Crash Course on 5G Networks

IN5060: Quantitative Performance Analysis

Growth in the number of connected devices

Connected devices in 2010

Connected devices today

How it all fits in 5G?

5G usage scenarios

5G Mobile Network Expected Performance

IN5060

UiO : University of Oslo

Back in the day...

1994

Network Flexibility: Virtualization

4G networks
do not enable
the range of
services that
the future
requires.
5G will be
faster and
more flexible.

4G

5G network slicing

5G network slicing enables service providers to build virtual end-to-end networks tailored to application requirements.

5G Bands and its impact on Cell size

What is mmWave?

UiO: University of Oslo

Why mmWave?

Shannon-Hartley Theorem

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

- C—channel capacity (bps),
- B—channel bandwidth (Hz),
- S—average signal power, and
- N— average noise and interference power.

At higher carrier rates, larger B -> higher rates.

100-1000 times faster than existing wireless networks

mmWave: High attenuation at high frequencies -> very short range

To address high attenuation: Beamforming

- Beamforming is a signal processing technique used for directional signal transmission or reception.
- Elements of an antenna array is combined in such a way that signals at particular angles experience constructive interference while others experience destructive interference.

< Case 2 >

< Case 1 >

An antenna radiates energy like....

from Mark Hickle https://youtu.be/vtPPAnvJS6c

Forming a beam

Transmit beam and receive strength

All directions

$$P_{
m r} \propto rac{P_{
m tx}}{4\pi r^2}$$

one side

$$P_{
m r} \propto rac{2P_{
m tx}}{4\pi r^2}$$

2 deg conical beam

$$P_{\rm r} \propto {1300 P_{\rm tx} \over 4\pi r^2}$$

Transmit beam and receive strength

All directions

$$P_{\rm r} \propto \frac{P_{\rm tx}}{4\pi r^2}$$

one side

$$P_{
m r} \propto rac{2P_{
m tx}}{4\pi r^2}$$

2 deg conical beam

$$P_{\rm r} \propto \frac{1300 P_{\rm tx}}{4\pi r^2}$$

Transmit beam and receive strength

All directions

$$P_{\rm r} \propto \frac{P_{\rm tx}}{4\pi r^2}$$

one side

$$P_{\rm r} \propto {2P_{\rm tx} \over 4\pi r^2}$$

2 deg conical beam

$$P_{
m r} \propto rac{1300 P_{
m tx}}{4\pi r^2}$$

Beamforming and Steering

To address high attenuation, beamforming is used!

Challenge: Beam alignment

Line of sight exists

Line of sight blocked

Beamforming Training

Still quite a challenging problem especially under mobility scenarios!

Spectrum Sharing: Multi-connectivity

Ultra high reliability and Low Latency

Ultra high reliability and Low Latency

Summary and Conclusion

- 5G is a paradigm shift in the networking ecosystem:
 Network as a Programmable Platform
- Flexible software based architecture to support many different applications with diverse requirements
- Several techologies are proposed: network function virtualization, network slicing, edge computing, mmwave, etc...
- Does this flexibility and virtualization comes at a cost?