
When? October 19 starting at 17:00
Where? The science library



Neural networks
IN4080

Natural Language Processing

Yves Scherrer

2



Neural networks
• 1-layer feed-forward network = logistic 

regression model
• LR-like models can be stacked to create 

deeper networks
• We know how to get word vectors:

• Counting + dimensionality reduction
• Skip-gram with negative sampling
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Neural document 
classification
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𝑾

𝑼

𝒉 = 𝜎 𝑾 & 𝒙

𝒚 = softmax 𝑼 & 𝒉

𝒙

The size of the input 
vector is defined by the 
number of distinct words 
in the training corpus 
(bag of words).

The size of the prediction 
vector is defined by the 
number of classes.

We can use 
pretrained word 
embeddings here. 
How?



Neural document 
classification
• Document classification:

• One vector per document
• Word embeddings:

• One vector per word
Pooling:
• Combine all word vectors into a document vector

• Concatenate all word vectors
• Set vector values of “unused” words to zero.
• This yields a very large vector

• Take the mean of all the word vectors
• Take the element-wise maximum of all vectors
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Problem: texts come in 
different lengths…



Neural language models
Recall our
first attempt:

• This was for producing word embeddings. Now we 
assume that we have them.

• We can use more than one input word.
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Neural language models
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Sliding window (of length 3)



Neural language models
• This model has serious drawbacks:

• Not efficient, need to run the same embeddings 
several times through the network.

• Context is limited to window size.
• But neural LMs still work better than 

probabilistic ones.
• Why?
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Neural language models
Example:
• Training data:

• Seen: I have to make sure that the cat gets fed. 
• Not seen: dog gets fed

• Test data:
• I forgot to make sure that the dog gets ___

• A probabilistic (trigram) LM can't predict fed.
• A neural LM can use the similarity of cat and 

dog embeddings to generalize and predict fed
after dog.
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The Transformer:
Dealing with word 
sequences
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Types of Transformer 
models
• Sequence encoders with self-attention

• BERT
• Contextualized word embeddings, document 

classification, sequence labeling
• Sequence decoders with self-attention

• GPT
• Language modeling, text generation

• Encoder-decoder model with cross-attention
• The original Transformer
• Machine translation
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Types of Transformer 
models
• Sequence encoders with self-attention

• BERT
• Contextualized word embeddings, document 

classification, sequence labeling
• Sequence decoders with self-attention

• GPT
• Language modeling, text generation

• Encoder-decoder model with cross-attention
• The original Transformer
• Machine translation

12



Encoder models
For SGNS, we used one target word and one 
context word to predict their similarity.

• The model doesn’t know about the sentence in 
which the target word is used.

• Homographs cannot be distinguished.
• The model doesn’t distinguish between right and 

left contexts, and between close and far contexts.
• Similarity prediction is practical because it enables 

a self-supervised setup (no data annotation 
needed).
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Masked language modeling
Let us use another setup:

• Take a sentence, replace 12% of tokens by a blank
• In addition, replace 1.5% of tokens by another 

randomly chosen token
• Train a model to “fill the blanks”
• 1 sentence = 1 training instance
• Self-supervised

Example:
So long and thanks for all the fish

So [MASK] and [MASK] for all apricot fish
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What kind of neural 
network?
A simple feed-forward network:
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𝒈 = 𝜎 𝑾 & 𝒙

𝒚 = softmax 𝑼 & 𝒉

𝒙
[MASK]

One-hot encoding

Probability distribution 
over vocabulary items

No access to context, 
doesn’t look very 

promising…

𝒉 = 𝜎 𝑽 & 𝒈

Two hidden layers

One instance per word 



What kind of neural 
network?
Include context words:
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𝒙𝒕"𝟏

and

𝒙𝒕

[MASK]

𝒙𝒕$𝟏

for

thanks

𝒈𝒊 = 𝜎 𝑾 & 𝒙𝒊

𝒉𝒕 = 𝜎 𝑽 & 𝒈𝒕"𝟏 + 𝑽 & 𝒈𝒕 + 𝑽 & 𝒈𝒕$𝟏

𝒚𝒕 = softmax 𝑼 & 𝒉𝒕

Limited access to context: 
window size 1

All 3 words contribute 
equally to the sum

One instance per center word, 
each word is present in 3 instances



What kind of neural 
network?
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𝒙𝟐

[MASK]

𝒙𝟏 𝒙𝟑

So and

𝒙𝟒

[MASK]

𝒙𝟓

for

One training instance per sentence, 
As many output words as input words

???

longSo and thanks for

𝒈𝟏…𝟓

𝒉𝟏…𝟓

𝒚𝟐𝒚𝟏 𝒚𝟑 𝒚𝟒 𝒚𝟓



Self-attention
How to compute the 𝒉 layer?

• Simple average:
𝒉𝒕 = 𝜎

1
𝑛
& 𝑽 & 𝒈𝟏 +⋯+

1
𝑛
& 𝑽 & 𝒈𝒕 +⋯+

1
𝑛
& 𝑽 & 𝒈𝒏

• Some words are more important than others.
Let’s use a weighted average:
𝒉𝒕 = 𝜎 𝛼$,& & 𝑽 & 𝒈𝟏 +⋯+ 𝛼$,$ & 𝑽 & 𝒈𝒕 +⋯+ 𝛼$,' & 𝑽 & 𝒈𝒏

• How do we know the 𝛼 values?
• Maybe depending on the distance to 𝑡? Maybe not?
• Anyway, a neural network should be able to learn these 

values automatically…
• Idea: depending on similarity: 𝛼3,5 = 𝒈𝒕 $ 𝒈𝒄

• Recall: the dot product is a simple measure of similarity
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Self-attention
How to compute the 𝒉 layer?

• The more similar the vectors 𝒈𝒄 and 𝒈𝒕 are, the 
more important 𝒈𝒄 is for computing 𝒉𝒕:

𝛼3,5 = 𝒈𝒕 $ 𝒈𝒄
• For a weighted average, all 𝛼s should sum up to 1. 

Let’s use softmax:
𝛼3,5 = softmax(𝒈𝒕 $ 𝒈𝒄)

• Putting everything together:

𝒉𝒕 = 𝜎 0
89:

;

𝛼3,8 $ 𝑽 $ 𝒈𝒊

• That’s a simple type of self-attention. 
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The “real” thing 
is still more 

complicated…



Self-attention, continued
• The 𝒈 vectors now occur in 3 places and roles:

• As target word for computing 𝛼: softmax(𝒈𝒕 $ 𝒈𝒄)
• We call this role query

• As context word for computing 𝛼: softmax(𝒈𝒕 $ 𝒈𝒄)
• We call this role key

• As a factor of the final product: 𝛼3,8 $ 𝑽 $ 𝒈𝒊
• We call this role value

• The 3 roles are different, and the 𝒈 vectors are 
not equally well suited for all of them.

• Let’s create 3 different vectors tailored to the 
different roles!
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Self-attention, continued
• Let’s create 3 different vectors:

• Query vector: 𝒒𝒊 = 𝑾𝑸 $ 𝒈𝒊
• Key vector: 𝒌𝒊 = 𝑾𝑲 $ 𝒈𝒊
• Value vector: 𝒗𝒊 = 𝑽 $ 𝒈𝒊 (we already have this one)

• What about our weight values 𝛼?
𝛼3,5 = softmax(𝒒𝒕 $ 𝒌𝒄)

• It turns out that the dot product needs to be 
scaled before passing it to the softmax:

𝛼3,5 = softmax
𝒒𝒕 $ 𝒌𝒄
𝑑?
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𝑑+ refers to the 
dimensionality of 𝒌 

(and also of 𝒒)



Self-attention, continued
Putting things together again:

𝒉𝒕 = 𝜎 0
89:

;

softmax 𝒒𝒕 , 𝒌𝒊
𝑑/

, 𝒗𝒊

𝛼 is a square matrix that shows
how important a context word
is at a given position:
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𝛼,,. 𝑽 & 𝒈𝒊



Multi-head attention
• We may want to have several 𝛼 matrices to 

represent different types of attention:
• One for syntactic relatedness
• One for semantic relatedness
• One for coreference, etc.

• Let’s start over, with an extra index ℎ (head):
• Query vector: 𝒒𝒊𝒉 = 𝑾𝑸,𝒉 $ 𝒈𝒊
• Key vector: 𝒌𝒊𝒉 = 𝑾𝑲,𝒉 $ 𝒈𝒊
• Value vector: 𝒗𝒊𝒉 = 𝑽𝒉 $ 𝒈𝒊
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Multi-head attention
• Compute the vector for one head:

head𝒕𝒉 =0
89:

;

softmax
𝒒𝒕𝒉 $ 𝒌𝒊𝒉

𝑑?
$ 𝒗𝒊𝒉

• Then concatenate all head vectors and project them:
𝒉𝒕 = head𝒕𝟏⊕⋯⊕head𝒕𝒎 $ 𝑾𝑶

24

We have removed 
the sigmoid here.



Multi-head attention

25

Coreference

Predicate

Negation / verb 
agreement

Start of NPs

http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/


Position embeddings
• Self-attention does not have any notion of word 

ordering
• As of now, the attention weights are only chosen 

based on semantic similarity of the words
• But we probably should

take simple proximity
into account… 

• Simple solution:
• Concatenate semantic

word embedding with
absolute position
embedding
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Position embeddings
• Absolute numbers are not very efficient.
• The “real thing” uses several overlaid sine functions:
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Transformer blocks
Multi-head self-attention isn’t quite sufficient.
We need a few extra things and package 
everything up into so-called Transformer blocks:

28

And of course, we 
have to make sure 
that the whole thing 

remains 
differentiable…



What kind of neural 
network?

29

𝒙𝟐

[MASK]

𝒙𝟏 𝒙𝟑

So and

𝒙𝟒

[MASK]

𝒙𝟓

for

longSo and thanks for

𝒈𝟏…𝟓

𝒉𝟏…𝟓

𝒚𝟐𝒚𝟏 𝒚𝟑 𝒚𝟒 𝒚𝟓

This is one Transformer block. 
We can stack several of them.



What can we do with 
sequence encoders?
• Get contextualized word embeddings

• Train a model on the MLM task
• Pass a sentence through the network and extract 

the ℎ vector of each word as its embedding
• Alternative: average the vectors of several layers
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What can we do with 
sequence encoders?
• Text classification 

(one label per 
sentence

• Train a model on the 
MLM task, adding a 
[CLS] token in front 
of every sentence

• Throw away the 
output layer, create a 
new one

• Fine-tune the model 
to predict the label at 
the [CLS] position
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What can we do with 
sequence encoders?
• Sequence labeling 

(e.g. POS tagging)
• Train a model on the 

MLM task
• Throw away the 

output layer, create a 
new one

• Fine-tune the model 
on POS-annotated 
data
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Types of Transformer 
models
• Sequence encoders with self-attention

• BERT
• Contextualized word embeddings, document 

classification, sequence labeling
• Sequence decoders with self-attention

• GPT
• Language modeling, text generation

• Encoder-decoder model with cross-attention
• The original Transformer
• Machine translation
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Language modeling with 
self-attention
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𝒙𝟐

long

𝒙𝟏 𝒙𝟑

So and

𝒙𝟒

thanks

𝒙𝟓

for

andnice boring for all

𝒈𝟏…𝟓

𝒉𝟏…𝟓

𝒚𝟐𝒚𝟏 𝒚𝟑 𝒚𝟒 𝒚𝟓

Simply predict the next word, no masking

During training, use the correct word, not the predicted one

Attention can only 
access tokens to the left



Language modeling with 
self-attention
Probabilistic language model:

𝑃 𝑤0, … , 𝑤1
= 𝑃 𝑤0 , 𝑃 𝑤2 𝑤0 , 𝑃 𝑤3|𝑤0, 𝑤2 , ⋯
, 𝑃 𝑤1|𝑤0, … , 𝑤140

• For n-gram models, we could not condition on all 
preceding tokens

• Thanks to attention, we can do that now
• But typically, far-away tokens get less attention
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Language modeling with 
self-attention
For simplicity, let’s assume a single head:

𝛼5,7 = softmax 8
−∞, 𝑐 > 𝑡
𝒒𝒕 , 𝒌𝒄
𝑑/

, 𝑐 ≤ 𝑡

𝒉𝒕 = 𝜎 0
89:

;

𝛼5,9 , 𝒗𝒕

36



Language modeling with 
self-attention
• In terms of model architecture, that’s about all 

you need to know in order to build your own 
GPT model J

• Of course, you’ll still need the right amount 
(and quality) of training data…

37



Types of Transformer 
models
• Sequence encoders with self-attention

• BERT
• Contextualized word embeddings, document 

classification, sequence labeling
• Sequence decoders with self-attention

• GPT
• Language modeling, text generation

• Encoder-decoder model with cross-attention
• The original Transformer
• Machine translation
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Machine translation
Some (fairly obvious) facts about MT:

• Input: a sentence in the source language
• Output: a sentence in the target language

• Hopefully grammatical
• Hopefully with the same meaning

• Source and target sentence most often do not have 
the same number of words nor the same word order

Main idea:
• Train an encoder for the source language
• Train a decoder for the target language
• Connect the two

39

Everything can be trained together 
thanks to backpropagation



Connecting encoders and 
decoders

40The ultimate answer   is     42

ultimate answer   is     42    </s>

Encoder:
• Trained on next word 

prediction task
• Has access to left 

and right context

<s>     la  réponse ultime   est

La   réponse ultime  est     42

Decoder:
• Trained on next word 

prediction task
• Only has access to 

the left context

??



Connecting encoders and 
decoders

41The ultimate answer   is     42

ultimate answer   is     42    </s>
<s>     la  réponse ultime   est

La   réponse ultime  est     42

This is a good start, 
but does not work
when the word order
is not the same…

Let’s just connect
everything and let the 
model figure out what
is important…



Connecting encoders and 
decoders

42The ultimate answer   is     42

ultimate answer   is     42    </s>
<s>     la  réponse ultime   est

La   réponse ultime  est     42

This is called
cross-attention.



Cross-attention
• Dot-product attention:

𝛼9,: = softmax 𝒉𝒋𝒆𝒏𝒄 , 𝒉𝒊4𝟏𝒅𝒆𝒄

• Determines the importance of the 𝑗th word of the 
encoder for the 𝑖th word of the encoder.

• There are other attention types, and one can again 
use multiple heads.

• Context vector:
𝒄𝒊 =@

:

𝛼9,: , 𝒉𝒋𝒆𝒏𝒄

• This vector is then combined with the vector 
produced by the decoder self-attention.
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Encoder Decoder

The full Transformer

A Transformer block with 
self-attention + the rest

Cross-attention

https://proceedings.neurips.cc/
paper_files/paper/2017/file/3f5
ee243547dee91fbd053c1c4a8
45aa-Paper.pdf

Historically, this is 
what everything 
started with…

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Readings
• Sequence encoders with self-attention

• Jurafsky & Martin, chapter 11

• Sequence decoders with self-attention
• Jurafsky & Martin, chapter 10

• Encoder-decoder model with cross-attention
• Jurafsky & Martin, chapter 9.8 + 13.3
• Note: chapter 13 (“machine translation”) is 

numbered 10 in the current draft
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