

IN5020/9020 Autumn 2023

Lecturer: Amir Taherkordi

October 30, 2023

1

Outline

- Introduction
 - Support for Continuous Media
- Media Synchronization
- Quality of Service
- Resource Management
- Multimedia Streaming
- Stream Compression
- Stream Adaptation
- Media Distribution Services
- Summary

IN5020, IFI/UiO

2

What is Multimedia?

- Digital multimedia
 - Computer-controlled integration of text, graphics, drawings, still and moving pictures, animation, audio, and any other medium
 - All digital

■ A Multimedia system

- is characterized by the generation, processing, manipulation, rendition and storage of multimedia information.
- Discrete vs. Continuous media
 - Discrete media type is time independent or static media: e.g. text or single images
 - A continuous media type has an implicit time dimension, e.g. video, animation and audio.
 - Timing plays a crucial role in continuous media (e.g. correct play out time of audio samples)
- Focus of this lecture: continuous media (audio/video)

IN5020, IFI/UiO

2

Continuous Media as Data Streams

- Data Streams
 - is a sequence of data units
 - can be applied to both continuous and discrete media
- Timing is crucial in continuous data streams
- Timing aspects
 - asynchronous transmission: typical for discrete media, e.g. transferring a file as a data stream
 - synchronous transmission: e.g. a sensor that samples temperature at a certain rate
 - isochronous transmission: particularly interesting for continuous media

IN5020, IFI/UiO

4

Key Requirements

- The need to **represent** continuous media in distributed systems
 - Programming models (middleware abstractions)
 - Representation
- The need for synchronization mechanisms
- The need to specify and dynamically change the **Quality** of Service (QoS) of the transmission (and thus presentation) of continuous media
 - e.g. balance cost and quality

IN5020, IFI/UiO

_

Programming Models

- Distributed multimedia systems typically use streams to transmit media
- Continuous transfer of data units which
 - can not be interrupted
 - includes some timing constraints between the data units
- When programming continuous media, we commonly use a streaming programming model for data transfer.

IN5020, IFI/UiO

6

Representation

- Continuous representation media
 - the temporal relationship between data items of the stream must be preserved
 - Audio
 - built up of series of audio samples (e.g. 16 bit) representing amplitudes
 - must be played back at same rate as it was sampled (e.g. 44100 Hz)
 - Motion (video)
 - built up of series of images (frames)
 - must be displayed at a uniform spacing in time (e.g. 30-40 msec per image)

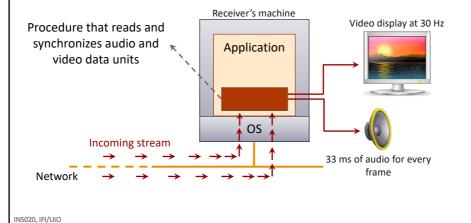
IN5020, IFI/UiO

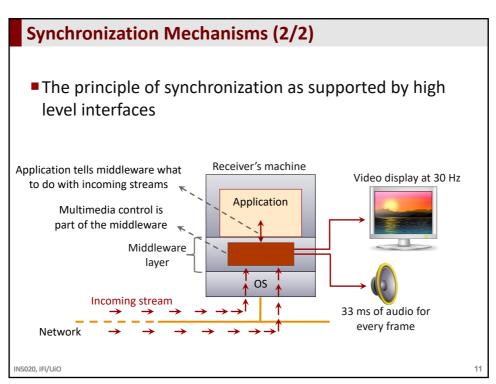
7

Synchronization: General Architecture for Streaming QoS-aware streaming of stored multimedia data over a network Stream Synchronization Client Multimedia Server Stream Stream Decoder Decoder Compressed Control Control Multimedia Data Network IN5020, IFI/UiO

Different Forms of Synchronization

- Intra media: maintain uniform time spacing of a single continuous media stream
- Inter media: synchronization between several streams, for example
 - lip synchronization between video and audio streams
 - synch of video and text streams (subtitles)
- Distributed state: stop video operation by a user should be observed by all within 500 ms
- External: synchronization of time based streams with data in other formats, e.g. in conferencing and cooperative applications: animations, slides, whiteboards, shared documents, etc.


IN5020. IFI/UiO


9

9

Synchronization Mechanisms (1/2)

The principle of explicit synchronization on the level of data units

11

Distribution of Synchronization Mechanisms

- Receiving side of a complex stream (stream consisting of many substreams) needs to know how to do the synchronization (synchronization specification)
- Common practice: multiplex substreams into one stream when single source (implicit synch spec)
 - The approach of MPEG: each data element in multiplexed stream is time stamped (playout time)
- Synchronizing independent substreams at receiving side can be extremely difficult as delay may vary unpredictably between different channels
 - may use timestamps also here

IN5020, IFI/UiO

Key Requirements

- The need to represent continuous media in distributed systems
 - Programming models (middleware abstractions)
 - Representation
- The need for **synchronization** mechanisms
- The need to specify and dynamically change the Quality of Service (QoS) of the transmission (and thus presentation) of continuous media
 - e.g. balance cost and quality

IN5020. IFI/UiO

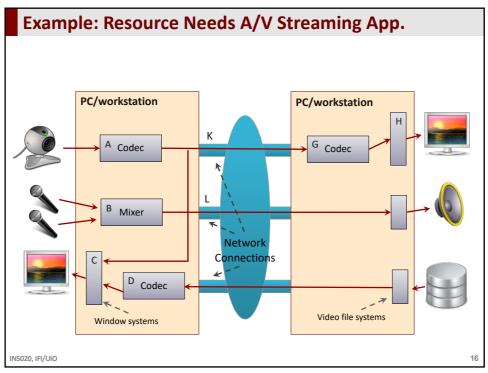
13

13

Quality of Service (QoS)

- ■IDL: **functional** specification which tells us "what" can or should be done
- Quality of Service: non-functional specification that tells us "how" the function should perform
- Quality of Service (QoS)
 - An abstract specification of the non-functional requirements to a service
- QoS Management
 - Monitoring and control of a system to ensure that it fulfills the required QoS

IN5020, IFI/UiO


Question of Resource Management

- QoS guarantees require that resources are allocated and scheduled to multimedia applications under timeliness requirements
- Need for QoS-driven resource management when resources are shared between several applications and some of these have time deadlines
- Resource management are mechanisms that ensure that such guarantees are met.

IN5020, IFI/UiO

15

15

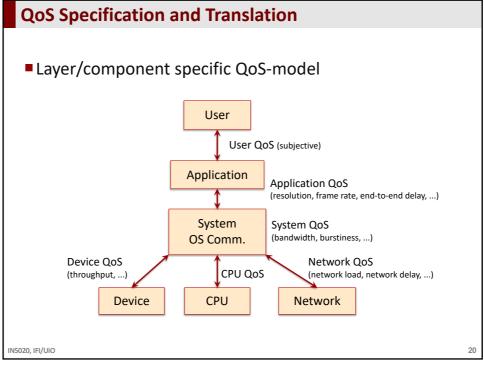
QoS Management

- QoS aware applications require QoS management
 - QoS specification
 - QoS parameter translation and distribution
 - QoS negotiation
 - Admission control / reservation
 - QoS monitoring
 - QoS renegotiation / resource adaptation / QoS adaptation
 - Resource deallocation
- QoS management relies on QoS models
 - For describing QoS requirements and QoS parameters

IN5020, IFI/UiO

17

17

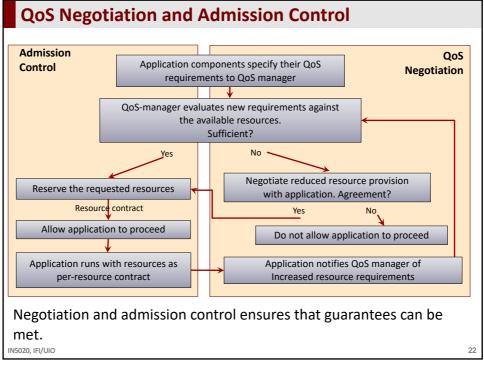

QoS Models for Streaming

- Usually expressed as a set of QoS dimensions and categories
- QoS dimension: an aspect of QoS that can be measured on a stream
 - delay, throughput, ...
- QoS category: a grouping of QoS dimensions
 - Represents a type of user or application requirements
 - Example (QML)

```
type Performance = contract {
    delay: decreasing numeric msec;
    throughput: increasing numeric mb/sec;
};
```

IN5020, IFI/UiO

QoS categories Ex. QoS-dimentions for stream interaction Timeliness End-to-end delay, max allowed jitter Volume Observed throughput as frames per second Reliability % frame loss, bit error rate per frame Varying commitment levels: "best effort" vs. guaranteed



QoS-driven Resource Management

- Next step: translation of application level QoS requirements to lower level resource needs communicated to resource managers
- Resource manager
 - Performs admission control and scheduling
 - **Schedules** multimedia tasks such that resources are available when there is a need for them
- Resources
 - Shared: CPU, network adapter, buffer, comm. bandwidth, disc, ...
 - Exclusive: camera, speaker, special hardware units, ...

21

IN5020, IFI/UiO

Admission Control

- QoS values must be mapped to resource requirements
- Admission test for
 - Schedulability
 - can the CPU slots be assigned to tasks such that all tasks receives sufficient slots?
 - Buffer space
 - e.g. for encoding/decoding, jitter removal buffer, ...
 - Bandwidth
 - e.g. MPEG1 stream with VCR quality generates about 1.5 Mbps
 - Availability/capabilities of devices

IN5020, IFI/UiO

23

23

Resource Allocation Strategies

- Made according to service type
 - different services may have different policies
- Pessimistic allocation
 - consider worst case when reserving resources
 - guaranteed deterministic quality of service
 - under utilization of resources
- Optimistic allocation
 - considers average case when reserving resources
 - statistically guaranteed quality of service
- No reservation
 - "best effort"

IN5020, IFI/UiO

CPU Management in End Systems

- Make CPU available for all multimedia applications when needed
- Real time requirements OS must use real time scheduling
- Observation: time critical operations in multimedia applications are often periodic
- Common assumption
 - Processing of continuous media data must occur in exact predetermined, periodical intervals.
 - Operations on these data occur again and again, and must be completed by certain deadlines
- Problem for scheduling
 - Find a feasible schedule that allows all time critical continuous media tasks to reach their deadlines

IN5020, IFI/UiO

25

25

EDF and RM

Two algorithms for scheduling of periodic tasks

- Earliest Deadline First (EDF)
 - Deadline associated with each work item
 - Tasks with the earliest deadline have highest priority
 - Proven to be optimal for allocating a single resource based on timing criteria
 - Dynamic and optimal algorithm
 - by arrival of new task, must calculate a new priority order
- Rate Monotonic (RM)
 - Tasks with shortest period have highest priority
 - Optimal for periodic tasks
- Deadline violations
 - aborts task that can not reach their deadlines
 - application specific handling by suitable language mechanisms (e.g. callbacks)

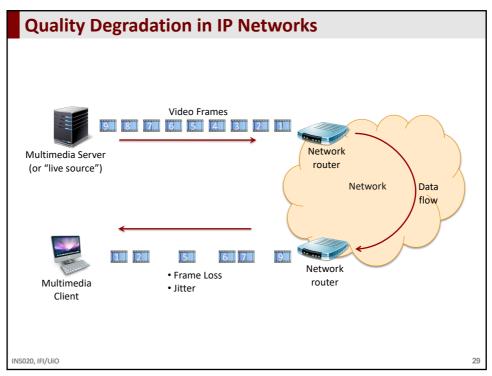
IN5020, IFI/UiO

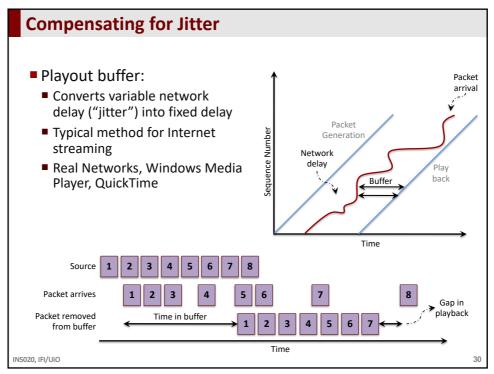
26

Challenges When Streaming over the Internet

- ■Internet is based on IP
 - Efficient due to packet switching
 - Best effort, **no guarantees** wrt bandwidth and delay
 - No resource reservation is possible in intermediate routers, packets can be dropped
- ■Internet applications commonly use TCP
 - Reliable
 - Implemented over most network types
 - Enable a wide spectrum of applications (file transfer, email, etc.)
 - Reliable: Retransmission ensures all packets are delivered
 - No timing guarantees

IN5020. IFI/UiO


27


27

Protocols for Streaming Media

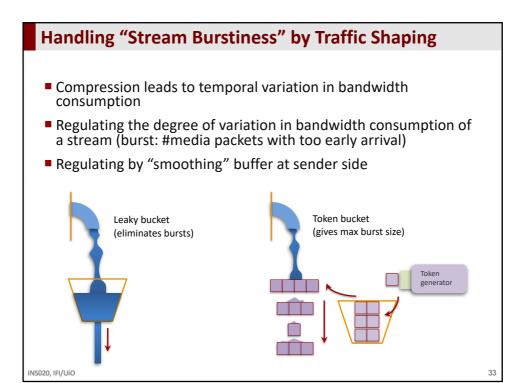
- Streaming and signalling protocols: e.g. RTP and RTCP
- Transport protocols
 - Provides end-to-end network transport functions for streaming applications
 - E.g. TCP and UDP
 - TCP: Reliability based on retransmissions
 - UDP: No retransmissions suitable for live streaming
 - Real Time Transport Protocol (RTP): an application-level data transfer protocol with timing requirements in each packet
- Session control protocols
 - Defines the messages and procedures to control the delivery of the multimedia data during an established session
 - Define control sequences, such as SETUP, PLAY and PAUSE
 - E.g. RTSP (uses RTP) and SIP (Independent of transport protocol)

IN5020, IFI/UiO

Reducing Resource Needs: Compression

- ■Three reasons for compression
 - multimedia data requirements to storage capacity
 - relatively **slow** external storage devices
 - transmission capacity in **networks**
- Illustrative calculations
 - 1280x720 pixels pr. frame, 24 bits per pixel => ca. 2.7 MB per frame
 - Rate: 30 frames per sec => 81 MB/s (or 648 Mbit/s)
 - In comparison: 4G has a theoretical capacity up to 100 Mbit/s

IN5020, IFI/UiO


31

31

Use of Compression

- Compress prior to storing/transmission
- Decompress prior to presentation
- Typical compression rates for modern open image and video compression standards
 - MJPEG: < 70 : 1 (studio quality: 8 10 Mbps)
 - MPEG-1: < 200 : 1 (VCR quality: 1.5 Mbps)
 - MPEG-2: < 200 : 1 (HDTV/DVD quality: 10 20 Mbps)
 - MPEG-4/H.264 AVC: many profiles, flexible
 - H.264 AVC with SVC extension: independently scalable in many quality dimensions, flexible
- Compression algorithms can be lossless or lossy and are typically asymmetric

IN5020, IFI/UiO

33

Stream Adaptation when no QoS-guarantees

- Compensating for variation in bandwidth
- Insufficient bandwidth and no adaptation
 - = => arbitrary data is lost (=> visual noise in video)
- Alternative
 - applications adapt to changes in resource availability
 - for continuous media streams: adjust presentation quality
- Basis for adaptation
 - Change the stream so that less data needs to be transmitted

IN5020, IFI/UiO

Video Scaling

- Temporal scaling
 - reduce frame rate
 - simplest for streams based on intra frame coding (e.g. Motion JPEG)
 - more complex for streams based on inter frame coding (delta compression) which are most modern encoding schemes
- Spatial scaling
 - reduce number of pixels in each frame in video-stream
 - (often) based on hierarchical encoding (e.g. JPEG and MPEG-2)
- Quality / SNR scaling (Frequency scaling)
 - filtering higher frequencies in video signal
 - implies loss of quality (i.e. loss of details)
- SVC extension of H264 AVC combines all of the above
- Amplitude scaling
 - reduce color depth for every pixel, e.g. in H.261 to achieve constant bandwidth
- Color space scaling
 - reduce resolution of color space
 - e.g. switch from color to grey scale

IN5020, IFI/UiO

35

35

Video Scaling Example

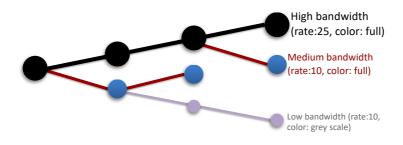
■ Example: H.264 quality scaling

IN5020, IFI/UiO

36

Continuous Media Distribution Services

- Usually overlay networks (on top of IP) designed with the aim providing QoS and delivering continuous media to many receivers in a cost effective way
 - Different content to many receivers (like in VoD)
 - Content replication: caching, mirroring (e.g. Akamai)
 - Same content to many receivers (like in broadcast)
 - Application level multicast (IP multicast not ubiquitous)
 - P2P streaming (CoolStreaming)
 - Same content to heterogeneous receivers
 - Adjust to resource poorest receiver, or
 - (Overlay) Network filtering (based on media scaling)


IN5020, IFI/UiO

37

37

Using Network Filtering

- Filtering in network (e.g. using overlay). Example:
 - Distribution-tree with filtering, adapting QoS to each receiver
 - applies scaling in every relevant node in path from sender to receiver

■ Network filtering can also be used in P2P streaming

IN5020, IFI/UiO

38

Summary

- Multimedia applications require mechanisms that enable them to handle large amounts of time dependent data (i.e., continuous media)
- Most important mechanism: QoS management
- •QoS is a question of resource management
- Resource management implies
 - admission control
 - scheduling function
- When resources can not be reserved, adaptation (media scaling & rate control) is the (only) alternative

IN5020, IFI/UiO

39