
www.nr.no

Chatbots models
(continued)
Pierre Lison

IN4080: Natural Language
Processing (Fall 2023)

24.10.2023

Plan for today
► Obligatory assignment

► NLU-based models

► Generative models

► Speech recognition

► Summary

2

Plan for today
► Obligatory assignment
► NLU-based models

► Generative models

► Speech recognition

► Summary

3

Oblig 3
Three parts:

1. Chatbot based on
movie and TV subtitles

2. Silence detector in
audio files

3. (Simulated) talking
elevator

Oblig 3
► Deadline: November 6

▪ Concrete delivery: Jupyter notebook
▪ Text explanations in the notebook as

important as the code itself!

► Don’t hesitate to ask
questions during the
group sessions
- we are here to help!

Plan for today
► Obligatory assignment

► NLU-based models
► Generative models

► Speech recognition

► Summary

6

Chatbot models: recap
► Rule-based models:

if (some pattern match X on user input)
then respond Y to user

► IR models using cosine similarities
between vectors Where C is the set of

utterances in dialogue
corpus (in a vector
representation)

and q is the user input
(also in vector form)

NLU-based chatbots

Can we build data-driven chatbots for task-
specific interactions (not just chit-chat)?
► "Standard" case for commercial chatbots
► Typically: no available task-specific dialogue data

Language
Understanding

Generation /
response selection

NLU-based chatbots

► Solution: NLU as a classification task
◦ From a set of (predefined) possible intents

► Response selection generally handcrafted
◦ Chatbot owners want to have control over

what the chatbot actually says

Language
Understanding

Generation /
response selection

Intent recognition
Goal: map user utterance to its most likely intent
► Input: sequence (of characters or tokens)

+ possibly preceding context

► Output: intent (what the user tries to accomplish)

Intent= GetInfoOpenHours
Intent
recognition

"When is the
recycling
station open?"

Response
selection

"The recycling station is open
on weekdays from 10 to 18"

► Many possible machine learning models
▪ Very often: LLM with classification head

► Example using BERT:

Intent recognition

11

When is ... open ?
Initial

embeddings

Embeddings
after one layer

………… …

Final
embeddings

(after N layers)

Distribution over intents (linear layer + softmax)

(special classif. token)
[CLS]

= multinomial logistic regression

…

► Need to collect training data to learn this
classification model
▪ Data: user utterances (+ context) manually

annotated with their intent(s)
▪ Often annotated by "chatbot trainers" in industry

► Standard approach these days:
▪ Take a pre-trained neural language model

(i.e. NorBERT for Norwegian)
▪ Fine-tune it for this specific classification task

Intent recognition

12

Slot filling

13

«Show me morning flights
from Boston to San
Francisco on Tuesday»

► In addition to intents, we also sometimes
need to detect specific entities ("slots"),
such as mentions of places or times

► Slots are domain-specific
▪ And so are the ontologies listing all

possible values for each slot

Slot filling
Can be framed as a sequence labelling task
(as in NER), using e.g. BIO schemes

14

Where is Norsk Regnesentral ?
Initial

embeddings

Embeddings
after one layer

………… …

Final
embeddings

(after N layers)
…

O O B-ORG I-ORG O

Slot filling

► Token-level classification task
▪ Output classes: BIO-prefixed categories

► Slot-filling models also need to be trained /
fine-tuned on annotated training data

► Possible to fine-tune intent classifier
and slot filler on same model

Initial
embeddings

Embeddings
after one layer

……… …

Final
embeddings

(after N layers)…

O O B-ORG I-ORG O

Response selection
► Given an intent, how to create a response?

► In commercial systems, system responses
are typically written by hand

NLU

Response
selection

User
utterance

Intent

System
response

▪ Possibly in templated form,
i.e. "{Place} is open from
{Start-time} to {Close-time}"

► But data-driven generation
methods also exists

[see e.g. Garbacea & Mei (2020),
"Neural Language Generation:
Formulation, Methods, and Evaluation"]

Plan for today
► Obligatory assignment

► NLU-based models
▪ Small amounts of data?

► Generative models

► Speech recognition

► Summary

17

Small amounts of data?
1. Use transfer learning to exploit models

trained on related domains
Source domain
(with large
amounts of
training data)

Target domain
(with small
amounts of
training data)

Datas

Datat

OutputsSource model

Source
model

Target-
specific
model

Outputt

Fine-tuning of a pre-trained language model
is a type of transfer learning

Small amounts of data?
1. Use transfer learning to exploit models

trained on related domains

2. Use data augmentation to generate new
labelled utterances from existing ones

"When is the recycling
station open?"

GetInfoOpenHours

Replace with synonyms

"At what time is the
recycling station open?"

GetInfoOpenHours

Small amounts of data?
1. Use transfer learning to exploit models

trained on related domains

2. Use data augmentation to generate more
utterances from existing ones

3. Label more data, either manually or using
weak supervision techniques

[see e.g. Mallinar et al (2019), "Bootstrapping
conversational agents with weak supervision", IAAI.]

Small amounts of data?
1. Use transfer learning to exploit models

trained on related domains

2. Use data augmentation to generate more
utterances from existing ones

3. Label more data, either manually or using
weak supervision techniques

4. Use in-context learning to provide
examples as part of the prompt

Plan for today
► Obligatory assignment

► NLU-based models

► Generative models
► Speech recognition

► Summary

22

Generative models
► Sequence-to-sequence models generate

a response token-by-token
▪ Akin to machine translation
▪ Can generate new responses never observed in the corpus

► Two steps:
▪ First «encode» the input with a neural model

(=tokenise the input and extract the vectors for each token)

▪ Then «decode» the output token-by-token
(based on the input vectors and the output produced so far)

23

► Encoder-decoder
models (i.e. T5)
▪ self-attention +

cross-attention
▪ Popular for tasks

likes MT and
summarization

► Decoder-only models
(i.e. GPT models)
▪ Has become the

dominant approach

Generative
models

Generative models

[Example from Jurafsky and Martin, chap. 15]

For decoder-only models, the encoder and decoder are the
same (self-attention to all tokens from the start of the context
window up to the current token)

Decoding
► Greedy

[Illustration borrowed from https://huggingface.co/blog/how-to-generate]

Decoding

[Illustration borrowed from https://huggingface.co/blog/how-to-generate]

► Greedy

► Beam search
▪ Keep at each time

a set of K partial
hypotheses

▪ And expand these
until <eos>

Decoding
► Greedy

► Beam search

► Sampling
▪ Temperature controls the “creativity” of the response
▪ Lower temperature = sharper distribution (increase

likelihood of high probability words and decrease the
likelihood of low probability words)

[Illustration from https://medium.com/mlearning-ai/softmax-temperature-5492e4007f71]

Temperature: 0.2 Temperature: 2.5

Decoding
► Greedy

► Beam search

► Sampling

► Top-K sampling
▪ = select the K tokens with highest probability,

redistribute the probability mass among them,
and sample from that distribution

[Illustration from https://medium.com/mlearning-ai/softmax-temperature-5492e4007f71]

Instruction fine-tuning
► Systems like ChatGPT are not raw LLMs, they

are specifically fine-tuned to follow instructions
and/or engage in a dialogue with the user

► Many open-source LLMs have downloadable
models that are instruction fine-tuned

Domain adaptation
Imagine you wish to build a generative chatbot
for your domain. How do you proceed?
Easiest approach: in-context learning

You just add examples of <input, response> pairs as part of
the prompt, and ask the model to answer like in the examples

Ok for a prototype, but limited domain adaptation

Slow (needs to encode a longer context)

Can only include a small number of examples
(needs to fit in the context window)

Limitations:

Domain adaptation
Other techniques:
► Parameter-efficient fine-tuning (PERT)

- LoRa: small number of learned parameters
(millions) on top of the original frozen ones

► Prompt tuning: search for the best possible prompt,
keeping the model frozen
- Can be a soft prompt (i.e. prefixed vectors

instead of actual words)

[Hu, E. J et al (2021). LoRa: Low-rank adaptation of large language models.]

[Liu et al (2023). Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. ACM Computing Surveys, 55(9), 1-35.]

Plan for today
► Obligatory assignment

► NLU-based models

► Generative models
▪ Challenges and «hot topics»

► Speech recognition

► Summary

33

Challenge 1: Factuality
► Large Language Models

are optimized to produce
plausible texts, not
necessarily correct ones!

► Incorrect responses may
come from the training data,
which can contain errors / disinformation…

► … But language models may still hallucinate with
a “perfect” training set!

► And often do so in an overly confident tone

Challenge 2: Control
► LLMs are “black-boxes”:

we don’t really understand why
they generate a given response

► We can “steer” the model in several ways:
▪ Prompting with specific instructions
▪ Fine-tuning on task-specific data
▪ Reinforcement learning (reward good responses and punish

bad ones)

 But the model may still behave unpredictably
► Side problem: How to delete information from a language

model? (cf. GDPR’s right to be forgotten)

Multimodality
► Multimodal generative models are

increasingly popular
▪ Can be used for e.g. visual QA (ask

questions based on an image)

► Development of
«embodied» models
▪ Grounding of

linguistic inputs
with real-world sensory inputs

Retrieval-augmented models
What if the answers need to rely on a knowledge base
(corpus of documents, such as Wikipedia pages)?

► If the knowledge can fit into the context window, you can
include it in the prompt

► Or use retrieval-augmented models which combines two
neural models:
▪ Retriever: selects relevant docs from the knowledge base
▪ Generator: generates the answer, given the initial prompt

and the retrieved documents

Retrieval-augmented models

Benefits:
- Knowledge base can be easily inspected and updated

(just add or remove documents)
- Can help reduce hallucinations

Summary
How to develop a chatbot:

▪ Rule-based approaches

Language
Understanding

Generation /
response selection

= recognition of
handcrafted patterns
(e.g. regular expressions)

= handcrafted responses
or templates to fill

matched
condition

Summary
How to develop a chatbot:

▪ Rule-based approaches
▪ IR-based approaches

Language
Understanding

Generation /
response selection

= convert user input
into vector form
(embeddings)

= select response from
corpus that give
maximum dot product

embedding

Summary
How to develop a chatbot:

▪ Rule-based approaches
▪ IR-based approaches
▪ Generative approaches

Language
Understanding

Generation /
response selection

= convert user input
into vector form
(embeddings)

= generates the response
token by token (learned
from corpus)

embeddings

Summary
How to develop a chatbot:

▪ Rule-based approaches
▪ IR-based approaches
▪ Generative approaches
▪ NLU-based approaches

Language
Understanding

Generation /
response selection

=map utterance to
an intent + slots

= handcrafted response
or template to fill

Intent + slots

Often useful to
rely on a
combination of
techniques –
such as doing
intent recognition
using both rules
and ML

Next week
► Next week, we'll talk about

dialogue management
– that is, how do we control
the flow of the interaction over time?
▪ Including how to optimise dialogue policies

using reinforcement learning

► And we will also talk about how to design
and evaluate dialogue systems

	Chatbots models (continued)
	Plan for today
	Plan for today
	Oblig 3
	Oblig 3
	Plan for today
	Chatbot models: recap
	NLU-based chatbots
	NLU-based chatbots
	Intent recognition
	Intent recognition
	Intent recognition
	Slot filling
	Slot filling
	Slot filling
	Response selection
	Plan for today
	Small amounts of data?
	Small amounts of data?
	Small amounts of data?
	Small amounts of data?
	Plan for today
	Generative models
	Generative �models
	Generative models
	Decoding
	Decoding
	Decoding
	Decoding
	Instruction fine-tuning
	Domain adaptation
	Domain adaptation
	Plan for today
	Challenge 1: Factuality
	Challenge 2: Control
	Multimodality
	Retrieval-augmented models
	Retrieval-augmented models
	Summary
	Summary
	Summary
	Summary
	Next week

