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Introduction
What is simulation?

Wikipedia says:

“Simulation is the imitation of the operation of a real-world process or 
system over time. The act of simulating something first requires that a 
model be developed; this model represents the key characteristics or 
behaviors/functions of the selected physical or abstract system or 
process. The model represents the system itself, whereas the simulation 
represents the operation of the system over time.”
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The Nature of Simulation
• Most real-world systems are too complex to allow realistic 

models to be evaluated analytically. These models are usually 
studied by means of simulation.

• First, see whether you can solve the problem analytically; if
you cannot, then use simulation.

• Simulation is the technique that imitates the operations of a 
complex real-world system where a computer is generally 
used to evaluate a model numerically, and data are gathered 
in order to estimate the desired true characteristics of the 
model.

3
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Introduction

• System to be characterized may not be available
– During design or procurement stage

• Still want to predict performance
• Or, may have system but want to evaluate a wider 

range of workloads
à Simulation

• However, simulations may fail
– Need good programming, statistical analysis and 

performance evaluation knowledge
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Terminology: Static and dynamic models

Time is not a variable: static

static simulation to assess the volume of a circle:

real: 𝜋 !
"
= 0.785	 this static simulation: 

!#$
!%$

= 0.773

1x1 1x1
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• State changes with time:
dynamic
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Systems can be simulated at a 
very high level of abstraction

• artificial workloads

• simplified work 
characteristics

• removal of most system 
details

• focus on a particular 
component
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Terminology: State and state variables

system snapshot
• Systems can be simulated 

with a large amount of detail

• replaying traces of real 
(measured or logged) 
workloads

• using components of real-
world systems

• with fine-grained monitoring

• in controlled environments
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Terminology: Event
• A change in system state

• Easily explained when state
is discrete

• Examples:
– arrival of job

– beginning of new execution

– departure of job

job arrival

job enqueue

job dequeue event ==
processing start event

processing end event ==
job departure

job arrival ==
job enqueue

processing end event

job departure
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Terminology:
Continuous-state or discrete-state models

• Discrete state
– State variables have a

countable
and
finite or infinite
number of states

• Continuous state
– State variables have an

uncountable
number of states from a
finite or infinite
range
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Note: conceptually uncountable and infinite: computer nature implies all is countable and finite
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Terminology:
Continuous-state or discrete-state models

• Discrete time
– State is only defined at 

certain instances of time

• Continuous time
– State is defined at all times

especially useful when the
state space is very large

different workload sizes

leading to a continuous-time
departure processing

may lead to different
processing durations d(sz)
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Terminology:
Deterministic or probabilistic models

• If output predicted with certainty à deterministic
• If output different for different repetitions à

probabilistic
ou

tp
ut

input

ou
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ut

input

ou
tp

ut

input
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Terminology:
Linear or non-linear models

• Output is linear combination of input à linear
• Otherwise à nonlinear

• Systems that are known to be linear can frequently be 
handled by analytical studies
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Terminology: Open and closed models
• input is external and independent à open
• model has no external input à closed

• If same jobs leave and re-enter queue then closed, while 
if new jobs enter system then open

queue

processorsystem

queue

processor

system
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Terminology: Stable and unstable

• Model output settles down à stable
• Model output always changes à unstable

queue

processorsystem
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Simulation Platforms
Simulation 
language

General-purpose 
language

Extended general-
purpose language

Simulation 
package

Historical concept
• languages dedicated to simulation are quite 

outdated
• but they have strongly inspired general 

purpose languages

• GPSS (General Purpose Simulation System, 
1960)
→ CSMP III (Continuous System Modelling 
Program)
→ APL (A Programming Language, 1966)
→ Matlab (1984)

• Simula (1962)
→ object-oriented programming in general, 
and
→ the Beta language in particular
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Simulation Platforms
Simulation 
language

General-purpose 
language

Extended general-
purpose language

Simulation 
package

Frequently used
• in its pure form only for very small 

simulations, or
• to achieve extreme performance

Non-specific libraries fall into this 
category
• MPI-2 for communication in high-

performance computing is mostly 
used for very large-scale simulations

The borderline between GP and Extended 
GP is very fuzzy
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Simulation Platforms
Simulation 
language

General-purpose 
language

Extended general-
purpose language

Simulation 
package

Comes in many forms

language extensions dedicated to 
simulation
• rare (e.g. extensions to SysML for 

simulation in 2017)
libraries dedicated to simulation
• SIM.JS
• SimPy
• SystemC
tightly integrated scripting and general 
purpose language
• ns-2 (Tcl/Tk + C + library)
• ns-3 (Python + C++ + library)
• OMNeT++ (NED + C++ + library)
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Simulation Platforms
Simulation 
language

General-purpose 
language

Extended general-
purpose language

Simulation 
package

Very usual outside of discrete-
state modeling
• Matlab and 

Octave

• VisualSim

• Blender

• many more
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Selecting a Simulation Language

• Tradeoffs:
– Cost and flexibility

• simulation languages require startup time to learn
• general purpose language extensions require startup time to 

learn
• general purpose languages may require a lot of code writing
• packages may be feature-rich, allow visual presentation without 

overhead, allow to do simple simulations quickly
• extending packages for special needs may be very hard

23
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Types of Simulations

For people in networking, operating systems, 
distributed systems, the main types of simulation are:

• Monte Carlo simulation

• trace-drive simulation

• discrete-event simulation

• emulation
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Monte Carlo Simulation

• A static simulation that has no time parameter
– Runs until some equilibrium state reached

• Used to model physical phenomena, evaluate 
probabilistic system, numerically estimate complex 
mathematical expressions

• Driven with random number generator
– name “Monte Carlo” comes from the random draws in 

casinos

25
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Monte Carlo Simulation

Make random draws from a pool of random numbers
– here: (x,y), where x and y are randomly drawn from [0..1]

– determine if (x,y) is inside the circle: 𝑥! + 𝑦! ≤ "
!

– count the ratio of inliers vs outliers

– since the square surface area is 1, counting achieves the fraction inside 
the circle

– draw random numbers until the accuracy is satisfactory

static simulation to assess the volume of a circle:

real: 𝜋 !
"
= 0.785	 this static simulation: 

!#$
!%$

= 0.773

1x1 1x1
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Monte Carlo Simulation
Markov-Chain Monte-Carlo simulation

State 2 State 3

E:State 1 Finish

State 5State 4

p=0.8

p=0.2

p=0.1

p=0.4
p=0.5

p=0.3

p=0.7

p=0.1 p=0.9

p=0.1

p=0.6

p=0.3

§ Markov Chain: for each state, probability ranges are assigned to alternative 
transitions to new states (usually also keep state)

§ in each round, a random number is drawn
§ the appropriate transition is taken
§ the movement through the state space is called a random walk
§ if the system converges,

probabilities of being in State N can be computed by repeated Monte-Carlo 
simulations of complete runs

§ Note: for converging simple models, a mathematical solutions exist
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Trace-Driven Simulation

Uses time-ordered record of events on real system as 
input

• Note: need trace to be independent of system under test
– This is very frequently forgotten !
– For example, arrival rate of packets in TCP depends on packet loss 

and RTT and cannot be simulated based on a recorded IP packet 
trace!

trace

4 simulated behaviours
based on the trace
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Trace-Driven Simulation Advantages
Advantage explanation
Credibility easier to sell than random inputs
Easy validation when gathering trace, often get performance stats and 

can validate with those
Accurate workload preserves correlation of events, don’t need to simplify 

as for workload model
Less randomness input is deterministic, so output may be (or will at least 

have less non-determinism)
Fair comparison allows comparison of alternatives under the same 

input stream
Similarity to actual 
implementation

often simulated system needs to be similar to real one 
so can get accurate idea of how complex
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Trace-Driven Simulation Disadvantages
Disadvantage explanation
Complexity requires more detailed implementation
Representativeness trace from one system may not represent all traces
Finiteness can be long, so often limited by space but then the 

recorded timespan may not be representative
Single point of 
validation

need to be careful that validation of performance 
gathered during a trace represents only 1 case

Trade-off it is difficult to change workload since cannot change 
trace; changing trace would first need workload model
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Discrete-Event Simulations
• Continuous-state simulations are typical in:

– weather forecasting
– chemical processes
– geology
– aerodynamics

• Discrete-event simulations are typical in:
– computer and network architecture
– banking, capital investment
– traffic planning
– Logistics, industrial production chains
– engineering disciplines

32

Time is usually discrete
State is usually continuous

State is discrete
Time is sometimes 
continuous
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Discrete-Event Simulations
• Event scheduler

– event callback generates an 
event and schedules it for time T

– event is inserted into priority 
queue

– callback ends, scheduler runs
– scheduler retrieves events Y 

with smallest time T from 
priority queue

– scheduler updates global clock 
to T

– scheduler calls event dispatcher 
for event Y

• Event schedulers are 
executed very often
– do not use an inefficient priority 

queue to implement the 
scheduler

priority queue
sorted by time of next event
implementation: sorted heap

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event 
callback

event callback
event’s code
probably generates
new events
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• Simulation clock and time 
advancing
– Global variable with time

– Scheduler advances time
• continuous time – increments 

time by small amount and see 
if any events

• discrete time – increments 
time to next event and 
executes

• System state variables
– Global variables describing 

state 

– Can be used to save and 
restore

34

global clock
continuous time
implementation: float

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event 
callback

event callback
event’s code
probably generates
new events

only difference
between discrete

and continuous time

Discrete-Event Simulations
priority queue
sorted by time of next event
implementation: sorted heap
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• Event routines
– Specific routines to handle 

event

– Often handled by callback from 
event scheduler

• straightforward in object-
oriented language

– or connect to real systems for 
emulation

35

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event 
callback

event callback
event’s code
probably generates
new events

only difference
between discrete

and continuous time

Discrete-Event Simulations
priority queue
sorted by time of next event
implementation: sorted heap

global clock
continuous time
implementation: float
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• Input routines
– Get input from user (or config 

file, script or GUI)

– Often get all input before 
simulation starts 
(not true for emulation and 
trace-driven simulations)

– May allow range of inputs and 
number or repetitions, etc.

• Input options
– Traces can be connected to 

event callbacks or directly to 
the event queue

– Event callbacks can 
encapsulate emulation

36

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event 
callback

event callback
event’s code
probably generates
new events

only difference
between discrete

and continuous time

Discrete-Event Simulations
priority queue
sorted by time of next event
implementation: sorted heap

global clock
continuous time
implementation: float
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• Report generators
– Routines executed at end of 

simulation, final result and print

– Can include graphical 
representation, too

– Ex: may compute total wait 
time in queue or number of 
processes scheduled

37

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event 
callback

event callback
event’s code
probably generates
new events

only difference
between discrete

and continuous time

Discrete-Event Simulations
priority queue
sorted by time of next event
implementation: sorted heap

global clock
continuous time
implementation: float
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Questions

• Which type of simulation for each of
– Model requester access patterns to a server where a 

large number of factors determine requester

– Model scheduling in a multiprocessor with request 
arrivals from known distribution

– Complex mathematical integral
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Common Mistakes in Simulation 
• Inappropriate level of detail

– Level of detail often potentially unlimited 
– But more detail requires more time to develop

• And often to run!

– Can introduce more bugs, making more inaccurate not less!
– Often, more detailed viewed as “better” but may not be the 

case
• More detail requires more knowledge of input parameters
• Getting input parameters wrong may lead to more inaccuracy 

(Ex: disk service times exponential vs. simulating sector and arm 
movement)

– Start with less detail, study sensitivities and introduce detail in 
high impact areas
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Common Mistakes in Simulation
• Improper language

– Choice of language can have significant impact on time to develop

– Special-purpose languages can make implementation, verification 
and analysis easier

• Unverified models
– Simulations are generally large computer programs

– Unless special steps taken, they have bugs or errors

• Invalid models
– No errors, but does not represent real system

– Need to validate models by analysis, measurement or intuition

Ideas for verification of simulation models discussed in this lecture
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Common Mistakes in Simulation 
• Improperly handled initial conditions

– Often, initial trajectory are not representative of steady state
• Including initial data can lead to inaccurate results

– Typically want to discard, but need method to do so effectively

– Discussed in this lecture

– However:
• the goal of a study may be the exploration of the initial behaviour of a 

system

• Too short simulation runs
– Attempt to save time
– Makes even more dependent upon initial conditions
– Correct length depends upon the accuracy desired (confidence intervals)
– Discussed in this lecture
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Common Mistakes in Simulation 
• Poor random number generators and seeds

– “Home grown” are often not random enough
• Makes artifacts

– Best to use well-known one 
– Choose seeds that are different (Jain chapter 26)
– since Jain’s book:

• operating systems’ random number generators were proven to be poor, 
simplifying man-in-the-middle attacks on TCP connections

• since then, operating systems have been equipped with much better 
generators (Linux: /dev/random, /dev/urandom)

• still, simulators need a lot of random numbers and OS generators can be 
saturated
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Common Mistakes in Simulation 
Mistake Relevance
Inappropriate level of detail high
Improper language costs mostly time
Unverified models high
Invalid models high
Improperly handled initial conditions problematic combined with next
Too short simulation runs high if not discovered in analysis, or 

simulation is not repeatable
Poor random number generators and 
seeds

problem has changed since Jain’s 
book
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More Causes of Failure

• Large software
– Quotations above apply to software development projects, 

including simulations
– If large simulation efforts are not managed properly, they can 

fail

• Inadequate time estimate
– Need time for validation and verification
– Time needed can often grow as more details added

Any given program, when running, is obsolete.  If a program is useful, it will 
have to be changed. Program complexity grows until it exceeds the capacity
of the programmer who must maintain it. - Datamation 1968



47

More Causes of Failure

• No achievable goal
– Common example is “model X”

• But there are many levels of detail for X

– Goals: Specific, Measurable, Achievable, Repeatable, 
Time-bound (SMART)

– Project without goals continues indefinitely

• Incomplete mix of essential skills
– Team needs one or more individuals with certain skills
– Need: leadership, modeling and statistics, programming, 

knowledge of modeled system



48

Simulation Checklist

• Checks before developing simulation
– Is the goal properly specified?

– Is detail in model appropriate for goal?

– Does team include right mix
(leadership, modeling, programming, background)?

– Has sufficient time been planned?

• Checks during simulation development
– Is random number random?

– Is model reviewed regularly?

– Is model documented?
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Simulation Checklist

• Checks after simulation is running
– Is simulation length appropriate?

– Are initial transients removed?

– Has model been verified?

– Has model been validated?

– Are there any surprising results?

• If yes, have they been validated?

49
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Analysis of Simulation Results

• Would like model output to be close to that of real system

• Made assumptions about behavior of real systems

• 1st step, test if assumptions are reasonable
– Validation, or representativeness of assumptions

• 2nd step, test whether model implements assumptions
– Verification, or correctness

Always assume that your assumption is invalid.
– Robert F. Tatman
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Model Verification Techniques
• Good software engineering practices will result in fewer bugs
• Top-down, modular design
• Assertions (antibugging)

– Say, total packets = packets sent + packets received
– If not, can halt or warn

• Structured walk-through
• Simplified, deterministic cases 

– Even if a simulation is complicated and non-deterministic, use 
simple repeatable values (maybe fixed seeds) to debug

• do not use /dev/random or /dev/urandom as random number 
source while debugging, use a random number generator that is thread-
specific with a user-adjustable seed

• Tracing
– via print statements or debugger
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Model Verification Techniques
• Continuity tests

– Slight change in input should yield slight change in output, otherwise 
error

• Degeneracy tests
– Try known extremes (e.g. lowest and highest) since they may reveal 

bugs

Th
ro

ug
hp

ut

Queue length

Th
ro

ug
hp

ut

Queue length

non-sense result
probably simulation error

expected result
no indication for error
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Model Verification Techniques
• Consistency tests – similar inputs produce similar outputs

– Ex: 2 sources at 50 pkts/sec produce same total as 1 source at 
100 pkts/sec

• Seed independence – random number generator starting 
value should not affect final conclusion
– it will probably change the specific output

– it should not change the overall conclusions

– however:

• this can be the real behaviour in an unstable system

• the simulated period may be too short to reach stability



55

Model Validation Techniques
• Ensure assumptions used are reasonable

– Want final simulated system to be like real systems
• Unlike verification, techniques to validate one simulation may be different 

from one model to another

• Three key aspects to validate:
– Assumptions
– Input parameter values and distributions
– Output values and conclusions

• Compare validity of each to one or more of:
– Expert intuition
– Real system measurements
– Theoretical results

à 9 combinations
Not all are always 
possible
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Model Validation Techniques - Expert 
Intuition

• Most practical, most common
• “Brainstorm” with people 

knowledgeable in area
• Assumptions validated first, 

followed soon after by input.  
Output validated as soon as 
output is available (and 
verified), even if preliminary

• Present measured results 
and compare to simulated 
results (can see if experts can 
tell the difference)

56

Th
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Packet Loss Probability

0.2 0.4 0.8

Which alternative
looks invalid? Why?
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Model Validation Techniques - Real System 
Measurements
• Most reliable and preferred

• May be infeasible because system does not exist or too 
expensive to measure
– That could be why simulating in the first place!

• But even one or two measurements add an enormous 
amount to the validity of the simulation

• Should compare input values, output values, workload 
characterization
– Use multiple traces for trace-driven simulations

• Can use statistical techniques (confidence intervals) to 
determine if simulated values different than measured values

57
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Model Validation Techniques -
Theoretical Results
• Can be used to compare a simplified system with simulated 

results
• May not be useful for sole validation but can be used to 

complement measurements or expert intuition
– Ex: measurement validates for one processor, while analytic 

model validates for many processors

• Note, there is no such thing as a “fully validated” model
– Would require too many resources and may be impossible
– Can only show is invalid

• Instead, show validation in a few select cases, to lend 
confidence to the overall model results

58
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Transient Removal
• Most simulations only want steady state

– Remove initial transient state
– but not always

e.g. initial competition between TCP flows is interesting

• Trouble is, not possible to define exactly what constitutes end 
of transient state

• Use heuristics:
– Long runs
– Proper initialization
– Truncation
– Initial data deletion
– Moving average of replications
– Batch means
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Long Runs

• Use very long runs

• Effects of transient state will be amortized

• But … wastes resources

• And tough to choose how long is “enough”

• Recommendation … don’t use long runs alone
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Proper Initialization

• Start simulation in state close to expected state
– Ex: CPU scheduler may start with some jobs in the queue

• Determine starting conditions by previous 
simulations or simple analysis

• May result in decreased run length, but still may not 
provide confidence that the simulation has reached 
a stable condition
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Truncation
• Assume variability during 

steady state is less than 
during transient state

• Variability measured in 
terms of range 
– (min, max)

• If a trajectory of range 
stabilizes, then assume that 
simulation is in stable state

• Method:
– Given n observations 

{x1, x2, …, xn}
– ignore first l observations

– Calculate (min,max) of 
remaining n-l

– Repeat for l = 1…n
– Stop when observation l+1

is neither min nor max
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Truncation Example
• Sequence: 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 10, 11, 10, 9…
• Ignore first (l=1), 

range is (2, 11) and 
2nd observation (l+1) is the min

• Ignore second (l=2), 
range is (3,11) and 
3rd observation (l+1) is min

• Finally, l=9 and 
range is (9,11) and 
10th observation is 
neither min nor max

• So, discard first 9 observations

Transient
Interval
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Truncation Example 2

• Find duration of transient interval for:
11, 4, 2, 6, 5, 7, 10, 9, 10, 9, 10, 9, 10



66

Truncation Example 2

• Find duration of transient interval for:
11, 4, 2, 6, 5, 7, 10, 9, 10, 9, 10, 9, 10

• When l=3, 
range is (5,10) and 
4th (6) is not min or max

• So, discard only 3 
instead of 6

“Real” transient

Assumed transient
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Initial Data Deletion
• Study average after some initial observations are deleted 

from sample
– If average does not change much, 

must be deleting from steady state
– However, since randomness can cause some fluctuations during 

steady state, 
need multiple runs (with different seeds)

• Given m replications (m simulation runs with different seeds) 
of size n (n observations are taken)
each with xij j-th observation of i-th replication
– Note: j varies along time axis and i varies across replications
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Initial Data Deletion
• Get mean trajectory for observation j

+𝑋' =
1
𝑚
/
&(!

)

𝑥&'

• Get overall mean

1𝑋 =
1
𝑛
/
'(!

*

+𝑋'

• Assume transient state l long, delete first l and compute mean for the 
rest, so for all 𝑙 = 1. . 𝑛

%𝑥# =
1

𝑛 − 𝑙
+
$%#&"

'

%𝑋$
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Initial Data Deletion
• Compute relative change for all 𝑙 = 1. . 𝑛

𝑅! =
'𝑥! − *𝑋
*𝑋

• Plot Rl over l
• Relative change graph will stabilize at knee

• Choose l there and delete 1 through l
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Initial Data Deletion

xij

j

%𝑋$

j

l l

transient
interval

knee

%𝑥# %𝑥# − -𝑋
-𝑋
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Moving Average of Independent 
Replications
• Compute mean over moving time 

window
• Get mean trajectory

+𝑥' =
1
𝑚
/
&(!

)

𝑥&'

• Set k=1. Plot moving average of 2k+1
values:

4𝑥' =
1

2𝑘 + 1
/
+(,-

-

𝑥'.+

for j=k+1, k+2,…,n-k
• Repeat for k=2,3… and plot until 

smooth
• Find knee.

Value at j is length of transient phase.

j

j

transient
interval

knee

%𝑥$

.𝑥$
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Batch Means
• run for long time 

– make N observations in each run

• divide up into batches

– m batches size n each, so that  m = (
'

• compute batch means

+𝑥& =
1
𝑛

/
'(&).!

&).*

𝑥'

• and overall mean

𝑥̿ =
1
𝑚
/
&(!

)

+𝑥&

R
es
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ns

es

Observation number

n 2n 3n 4n 5n

V
ar

ia
nc

e 
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ba
tc

h 
m

ea
ns

transient
interval

Batch size n

(Ignore)
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Batch Means
• Compute the variance of batch 

means as a function of batch size n

𝑣𝑎𝑟(𝑥) =
1

𝑚 − 1
+
)%"

*

%𝑥) − 𝑥̿ !

• Plot variance versus size n

• When n starts decreasing,
the end of the transient interval has 
been found

R
es

po
ns

es

Observation number

n 2n 3n 4n 5n

V
ar

ia
nc

e 
of

ba
tc

h 
m

ea
ns

transient
interval

Batch size n

(Ignore)
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Terminating Simulations
• For some simulations, transition state is of interest
• In these cases, transient removal cannot be performed

• Sometimes upon termination you also get final conditions 
that do not reflect steady state
– Can apply transition removal conditions to end of 

simulation
– very frequently in open-loop simulation where the 

remaining samples are “draining” from the system
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Terminating Simulations
• Take care when gathering at end of simulation

– For example mean service time should include only those process 
that finish

– and not those that are either in a queue or being processed when 
the simulation ends

• Also, take care of values at event times
– Ex: queue length needs to consider area under curve
– Say t=0 two jobs arrive, t=1 first job leaves, t=4 second 

job leaves
– queue lengths q0=2, q1=1, q4=0 but q average not 

⁄2 + 1 + 0 3 = 1
– Instead, area is 2 + 1 + 1 + 1 so q average ⁄5 4 = 1.25
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Stopping Criteria
• Important to run long enough

– Stopping too short may give variable results
– Stopping too long may waste resources

• Should get confidence intervals on mean to desired width:
𝑥̅ ± 𝑧!,/0

𝑣𝑎𝑟(𝑥̅)

• Variance of sample mean of independent observations:

𝑣𝑎𝑟 𝑥̅ =
1
𝑛
𝑣𝑎𝑟(𝑥)

• But only if observations independent!  Most simulations not
– Ex: if queuing delay for packet i is large then will likely be large for 

packet i+1
• So, use: independent replications, batch means, regeneration (all next)

77
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Confidence interval
The probability

that the values drawn for an infinite series of samples 
stays within the boundaries around the computed average value
with a confidence of 1 − 𝛼 C 100%

  is defined by the boundaries x ± 𝑧!,!"
𝑣𝑎𝑟 𝑥

where the values 𝑧1 are the quantities of the normal distribution.

Values for can 𝑧1 be looked up in a table (Appendix A.2 in the Jain book)

• for example for a 95-percentile
• 𝛼 =0.05

• 𝑝 = 1 − /
0
= 0.975

• 𝑧2.4%5 = 1.960
then compute the confidence interval as 1.96	𝑣𝑎𝑟 𝑥
or in Excel
=CONFIDENCE(0.05,sqrt(var(x)),1)

the first is alpha, the second the standard deviation ( 𝑣𝑎𝑟(𝑥)), the 1 is unclear



79

Independent Replications
• Assume replications are independent

– Different random seed values
• Collect m replications of size n+n0 each

– n0 is length of transient phase
• Mean for each replication ∀𝑖: 1. . 𝑚

+𝑥& =
1
𝑛

/
'(*#.!

*#.*

𝑥&'

• Overall mean for all replications: 𝑥̿ = !
)
∑&(!) +𝑥&

• Calculate variance of replicate means

𝑣𝑎𝑟(𝑥̅) =
1

𝑚 − 1
/
&(!

)

+𝑥& − 𝑥̿ 0

• Confidence interval is 
𝑥̿ ± 𝑧!, 6/ 0

𝑣𝑎𝑟(𝑥̅)
• Note, width proportional to 𝑚𝑛, but reduce “waste” of mn0 observations, 

increase length n
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Batch Means
• Collect long run of N samples + n0

– n0 is length of transient phase
• Divide into m batches of n observations each

– n large enough so little correlation between

• Mean for each batch i ∀𝑖: 1. . 𝑚 %𝑥) =
"
'
∑$%"' 𝑥)$

• Overall mean for all replications𝑥̿ = "
*
∑)%"* %𝑥)

• Calculate variance of replicate means

𝑣𝑎𝑟(𝑥̅) =
1

𝑚 − 1
/
&(!

)

+𝑥& − 𝑥̿ 0

• Confidence interval is
𝑥̿ ± 𝑧!,/0

𝑣𝑎𝑟(𝑥̅)

• Note, similar to independent replications but less waste (only n0)
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Batch Means
• How to choose n? Want covariance of successive means small compared to 

variance

𝑐𝑜𝑣(+𝑥& , 𝑥&.!) =
1

𝑚 − 2
/
&(!

)

+𝑥& − 𝑥̅ 𝑥&.! − 𝑥̅

• Start n=1, then double n
• Example:

Size Cov Var
1 -0.187 1.799
2 0.026 0.811
4 0.110 0.420
…
64 0.00010 0.06066

• Becomes less than 1%, so n=64 brings us beyond the distance where x and x+n
are dependent

• so can use n=64 as batch size
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Method of Regeneration
• Consider CPU scheduling

• Jobs arriving after queue 
empty not dependent upon 
previous

• Note, system with two 
queues would need both to 
be idle

• Not all systems are 
regenerative
– Not those with “long” 

memories

• Note, unlike in batch 
methods, the cycles can be 
of different lengths

Q
 le

ng
th

Time

Regeneration
Points

Regeneration
Cycles
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Method of Regeneration
• m cycles of length n1,n2,…,nm
• jth observation in cycle i: xij
• cycle means %𝑥) =

"
'!
∑$%"
'! 𝑥)$

• Note, for the overall mean, we known that

 𝑥̿ ≠ "
*
∑ %𝑥)

• since cycles have different lengths.

So, to compute confidence intervals  è next slide
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Method of Regeneration
• Compute sums: 

𝑦) =+
$%"

'!

𝑥)$

• Compute overall mean:

𝑥̿ =
∑)%"* 𝑦)
∑)%"* 𝑛)

• Calculate difference between 
mean and observed sums: 
𝑤) = 𝑦) − 𝑛)𝑥̿∀𝑖 ∈ 1. . 𝑚

• Calculate variance of differences:

𝑣𝑎𝑟(𝑤) =
1

𝑚 − 1
+
)%"

*

𝑤)!

• Compute mean cycle length:

𝑛 =
1
𝑚
+
)%"

*

𝑛)

• Confidence interval:

𝑥̿ ± 𝑧"+,/!
𝑣𝑎𝑟(𝑤)
-𝑛 𝑚
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Question

• Imagine you are called in as an expert to review a 
simulation study.  Which of the following would you 
consider non-intuitive and would want extra 
validation?

1. Throughput increases as load increases

2. Throughput decreases as load increases

3. Response time increases as load increases

4. Response time decreases as load increases

5. Loss rate decreases as load increases
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