricot of apricot puddle apricot hello
apricot preserves apricot where apricot dear
apricot or apricot coaxial apricot forever

Computing context
probabilities

» Given two vectors w and ¢, we can compute
their similarity using the dot product: w - ¢

* Note: cosine similarity is just a normalized dot
product, and we don’t need this type of
normalization here.

* The dot product gives us any number. How can
we convert it into a probability?

« Sigmoid function (binary logistic regression):

1
P(tlw.c) =o(w-0) = T——5
* Wait a minute: we don’t have these vectors —
wasn't the whole point to create them???

44

Computing context
probabilities

Training procedure:

« Randomly initialize two vectors for
each word of the dataset
* One for its use as target word (W)
* One for its use as context word (C)

* Pick an example from the training
data (positive or negative)

 Predict probability

« Compute loss and update vectors
based on gradient

* Pick next example

1.d
aardvark [eee 1 \

apricot [eee

r W

zebra [ee9) |V| J
aardvark [eee |V|+1\

apricot [eee

- C

zebra [ee9] 2V J

45

Training word embeddings

W -

(aardvark [eee)

Goal:
« Make positive

move apricot and jam closer, oairs more likely

apricot @eejw|™ — = ~ INCreasing cy,, = W - Make negative
N \ pairs less likely
S |
R | 7 - . H
N ...apricot jam...
\ zebra [se® V.
VR
(aardvark @eel // " ', move apricot and matrix apart
jam [esslC, . |, . ; decreasing C, .4 * W
- e © .‘ i
k=D matrlx E] Cneg1 < - "
Tolstoy [888) Cpopolw- - - “MoOVeE apr/cot_and Tolstoy apart
decreasing C., * W
zebra [eee

46

Two sets of embeddings

 SGNS learns two sets of embeddings:
« Embeddings for the target words w;
« Embeddings for the context words c;

* [t is common to just add them together, so
word i is represented by the vector w; + ¢;.

« That's what is commonly referred to by word2vec.

Effect of window size

« Small windows (+2 context words):

* The nearest words are syntactically similar words
in the same taxonomy (e.g., same parts of speech).

« Large windows (+5 context words):

* The nearest words are related words in the same
semantic fields.

48

Applications of word
vectors

Word vectors or
embeddings

« Each word is represented
by a vector of real
numbers

« Similarity between words
can be measured by
cosine similarity

« Aword can be similar to
one word in some
dimensions and other
words in other dimensions

Word vectors

dog

cat

lion
tiger
elephant
cheetah
monkey
rabbit
mouse
rat

https://medium.com/@jayeshbahire

-0.4

-0.15

0.19

-0.08
-0.04

0.27

-0.02
-0.04

0.09
0.21

Dimensions

0.37
-0.02
-0.4
0.31
-0.09
-0.28
-0.67
-0.3
-0.46
-0.48

0.02

-0.23

0.35
0.56
0.11

-0.2

-0.21
-0.18
-0.35
-0.56

-0.34
-0.23
-0.48

0.07

-0.06
-0.43
-0.48
-0.47
-0.24
-0.37

https://medium.com/@jayeshbahire

Analogical relations

* "Apple is to tree as grape is to vine.”

tree

apple O/',O

1

S

grape
* “Man is to king as women is to

b

* vking ~ Uman + Vwoman = vqueen
* “Paris is to France as Rome is to

* Vrrance — Vparis + VRome = vltaly

N

51

Analogical relations

0.5

0.4

0.3

0.2

0.1

r heiress 7]
I
I i
) I
: niece ! * countess
*aunt | /- ; duchess
Sister | /
i ke i
: P I’ , | ;empress
. .
i Iy | "+ madam ;1 |
L o .
| ' ;
| ! nepHew h/elr /’ / i
[
! | / / /
- ' ! el { Loarl!! -
[uncle I / rqueeny /
! brother / // " / {duke
- I -
] / .S
/ / | ‘emperor
i ; : | i
I / I
B / / | |
I {sir [
= {man L king .
| 1 | | | 1 1 | 1 | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

J&M

Analogical relations

0.5 ' ' ! ! ' ' ' ' '
_ _ — — slowest
0.4 — i
. “slower __ __ — —- shortest
gt SOUEL b aaeen
Geat .7 “'shorter .
’ slow« >
ok
e
shorts
0.2+]
0.1+]
oF LSOSTONGerT T SRS 8 o i -~ strongest]
4
/ A TOUdeE T B e e e -
Sondéa » loudest
_01F Oudei oo - ks T
e Clearer ~ =~ 7 T T = — — — — — _ _ — clearest
< goflel ™" = = B s i
s TR TS R iy softest
0.2} e }
T C|eal' ;/// - dal’ke? BT S Bl e —_ d k t
soft <~ - arkes
dark <
-0.3 | | | |] | | | |

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0.6

J&M

Lexical semantic change

a it 9ay (1900s)

sweet

flaunting
J cheerful

tasteful

pleasant
frolicsome

witty Y gay (1950s)
bright

gays isexual

gay (1990s) homosexua
leshian

b
spread
broadcast (1 8505)385('3%}/\/
. SOWS
circulated scatter
broadcast (1900s)
newspapers
television
radio
hhc broadcast (1990s)

C solemn
awful (1850s)

majestic

gensive
gloomy

awe
dread

horrible

appalliwg terrible
awful (1900s) :
wonderful

awful (1990s)

awfullyyelrd

~30 million books, 1850-1990, Google Books data

J&M

54

Bias

* Man is to computer programmer as woman Is
to

* vprogrammer — Vman T+ Pwoman ~ Vhomemaker

* Different adjectives are associated with:

* male and female terms
* typical black names and typical white nhames

* Male and female terms end up relatively far
apart in the vector space, even if their meaning
Is the same.

95

Bias

Debias i ng . non-bias direction
(unrelated) A
* Neutralize the biases
doctor

_babysitter 5
* Should we debias”? =0

= grandmother - grandfather unrelated)
- When should we (not) - T

debias”?

https://vagdevik.wordpress.com/2018/
07/08/debiasing-word-embeddings

https://vagdevik.wordpress.com/2018/07/08/debiasing-word-embeddings
https://vagdevik.wordpress.com/2018/07/08/debiasing-word-embeddings

Demo

* Collection of pretrained word embeddings for
various languages:

* http://vectors.nlpl.eu/

* Interactive visualization of word similarities
e http://vectors.nlpl.eu/explore/embeddings/en/

o7

http://vectors.nlpl.eu/
http://vectors.nlpl.eu/explore/embeddings/en/

Evaluation of embeddings

Intrinsic evaluation:
 WordSim-353:

 Broader “semantic relatedness”

* SimLex-999:
L i Wordl Word2 POS | Sim-score

* Narrower: similarity old new A .58
smart intelligent A 9.2

* Manually annotated Slane et N 21
for similarity woman man N 3.33

word dictionary N 3.68

create build \% 8.48

get put \% 1.98

keep protect v 54

Use cases for word
embeddings

 Document classification
» Language modeling

59

Neural document
classification

The size of the prediction

vector is defined by the (M1 y=softmax(U - h)

number of classes.

The size of the input
vector is defined by the
number of distinct words
in the training corpus
(bag of words).

“mx%

We can use
pretrained word

embeddings here.

How?

60

Neural document
classification

Maybe like this?

p(positive sentiment|The dessert is...)

Output layer
sigmoid

Hidden layer

Projection layer

@@ -9::-60) 3dxI

embeddings 'Y = T =
E embedding for embedding for embedding for
word 534 word 23864 word 7
The dessert is
W1 w2 W3

61

Neural document
classification

* Issue: texts come in different lengths...

* The graph in the previous slide uses only the first three
words.

« Solution 1:
« Use as many vectors as the length of the longest
document.

» Set vector values of “unused” words to zero.
« That will be a very long vector...

 Solution 2 (pooling):

» Create a single "sentence embedding” that combines
the embeddings of its words.

* Take the mean of all the word embeddings
« Take the element-wise maximum of all embeddings

62

Neural language models

Reca” our Input layer Projection layer Oul;p;;itl.aye;
. . robabilities o
f| I'St atte m pt . 1-hot input vector embedding for Wi Iz‘ontext words
e — v
x: @ _—’.‘—_ — @ ;’1
. . . v
W, . W .
R Vixd ? Coqui—on Vi
- = \:_“ o :
e ——) T : ,
1xd i
1|V 1X|V

» This was for producing word embeddings. Now we
assume that we have them.

* We can use more than one input word.

63

Neural language models

p(aardvark|...) p(fish|...) p(for]...) p(zebral...)
Output layer o Ve IV|x1
softmax '
U [V[xdy,
Hidden layer
dhX3d
Projection layer @0 -0 268 3dx]
embeddings
E embedding for embedding for embedding for
word 35 word 9925 word 45180
— ! 1
-] and thanksl for all the] ? 1.3

ﬁ

Sliding window (of length 3)

64

Neural language models

 This model has serious drawbacks:

* Not efficient, need to run the same embeddings several times
through the network.

« Context is limited to window size.
« But neural LMs still work better than probabilistic ones.

Example:
 Training data:
« Seen: | have to make sure that the cat gets fed.
* Not seen: dog gets fed
 Test data:

» | forgot to make sure that the dog gets

» A probabilistic LM can't predict fed

» Aneural LM can use the similarity of cat and dog embeddings to
generalize and predict fed after dog.

65

