
1

System Models for
Distributed Systems

IN5020/9020 Autumn 2023
Lecturer: Amir Taherkordi

August 28, 2023

2IN5020, IFI/UiO

§ Introduction

§ System Models
§ Physical Models
§ Architectural Models
§ Fundamental Models

§ Summary

Outline

2

3IN5020, IFI/UiO

¡Purpose:

¡Three types of models
¡ Physical models: capture the hardware composition of a system in terms

of computers and other devices and their interconnecting network
¡ Architectural models:
¡ software architecture: the main components of the system + their roles + how

they interact
¡ system architecture: how they are deployed in an underlying network of

computers
¡ Fundamental models: formal description of the properties that are

common to architectural models.
¡ Three fundamental models: interaction models, failure models and security

models

System Models

To illustrate/describe common properties and design choices for
distributed systems in a single descriptive model

4IN5020, IFI/UiO

Distributed
Systems Early Internet-scale Contemporary

Scale Small (10-100) Large Ultra-large

Heterogeneity Limited (typically
relatively homogeneous
configurations)

Significant in terms of
platforms, languages
and middleware

Added dimensions introduced
including radically different
styles of architecture

Openness Not a priority Significant priority
with rage of standards
introduced

Major challenge with existing
standards: not yet able to
embrace complex systems

Quality of
Service

Not a priority Significant priority
with range of services
introduced

Major challenge with existing
services: not yet able to
embrace complex systems

Physical Models

LAN (1970s) Internet (1980s–1990s) Cloud computing (2000s)

3

5IN5020, IFI/UiO

1. Communicating entities
§ Objects
§ Components
§ Web services

2. Communication paradigms
§ Interprocess communication (IPC)
§ Remote invocation
§ Indirect communication

3. Roles and responsibilities
4. Placement Strategies

¡ To master the complexity of distributed systems: crucial that they
are properly organized

¡ Concern the logical organization of distributed systems into:

Architectural Models

Communicating
Entity

Communicating
Entity

Communicating
Entity

1
2

3

4

Object-based DS
Distributed Components

Web-Based Systems

Communication Paradigms

6IN5020, IFI/UiO

¡Distributed shared data space

Indirect Communication Example

Emergency area
without
communication
infrastructure

Information sharing through a
database-like distributed system
called MIDAS Data Space

Application
Select, Insert, …

Implementation
challenges:
- Availability
- Fault-tolerance
- Scalability
- Consistency
- Efficiency

4

7IN5020, IFI/UiO

Server

¡Component view of client-server model

¡Peer-to-peer

¡Hybrids: P2P and Client/server

Roles and Responsibilities

Server

Client

Client

request

response

App

Peer 1 App

App

Peer 2

Peer 3

Shareable
Objects

Node
Client

Client

Process

Computer

Node

Node

8IN5020, IFI/UiO

¡Multiple server processes:
¡ service realized as a number of server-processes
¡ several access points

¡Typical services
¡ LDAP or NIS

Placement Strategies - 1

Client

Client
Server

Server

Server

service

5

9IN5020, IFI/UiO

¡ Client/server model with proxy-server
¡ Proxy server: cache that is shared between several clients
¡ Cache: stores recently-used data objects that are closer to the client than the

original objects themselves.
¡ The proxy is often a load balancer
¡ Three types of cache

¡ Content distribution network (CDN)
¡ caches content for closest physical location
¡ e.g. Cloudflare

¡ Server cache
¡ Typical caches recurring database calls.

¡ Client cache
¡ Browser cache
¡ App downloads data that it needs to function without connection to server

Placement Strategies - 2

Client

Client

Proxy
Server

Web
Server

Web
Server

10IN5020, IFI/UiO

¡Mobile code
¡ Examples
¡ Mobile apps
¡ Programs/apps/websites etc. is downloaded, stored locally and able to

run much of the functionality.
¡ SSR – Server side rendering

¡ Virtual machines
¡ Downloads a java VM to run on client

Placement Strategies - 3

Client
Web

ServerApplet
Code

Web
ServerClient Applet

Code

6

11IN5020, IFI/UiO

¡ An agent takes care of handling services or data.
¡ WebCrawlers
¡ WebWorkers

¡ Used in mobile app (both native and web)
¡ Computer viruses/worms
¡ Program (code + data) that migrates between computers and executes a task on

behalf of someone.

Placement Strategies - 4

Client Server

Client ServerMobile
Agent

Client Server
Mobile
Agent

Client
Mobile
Agent Server

12IN5020, IFI/UiO

¡Build on more primitive architectural elements

¡Not necessarily complete solution, but reusable by
designers for some problems

¡Recurring structures that have been shown to work
well
¡ Layering Architecture
¡Tiered Architecture
¡Thin Clients (Cloud Clients)
¡Among other patterns: Proxy, Brokerage and Reflection

Architectural Patterns – 1

7

13IN5020, IFI/UiO

Layered

Architectural Patterns – 2

Tiered

Computer and
Network Hardware

Operating System

Middleware

Applications and
Services

User View
and Control Application

Logic
Database
Manager

User View
and Control

Application
Logic

PC

Mobile Device

Application Server

DB Server

Tier 1 Tier 2 Tier 3

P
latform

14IN5020, IFI/UiO

¡Types of Middleware Solutions
¡Distributed objects
¡Distributed components
¡ Publish-subscribe systems
¡Message queues
¡Web services
¡ Peer-to-peer

¡Limitations:
¡Dependability aspects
¡ End-to-end argument
¡ Context-aware and adaptive solutions

Middleware Solutions

8

15IN5020, IFI/UiO

Architectural Patterns – 3

¡Microservices

User View
and Control

User View
and Control

PC

Mobile Device

Database
Manager

DB Server

Application
Logic

Application Server

Microservice

Database
Manager

DB Server

Application
Logic

Application Server

Microservice

16IN5020, IFI/UiO

Uber’s monolithic arch. Uber’s microservices arch.

Example from Uber

9

17IN5020, IFI/UiO

¡Thin Clients
¡Move complexity from end-user devices to server side

¡ For example:
¡ Virtual Network Computing (VNC): graphical desktop sharing system

to remotely control another computer
¡ Remote gaming

Architectural Patterns – 4

Thin
Client

Application
ProcessNetwork

Computer ServerNetworked device

18IN5020, IFI/UiO

¡ Properties shared by all architectural models
¡ Processes communicate by sending messages across a network
¡ Leads to requirements of performance, reliability, and security

¡ Fundamental models
¡ focus on a particular aspect of a system’s behavior
¡ abstract over unnecessary/irrelevant details (like hardware details)
¡ used to address questions like

¡ what are the most important entities in the system?
¡ how do they interact?
¡ what are the characteristics that affect their individual and collective behaviour?

¡The purpose of fundamental models
¡ to make explicit all relevant assumptions about the modeled system
¡ to find out what is generally feasible and not feasible under the given

assumptions

Fundamental Models

10

19IN5020, IFI/UiO

¡Most common:
¡ Interaction model
¡ processes, messages, coordination (synchronization and ordering)
¡ must reflect that messages are subject to delays, and that delay limits

exact coordination and maintenance of global time

¡ Failure model
¡ defines and classifies failures that can occur in a DS
¡ basis for analysis of effects of failures and for design of fault-tolerant

systems

¡ Security model
¡ defines and classifies security attacks that can occur in a DS
¡ basis for analysis of threats to a system and for design of systems that

are able to resist them

Fundamental Models

20IN5020, IFI/UiO

¡Performance of communication:
¡ Latency: delay between the start of the transmission and the

beginning of reception
¡ Bandwidth: Total amount of information that can be transmitted
¡ Jitter: Variation in the time taken to deliver a series of messages:

relevant for multimedia data

¡Computer Clocks:
¡ Each computer: its own clock
¡ Two processes running on different computers: timestamps?
¡ Even reading at the same time: different timestamps!
¡ Clock drift:
¡ rate for deviation from reference clock
¡ How to correct time: from GPS or reference computer in the network

Interaction Model - Two Significant Factors

11

21IN5020, IFI/UiO

¡ Synchronous distributed systems
¡ the time to execute each step of a process: known lower and upper

bounds
¡ each message transmitted over a channel is received within a known

bounded time
¡ local clock’s drift rate from real time has a known bound

¡Asynchronous distributed systems
¡ the time to execute each step of a process can take arbitrarily long
¡ each message transmitted over a channel can be received after an

arbitrarily long time
¡ local clock’s drift rate from real time can be arbitrarily large

Interaction Model - Two Variants

22IN5020, IFI/UiO

¡ Many coordination problems have a solution in synchronous
distributed systems, but not in asynchronous

¡ e.g. “The two army problem” or “Agreement in Pepperland” (see
[Coulouris])

¡ Often we assume synchrony even when the underlying distributed
system in essence is asynchronous

¡ Internet is in essence asynchronous but we use timeouts in protocols over
Internet to detect failures

¡ based on estimates of time limits
¡ but: design based on time limits that can not be guaranteed, will

generally be unreliable

Significance of Syn. vs Asyn. DS

12

23IN5020, IFI/UiO

¡Distributed coordination protocols:
¡ the need for ordering of events in time (“happened before”-

relationship)
¡ events: sending and receiving messages
¡ e.g. update of replicated data must generally be done in the

same order in all replica

¡Difficult to use physical clocks in computers for
coordination (e.g. clock values in messages)
¡ limited time resolution and ticks with different rates (clock

drift)
¡ basic properties of message exchange limit the accuracy of

the synchronization of clocks in a DS [Lamport 78]

Interaction Model - Ordering of Events

24IN5020, IFI/UiO

¡E-mail exchange

Example

Y

X

Z

send(m)

rcv(m)

m1

m2
rcv(m)

A

send(Re:m)

rcv(Re:m)
send(Re:re:m)

rcv(Re:m) rcv(Re:re:m)

rcv(Re:re:m)

m1m3 m2

Time

m3

13

25IN5020, IFI/UiO

¡Logical clock: describing logical ordering of events even
without accurate clocks

¡Principle of “happened before”
¡ A → B reads “A happened before B”
¡ If A and B happen in the same process, then they occur in the

order observed by that process: A → B
¡ if A is sending of a message by one process and B is the receipt of

the same message by another process, then A → B

¡Happened-before relationship
¡ is derived by generalizing the two relationships above such that if

A, B and C are events and A → B and B → C, then A → C

¡Logical clocks extends the idea above
¡ more later in the course

Interaction Model - Logical Clocks

Time and Coordination in DS

26IN5020, IFI/UiO

¡ Is a definition of in which way failures may occur in
distributed systems

¡ Provides a basis for understanding the effects of failures

¡ Failure model of a service: enables construction of a new
service that hides the faulty behavior of the service it builds
upon
¡ example: TCP on top of IP
¡ IP: unreliable datagram service
¡ TCP: reliable byte-stream service hiding the unreliability of IP

Failure Model

14

27IN5020, IFI/UiO

¡A way to describe failures
¡One approach: classifying failure types (Cristian, 1991)

(Hadzilacos & Toueg, 1994)
¡ Omission failures
¡ Arbitrary failures
¡ Timing failures

¡ System model:

Failure Model - Specifications

Send m Receive m

outgoing message buffer

communication channel

incoming message buffer

Process p Process q

28IN5020, IFI/UiO

¡A process or channel fails to perform actions that it is
supposed to do

Failure Model - Omission Failures

Failure class Affects Description

Fail-stop Process Process halts and remains halted.
Other processes may detect this state.

Crash Process Process halts and remains halted.
Other processes may not be able to detect
this state.

Omission Channel A message inserted in an outgoing message
buffer never arrives in the other end’s
incoming buffer.

Send Process A process completes a send-operation, but
omission the message is not put into the outgoing

message buffer.
Receive Process A message is put into a process’s incoming
omission message buffer, but the process does not

receive it.

15

29IN5020, IFI/UiO

¡ Process or channel may exhibit arbitrary behavior when
failing
¡ send/receive arbitrary messages at arbitrary intervals
¡ a process may halt or perform “faulty” steps
¡ a process may omit to respond now and then

¡By adopting a byzantine failure model:
¡ we can build “ultra-reliable” systems: handle HW failures, and provide

guaranteed response times
¡ control systems in airplanes
¡ patient monitoring systems
¡ robot control systems
¡ control systems for nuclear power plants

Failure Model - Arbitrary Failures (Byzantine Failures)

30IN5020, IFI/UiO

¡Applicable in synchronous distributed systems
¡ responses not available to clients in a specified time interval
¡ timing guarantees: guaranteed access to resources when they are needed

¡ Examples:
¡ control and monitoring systems, multimedia systems

Failure Model - Timing Failures

Failure class Effects Description

Clock Process Process’s local clock exceeds the bounds on
its rate of drift from real time

Performance Process Process exceeds the bounds on the interval
between two processing steps

Performance Channel A message’s transmission takes longer than
the stated bounds

16

31IN5020, IFI/UiO

¡Masking a failure by
¡ hiding it all together or
¡ e.g. message retransmission: hiding omission failures

¡ converting it into a more acceptable type of failure
¡ e.g. checksums for masking corrupted messages: in fact

an arbitrary failure => an omission failure

¡To mask some communication omission failures
¡ Reliable 1-to-1 communication
¡ Defined in terms of:
¡ Validity: Any message in the outgoing message buffer is eventually delivered to

the incoming message buffer
¡ Integrity: The message received is identical to the one sent, and no messages are

delivered twice
¡ Threats:
¡ Retransmission with no duplicate detection
¡ Malicious injection of messages

Failure Model - Masking Failures

32IN5020, IFI/UiO

¡Three types of system models
¡ Physical models: capture the hardware composition of a system in terms

of computers and other devices and their interconnecting network
¡ Architecture models: defines the components of the system, the way they

interact, and the way the are deployed in a network of computers
¡ Architectural elements (entities, communication paradigms)
¡ Architectural patterns (layering, tiered)
¡ Middleware solutions

¡ Fundamental models: formal description of the properties that are
common to all architecture models
¡ Interaction models
¡ Failure models
¡ Security models (not covered in this course)

Summary

