Data Science Day 2023

When? October 19 starting at 17:00 *Where?* The science library

Neural networks

IN4080 Natural Language Processing

Yves Scherrer

Neural networks

- 1-layer feed-forward network = logistic regression model
- LR-like models can be stacked to create deeper networks
- We know how to get word vectors:
 - Counting + dimensionality reduction
 - Skip-gram with negative sampling

Neural document classification

Neural document classification

- Document classification:
 - One vector per document
- Word embeddings:
 - One vector per word

Pooling:

Problem: texts come in different lengths...

- Combine all word vectors into a document vector
 - Concatenate all word vectors
 - Set vector values of "unused" words to zero.
 - This yields a very large vector
 - Take the mean of all the word vectors
 - Take the element-wise maximum of all vectors

- This was for producing word embeddings. Now we assume that we have them.
- We can use more than one input word.

- This model has serious drawbacks:
 - Not efficient, need to run the same embeddings several times through the network.
 - Context is limited to window size.
- But neural LMs still work better than probabilistic ones.
 - Why?

Example:

- Training data:
 - Seen: I have to make sure that the cat gets fed.
 - Not seen: dog gets fed
- Test data:
 - I forgot to make sure that the dog gets _____
- A probabilistic (trigram) LM can't predict fed.
- A neural LM can use the similarity of cat and dog embeddings to generalize and predict fed after dog.

The Transformer: Dealing with word sequences

Types of Transformer models

- Sequence encoders with self-attention
 - BERT
 - Contextualized word embeddings, document classification, sequence labeling
- Sequence decoders with self-attention
 - GPT
 - Language modeling, text generation
- Encoder-decoder model with cross-attention
 - The original Transformer
 - Machine translation

Types of Transformer models

- Sequence encoders with self-attention
 - BERT
 - Contextualized word embeddings, document classification, sequence labeling
- Sequence decoders with self-attention
 - GPT
 - Language modeling, text generation
- Encoder-decoder model with cross-attention
 - The original Transformer
 - Machine translation

Encoder models

For SGNS, we used one target word and one context word to predict their similarity.

- The model doesn't know about the sentence in which the target word is used.
 - Homographs cannot be distinguished.
- The model doesn't distinguish between right and left contexts, and between close and far contexts.
- Similarity prediction is practical because it enables a self-supervised setup (no data annotation needed).

Masked language modeling

Let us use another setup:

- Take a sentence, replace 12% of tokens by a blank
- In addition, replace 1.5% of tokens by another randomly chosen token
- Train a model to "fill the blanks"
- 1 sentence = 1 training instance
- Self-supervised

Example:

What kind of neural network?

A simple feed-forward network:

What kind of neural network?

What kind of neural network? One training instance per sentence,

Self-attention

How to compute the *h* layer?

• Simple average:

$$\boldsymbol{h}_{\boldsymbol{t}} = \sigma \left(\frac{1}{n} \cdot \boldsymbol{V} \cdot \boldsymbol{g}_{1} + \dots + \frac{1}{n} \cdot \boldsymbol{V} \cdot \boldsymbol{g}_{t} + \dots + \frac{1}{n} \cdot \boldsymbol{V} \cdot \boldsymbol{g}_{n} \right)$$

- Some words are more important than others. Let's use a weighted average:
 *h*_t = σ(α_{t,1} · *V* · *g*₁ + ··· + α_{t,t} · *V* · *g*_t + ··· + α_{t,n} · *V* · *g*_n)
- How do we know the α values?
 - Maybe depending on the distance to *t*? Maybe not?
 - Anyway, a neural network should be able to learn these values automatically...
- Idea: depending on similarity: $\alpha_{t,c} = g_t \cdot g_c$
 - Recall: the dot product is a simple measure of similarity

Self-attention

How to compute the *h* layer?

• The more similar the vectors g_c and g_t are, the more important g_c is for computing h_t :

$$\alpha_{t,c} = \boldsymbol{g_t} \cdot \boldsymbol{g_c}$$

• For a weighted average, all α s should sum up to 1. Let's use softmax:

 $\alpha_{t,c} = \operatorname{softmax}(\boldsymbol{g_t} \cdot \boldsymbol{g_c})$

• Putting everything together:

$$\boldsymbol{h}_{\boldsymbol{t}} = \sigma\left(\sum_{i=1}^{n} \alpha_{t,i} \cdot \boldsymbol{V} \cdot \boldsymbol{g}_{i}\right)$$

The "real" thing is still more complicated...

• That's a simple type of **self-attention**.

Self-attention, continued

- The *g* vectors now occur in 3 places and roles:
 - As target word for computing α : softmax($g_t \cdot g_c$)
 - We call this role query
 - As context word for computing α : softmax($g_t \cdot g_c$)
 - We call this role key
 - As a factor of the final product: $\alpha_{t,i} \cdot V \cdot g_i$
 - We call this role value
- The 3 roles are different, and the *g* vectors are not equally well suited for all of them.
 - Let's create 3 different vectors tailored to the different roles!

Self-attention, continued

- Let's create 3 different vectors:
 - Query vector: $q_i = W^Q \cdot q_i$
 - Key vector: $k_i = W^K \cdot g_i$
 - Value vector: $v_i = V \cdot g_i$ (we already have this one)
- What about our weight values α ? $\alpha_{t,c} = \operatorname{softmax}(\boldsymbol{q}_t \cdot \boldsymbol{k}_c)$
- It turns out that the dot product needs to be scaled before passing it to the softmax:

$$\alpha_{t,c} = \operatorname{softmax}($$

$$\left(\frac{q_t \cdot \kappa_c}{\sqrt{d_k}}\right)$$

 d_k refers to the $\sqrt{d_k}$ / dimensionality of k (and also of q)

Self-attention, continued

Putting things together again:

 α is a square matrix that shows how important a context word is at a given position:

q1•k1	q1•k2	q1•k3	q1•k4	q1•k5
q2•k1	q2•k2	q2•k3	q2•k4	q2•k5
q3•k1	q3•k2	q3•k3	q3•k4	q3•k5
q4•k1	q4•k2	q4•k3	q4•k4	q4•k5
q5•k1	q5•k2	q5•k3	q5•k4	q5•k5

Multi-head attention

- We may want to have several α matrices to represent different types of attention:
 - One for syntactic relatedness
 - One for semantic relatedness
 - One for coreference, etc.
- Let's start over, with an extra index h (head):
 - Query vector: $q_i^h = W^{Q,h} \cdot g_i$
 - Key vector: $k_i^h = W^{K,h} \cdot g_i$
 - Value vector: $v_i^h = V^h \cdot g_i$

Multi-head attention

We have removed the sigmoid here.

• Compute the vector for one head:

head_t^h = $\sum_{i=1}^{n} \operatorname{softmax}\left(\frac{q_t^h \cdot k_i^h}{\sqrt{d_k}}\right) \cdot v_i^h$

• Then concatenate all head vectors and project them: $h_t = \left(\text{head}_t^1 \oplus \cdots \oplus \text{head}_t^m \right) \cdot W^0$

24

Multi-head attention

http://jalammar.github.io/illustrated-transformer/

Position embeddings

- Self-attention does not have any notion of word ordering
 - As of now, the attention weights are only chosen based on semantic similarity of the words
 - But we probably should take simple proximity into account...
- Simple solution:
 - Concatenate semantic word embedding with absolute position embedding

Position embeddings

- Absolute numbers are not very efficient.
- The "real thing" uses several overlaid sine functions:

Transformer blocks

Multi-head self-attention isn't quite sufficient. We need a few extra things and package everything up into so-called Transformer blocks:

What kind of neural network? This is one Transformer block.

What can we do with sequence encoders?

- Get contextualized word embeddings
 - Train a model on the MLM task
 - Pass a sentence through the network and extract the *h* vector of each word as its embedding
 - Alternative: average the vectors of several layers

What can we do with sequence encoders?

- Text classification (one label per sentence
 - Train a model on the MLM task, adding a [CLS] token in front of every sentence
 - Throw away the output layer, create a new one
 - Fine-tune the model to predict the label at the [CLS] position

What can we do with sequence encoders?

- Sequence labeling (e.g. POS tagging)
 - Train a model on the MLM task
 - Throw away the output layer, create a new one
 - Fine-tune the model on POS-annotated data

Types of Transformer models

- Sequence encoders with self-attention
 - BERT
 - Contextualized word embeddings, document classification, sequence labeling
- Sequence decoders with self-attention
 - GPT
 - Language modeling, text generation
- Encoder-decoder model with cross-attention
 - The original Transformer
 - Machine translation

Probabilistic language model:

- $P(w_{1}, ..., w_{n}) = P(w_{1}) \cdot P(w_{2} | w_{1}) \cdot P(w_{3} | w_{1}, w_{2}) \cdot \cdots \cdot P(w_{n} | w_{1}, ..., w_{n-1})$
- For n-gram models, we could not condition on all preceding tokens
- Thanks to attention, we can do that now
- But typically, far-away tokens get less attention

For simplicity, let's assume a single head:

a1•k1

-∞

q2•k1 q2•k2 _∞

q3•k1 q3•k2 q3•k3

q4•k1 q4•k2 q4•k3 q4•k4

q5•k1 q5•k2 q5•k3 q5•k4 q5•k5

 $-\infty$

 $-\infty$

$$\alpha_{t,c} = \operatorname{softmax} \left(\begin{cases} -\infty, & c > t \\ \frac{q_t \cdot k_c}{\sqrt{d_k}}, & c \leq t \end{cases} \right)$$

$$\frac{1}{\sqrt{2} - \infty} - \frac{1}{\sqrt{2}} \quad h_t = \sigma \left(\sum_{i=1}^n \alpha_{t,i} \cdot v_t \right)$$

 $\sum_{i=1}^{n}$

- In terms of model architecture, that's about all you need to know in order to build your own GPT model ⁽²⁾
- Of course, you'll still need the right amount (and quality) of training data...

Types of Transformer models

- Sequence encoders with self-attention
 - BERT
 - Contextualized word embeddings, document classification, sequence labeling
- Sequence decoders with self-attention
 - GPT
 - Language modeling, text generation
- Encoder-decoder model with cross-attention
 - The original Transformer
 - Machine translation

Machine translation

Some (fairly obvious) facts about MT:

- Input: a sentence in the source language
- Output: a sentence in the target language
 - Hopefully grammatical
 - Hopefully with the same meaning
- Source and target sentence most often do not have the same number of words nor the same word order

Main idea:

- Train an encoder for the source language
- Train a decoder for the target language
- Connect the two

Everything can be trained together thanks to backpropagation

Connecting encoders and decoders

Connecting encoders and decoders

Connecting encoders and decoders

Cross-attention

• Dot-product attention:

 $\alpha_{i,j} = \operatorname{softmax}(\boldsymbol{h}_{j}^{enc} \cdot \boldsymbol{h}_{i-1}^{dec})$

- Determines the importance of the *j*th word of the encoder for the *i*th word of the encoder.
- There are other attention types, and one can again use multiple heads.
- Context vector:

$$c_i = \sum_j \alpha_{i,j} \cdot h_j^{enc}$$

• This vector is then combined with the vector produced by the decoder self-attention.

Readings

- Sequence encoders with self-attention
 - Jurafsky & Martin, chapter 11
- Sequence decoders with self-attention
 - Jurafsky & Martin, chapter 10
- Encoder-decoder model with cross-attention
 - Jurafsky & Martin, chapter 9.8 + 13.3
 - Note: chapter 13 ("machine translation") is numbered 10 in the current draft