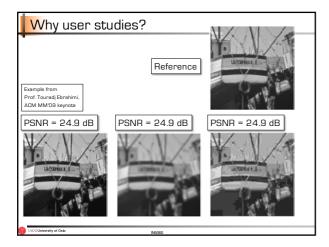
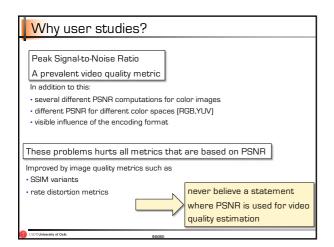

Why user studies?


- Just because something is technically possible doesn't mean it improves human experiences.
 – 8K video on a 2015 iPhone?
- You cannot be sure that a new technology can rely on old assumptions.
 - in games, higher frame rates are good for fluid gameplay
 but the actual reason is that processing loops are tied to
- frame rate, so higher frame rate leads to faster rendering

 You cannot be sure that your own intuition holds for the
 - majority of humankind.


niversity of Osk

- timed text must scroll from right to left
- Powerpoint menus should be at the top of the window,
- independent of OS style guide and screen aspect ratio

Quality assessment methods most of these are described and named in Recommendations (standards) of the ITU

2

Types

Single Stimulus methods

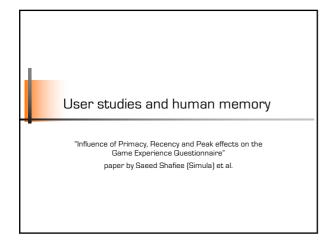
- ACR: Absolute Category Rating
 - · each sample separately, no reference rating on 5-point Likert scale

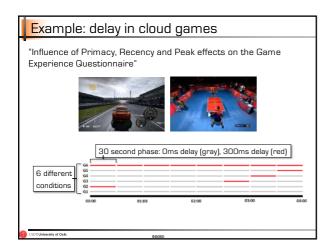
 - possibly named categories: intolerable ... excellent possibly numbered categories: 1 ... 5
 - video sample should not be 8-12 seconds long
- ACR-HR: Absolute Category Rating with Hidden Reference start like ACR
 - calculate ratings as differences between reference rating and sample rating
- SSCQE: Single Stimulus Continuous Quality Evaluation
 - watch a single (long) sample with quality that varies over time
 - use a slider (0-100) for continuous rating

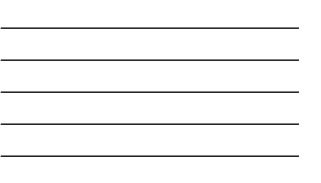
Types

Double Stimulus methods

- DSCQS: Double Stimulus Continuous Quality Scale
 - watch unimpaired reference and impaired sample in random order
 - repeat watching as long as desired
 - rate quality of both on continuous scale 1-5
- DSIS: Double Stimulus Impairment Scale / DCR: Degradation Category Rating
 - watch unimpaired reference followed by impaired sample
 - use categories to rate
 - (impairment imperceptible ... impairment very annoying)
- PC: Pair Comparison
 - watch two impaired samples rate which one was better

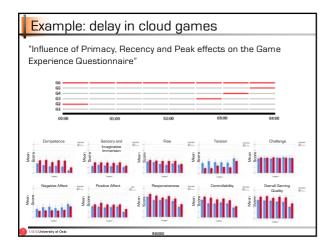

 - randomness is extremely important

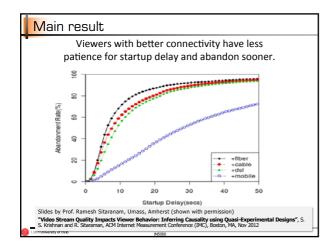

Types


University of Oslo


Other methods

- SDSCE: Simultaneous Double Stimulus for Continuous Evaluation
 - double stimulus method where two samples are shown side-by-side • rating on continuous scale 0-100
- SAMVIQ: Subjective Assessment Methodology for Video Quality
 - explicit reference, hidden reference, up to 10 measured samples
 - participant may repeat watching, last score stands
 - continuous scale 0-100

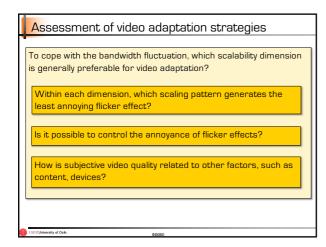




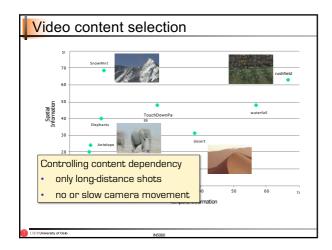
How tolerant are video users to startup delay?

paper at IMC 2012 by Ramesh K. Sitaraman (UMass Amherst & Akamai) and S. Shunmuga Krishnan (Akamai)

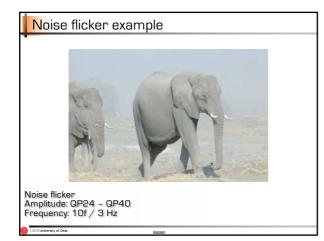
Data set

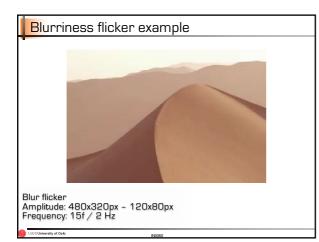

- One of the most extensive data sets to that date
- analyzed data from a widely deployed Akamai client-side plug-in
 - 10 days
 - 12 content providers
 - 23 million views
 - 216 million minutes of video played
 - 102.000 videos
 - 1431 TB of video bytes
 - 3 continents
 - VoD only

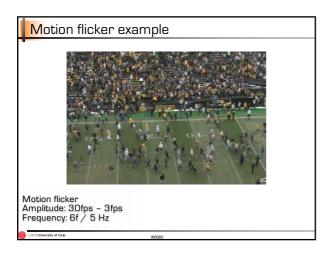
Flickering in video streaming by Pengpeng Ni (Simula) et al., 2011

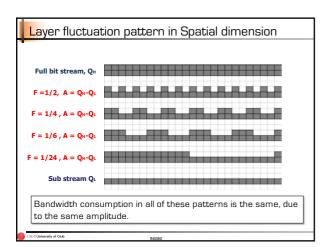


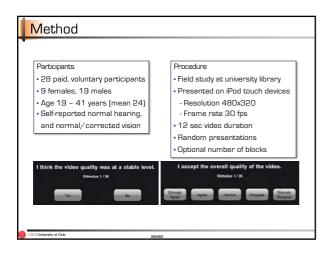
<mark>3</mark> origins of flic	ker					
Flicker arises from recurrent changes in spatial or temporal quality, some so rapid that the human visual system only perceives fluctuations within the video.						
Noise flicker	Blur flicker	Motion flicker				
1	-	1				
Compression scaling	Resolution scaling	Frame rate scaling				
UIO : University of Oslo	IN5060					



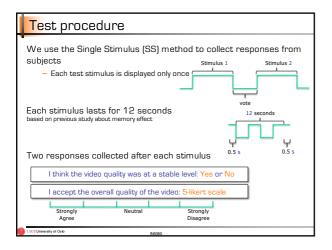




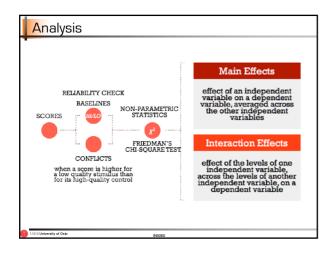


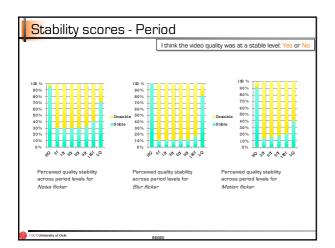

- Layer fluctuation pattern
 - Frequency: The time interval it takes for a video sequence return to its previous status
 - Amplitude: The quality difference between the two layers being switched
 - Dimension: Spatial or temporal, artifact type

Layer Frequency and Amplitude are the interesting factors in our subjective test

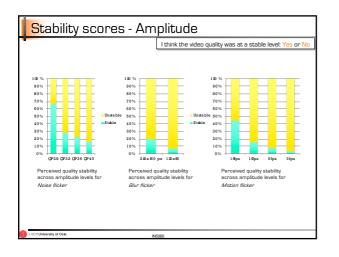


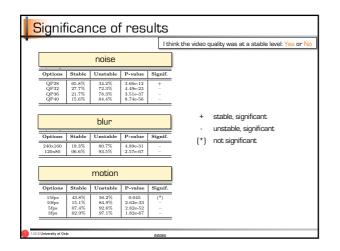
Layer fluctuation pattern in Temporal dimension					
-					
Full bit stream, 30fps					
Full bit stream, sorps					
F =1/4, A = 30-15fps					
F = 1/8 , A = 30-15fps					
F = 1/12 , A = 30-15fps					
F = 1/24 , A = 30-15fps					
Sub stream 15fps					
Although the aver	rage bit-rate is the same, the visual experience				
, , , , , , , , , , , , , , , , , , ,					
of different patter	rns may not be identical.				
UIO: University of Oslo	IN5060				

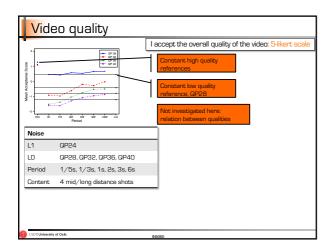


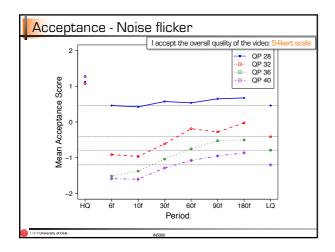


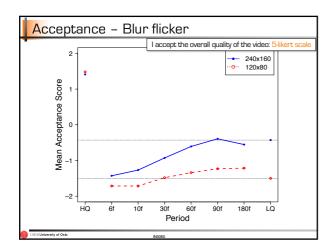
Design & Analysis

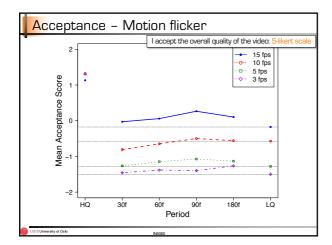

- Repeated measures
- Friedman's Chi-square test
- Stimuli blocked by flicker and amplitude
- Responses to stability measure converted to binomial scores
- Quality ratings converted to ordinal scores ranging from -2 (least acceptable) to 2 (most acceptable)
 we can assume ORDER between scores
 - we can assume ORDER between scores
 we cannot assume equidistance between scores
- Results for experimental stimuli assessed relative to control stimuli of constant high or low quality

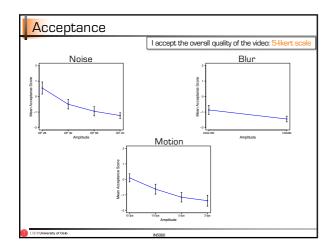












Conclusions
With longer flicker frequencies (high periods), acceptance of video quality increases in the spatial dimension
Amplitude (quality difference) has larger effect than frequency, both for stability and acceptance
For noise flicker, large quality differences are rated more acceptable with less frequent quality shifts.
For blur flicker, improved acceptance with less frequent shifts is more pronounced for the smallest quality difference.
The flicker effect varies across contents, particularly for motion flicker.
The three types of flicker have different influences on stability and quality acceptance scores. Scores are generally lower for blur flicker.

Friedman's Chi^2 (or X^2) test

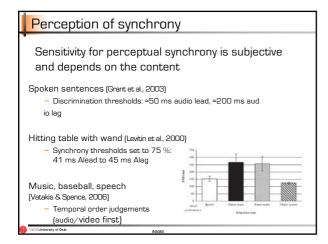
Friedman's X² test

- This is a test to verify the relevance of categorical data
- That means that you can use it when you cannot (or should not) compute distances between the possible values of the responses

Examples:

- did you like it / not like it
- did it look red / green / blue
- was is stable / unstable

Noise flicker example – separate relevance tests						
∖ settings(k) participants(n)	QP 28	QP 32	QP 36	QP 40	Σ	ranks for quality ratings
#1	P1,1	Г 1,2	Г 1,3	Г 1,4	<i>r</i> ₁ .	average if equal
#28	r 28,1	r 28,2	r 28,3	P 28,4	r ₂₈ .	
Σ	r.1	r_{2}	<i>r</i> .3	$r_{.4}$		
compute Q : $Q = \frac{12}{nk(k+1)} \sum_{i=1}^{k} (r_i)^2 - (3n(k+1))$ If the sum Q is larger than the tabulated lookup value for the X ² distribution, the result is relevant					For k=4 and p=0.001, the limit for X_{k-1}^2 is 16.27 If the X ² succeeds (Q>16.27), you can say that the ranking determined by the values $\overline{r_j}$ is relevant. You must never interpret p for anything more.	
UIO : University of Oslo				IN5		

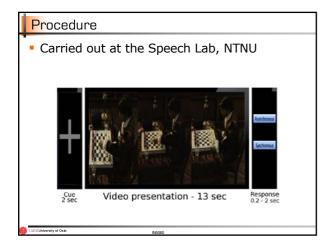

Relevance tables for X²

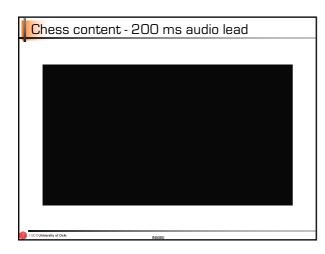
University of Oslo

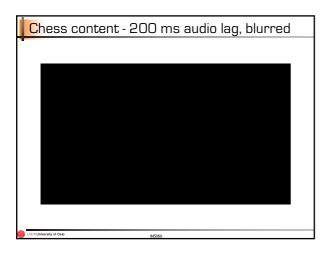
- https://web.ma.utexas.edu/users/davis/375/popec ol/tables/chisq.html
- Some tools, like SPSS, can compute the result from the tables

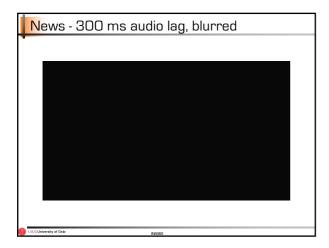
Does blur hide asynchrony?

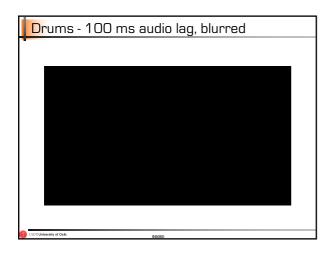
study by Ragnhild Eg (Simula) et al., 2011

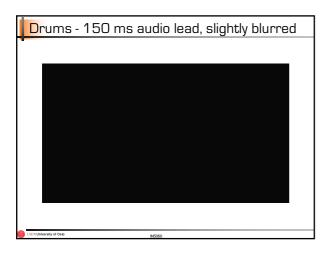


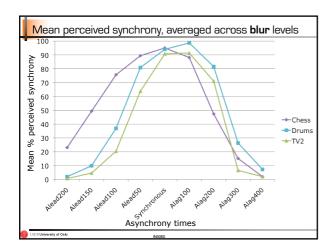

<mark>St</mark> imuli			
3 content types			
Chess game	News broadcast	Drumm	er
9 asynchrony levels			
-200 ms -150 m -100 ms -50 ms 0	ms 100 ms 200	ms 300 ms	400 ms
	ronous	ms 300 ms	Audio lag
UIO : University of Oslo	IN5060		

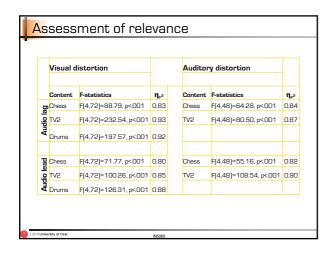




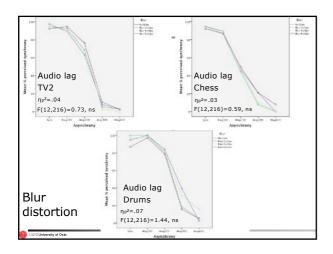








Design & Analysis


- 2 independent studies
- Full-factorial design
- 2 repetitions of each condition
- Binomial responses converted to percentages
- Repeated-measures ANOVAs
- Separate analyses for:
 - Audio lag and audio lead (different scales)
 - Content types (different response patterns)

