
Department of Informatics
Networks and Distributed Systems (ND) group

INF 5060/9060
Quantitative Performance Analysis
Simulations

Özgü Alay
Carsten Griwodz

2

Introduction
What is simulation?

Wikipedia says:

“Simulation is the imitation of the operation of a real-world process or
system over time. The act of simulating something first requires that a
model be developed; this model represents the key characteristics or
behaviors/functions of the selected physical or abstract system or
process. The model represents the system itself, whereas the simulation
represents the operation of the system over time.”

3

The Nature of Simulation
• Most real-world systems are too complex to allow realistic

models to be evaluated analytically. These models are usually
studied by means of simulation.

• First, see whether you can solve the problem analytically; if
you cannot, then use simulation.

• Simulation is the technique that imitates the operations of a
complex real-world system where a computer is generally
used to evaluate a model numerically, and data are gathered
in order to estimate the desired true characteristics of the
model.

3

4

Introduction

• System to be characterized may not be available
– During design or procurement stage

• Still want to predict performance
• Or, may have system but want to evaluate a wider

range of workloads
à Simulation

• However, simulations may fail
– Need good programming, statistical analysis and

performance evaluation knowledge

Department of Informatics
Networks and Distributed Systems (ND) group

Approaches to simulation

Özgü Alay
Carsten Griwodz

6

Terminology: Static and dynamic models

Time is not a variable: static

static simulation to assess the volume of a circle:

real: 𝜋 !
"
= 0.785	 this static simulation:

!#$
!%$

= 0.773

1x1 1x1

7

• State changes with time:
dynamic

arrival
process

queue

processor

completion
process pr

ob
ab

ili
ty

interarrival time

pr
ob

ab
ili

ty

interarrival time

processor
occupancy

queue
length

Terminology: Static and dynamic models

8

arrival
process

queue

processor

completion
process pr

ob
ab

ili
ty

interarrival time

pr
ob

ab
ili

ty

interarrival time

processor
occupancy

queue
length

system snapshot

State

State
variable

𝜆&

Terminology: Static and dynamic models

9

Systems can be simulated at a
very high level of abstraction

• artificial workloads

• simplified work
characteristics

• removal of most system
details

• focus on a particular
component

arrival
process

queue

processor

completion
process pr

ob
ab

ili
ty

interarrival time

pr
ob

ab
ili

ty

interarrival time

processor
occupancy

queue
length

𝜆&

Terminology: Static and dynamic models

10

Terminology: State and state variables

system snapshot
• Systems can be simulated

with a large amount of detail

• replaying traces of real
(measured or logged)
workloads

• using components of real-
world systems

• with fine-grained monitoring

• in controlled environments

11

Terminology: Event
• A change in system state

• Easily explained when state
is discrete

• Examples:
– arrival of job

– beginning of new execution

– departure of job

job arrival

job enqueue

job dequeue event ==
processing start event

processing end event ==
job departure

job arrival ==
job enqueue

processing end event

job departure

12

Terminology:
Continuous-state or discrete-state models

• Discrete state
– State variables have a

countable
and
finite or infinite
number of states

• Continuous state
– State variables have an

uncountable
number of states from a
finite or infinite
range

qu
eu

e
le

ng
th

time

w
at

er
 le

ve
l

timelim
ite

d
bu

t n
o

co
un

ta
bl

e

Note: conceptually uncountable and infinite: computer nature implies all is countable and finite

13

Terminology:
Continuous-state or discrete-state models

• Discrete time
– State is only defined at

certain instances of time

• Continuous time
– State is defined at all times

especially useful when the
state space is very large

different workload sizes

leading to a continuous-time
departure processing

may lead to different
processing durations d(sz)

14

Terminology:
Deterministic or probabilistic models

• If output predicted with certainty à deterministic
• If output different for different repetitions à

probabilistic
ou

tp
ut

input

ou
tp

ut

input

ou
tp

ut

input

15

Terminology:
Linear or non-linear models

• Output is linear combination of input à linear
• Otherwise à nonlinear

• Systems that are known to be linear can frequently be
handled by analytical studies

O
ut

pu
t

Input
(Linear)

O
ut

pu
t

Input
(Non-Linear)

16

Terminology: Open and closed models
• input is external and independent à open
• model has no external input à closed

• If same jobs leave and re-enter queue then closed, while
if new jobs enter system then open

queue

processorsystem

queue

processor

system

17

Terminology: Stable and unstable

• Model output settles down à stable
• Model output always changes à unstable

queue

processorsystem

qu
eu

e
le

ng
th

time

qu
eu

e
le

ng
th

time

unstable

stable

Department of Informatics
Networks and Distributed Systems (ND) group

Simulation platforms

Özgü Alay
Carsten Griwodz

19

Simulation Platforms
Simulation
language

General-purpose
language

Extended general-
purpose language

Simulation
package

Historical concept
• languages dedicated to simulation are quite

outdated
• but they have strongly inspired general

purpose languages

• GPSS (General Purpose Simulation System,
1960)
→ CSMP III (Continuous System Modelling
Program)
→ APL (A Programming Language, 1966)
→ Matlab (1984)

• Simula (1962)
→ object-oriented programming in general,
and
→ the Beta language in particular

20

Simulation Platforms
Simulation
language

General-purpose
language

Extended general-
purpose language

Simulation
package

Frequently used
• in its pure form only for very small

simulations, or
• to achieve extreme performance

Non-specific libraries fall into this
category
• MPI-2 for communication in high-

performance computing is mostly
used for very large-scale simulations

The borderline between GP and Extended
GP is very fuzzy

21

Simulation Platforms
Simulation
language

General-purpose
language

Extended general-
purpose language

Simulation
package

Comes in many forms

language extensions dedicated to
simulation
• rare (e.g. extensions to SysML for

simulation in 2017)
libraries dedicated to simulation
• SIM.JS
• SimPy
• SystemC
tightly integrated scripting and general
purpose language
• ns-2 (Tcl/Tk + C + library)
• ns-3 (Python + C++ + library)
• OMNeT++ (NED + C++ + library)

22

Simulation Platforms
Simulation
language

General-purpose
language

Extended general-
purpose language

Simulation
package

Very usual outside of discrete-
state modeling
• Matlab and

Octave

• VisualSim

• Blender

• many more

23

Selecting a Simulation Language

• Tradeoffs:
– Cost and flexibility

• simulation languages require startup time to learn
• general purpose language extensions require startup time to

learn
• general purpose languages may require a lot of code writing
• packages may be feature-rich, allow visual presentation without

overhead, allow to do simple simulations quickly
• extending packages for special needs may be very hard

23

24

Types of Simulations

For people in networking, operating systems,
distributed systems, the main types of simulation are:

• Monte Carlo simulation

• trace-drive simulation

• discrete-event simulation

• emulation

25

Monte Carlo Simulation

• A static simulation that has no time parameter
– Runs until some equilibrium state reached

• Used to model physical phenomena, evaluate
probabilistic system, numerically estimate complex
mathematical expressions

• Driven with random number generator
– name “Monte Carlo” comes from the random draws in

casinos

25

26

Monte Carlo Simulation

Make random draws from a pool of random numbers
– here: (x,y), where x and y are randomly drawn from [0..1]

– determine if (x,y) is inside the circle: 𝑥! + 𝑦! ≤ "
!

– count the ratio of inliers vs outliers

– since the square surface area is 1, counting achieves the fraction inside
the circle

– draw random numbers until the accuracy is satisfactory

static simulation to assess the volume of a circle:

real: 𝜋 !
"
= 0.785	 this static simulation:

!#$
!%$

= 0.773

1x1 1x1

27

Monte Carlo Simulation
Markov-Chain Monte-Carlo simulation

State 2 State 3

E:State 1 Finish

State 5State 4

p=0.8

p=0.2

p=0.1

p=0.4
p=0.5

p=0.3

p=0.7

p=0.1 p=0.9

p=0.1

p=0.6

p=0.3

§ Markov Chain: for each state, probability ranges are assigned to alternative
transitions to new states (usually also keep state)

§ in each round, a random number is drawn
§ the appropriate transition is taken
§ the movement through the state space is called a random walk
§ if the system converges,

probabilities of being in State N can be computed by repeated Monte-Carlo
simulations of complete runs

§ Note: for converging simple models, a mathematical solutions exist

28

Trace-Driven Simulation

Uses time-ordered record of events on real system as
input

• Note: need trace to be independent of system under test
– This is very frequently forgotten !
– For example, arrival rate of packets in TCP depends on packet loss

and RTT and cannot be simulated based on a recorded IP packet
trace!

trace

4 simulated behaviours
based on the trace

29

Trace-Driven Simulation Advantages
Advantage explanation
Credibility easier to sell than random inputs
Easy validation when gathering trace, often get performance stats and

can validate with those
Accurate workload preserves correlation of events, don’t need to simplify

as for workload model
Less randomness input is deterministic, so output may be (or will at least

have less non-determinism)
Fair comparison allows comparison of alternatives under the same

input stream
Similarity to actual
implementation

often simulated system needs to be similar to real one
so can get accurate idea of how complex

30

Trace-Driven Simulation Disadvantages
Disadvantage explanation
Complexity requires more detailed implementation
Representativeness trace from one system may not represent all traces
Finiteness can be long, so often limited by space but then the

recorded timespan may not be representative
Single point of
validation

need to be careful that validation of performance
gathered during a trace represents only 1 case

Trade-off it is difficult to change workload since cannot change
trace; changing trace would first need workload model

32

Discrete-Event Simulations
• Continuous-state simulations are typical in:

– weather forecasting
– chemical processes
– geology
– aerodynamics

• Discrete-event simulations are typical in:
– computer and network architecture
– banking, capital investment
– traffic planning
– Logistics, industrial production chains
– engineering disciplines

32

Time is usually discrete
State is usually continuous

State is discrete
Time is sometimes
continuous

33

Discrete-Event Simulations
• Event scheduler

– event callback generates an
event and schedules it for time T

– event is inserted into priority
queue

– callback ends, scheduler runs
– scheduler retrieves events Y

with smallest time T from
priority queue

– scheduler updates global clock
to T

– scheduler calls event dispatcher
for event Y

• Event schedulers are
executed very often
– do not use an inefficient priority

queue to implement the
scheduler

priority queue
sorted by time of next event
implementation: sorted heap

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event
callback

event callback
event’s code
probably generates
new events

34

• Simulation clock and time
advancing
– Global variable with time

– Scheduler advances time
• continuous time – increments

time by small amount and see
if any events

• discrete time – increments
time to next event and
executes

• System state variables
– Global variables describing

state

– Can be used to save and
restore

34

global clock
continuous time
implementation: float

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event
callback

event callback
event’s code
probably generates
new events

only difference
between discrete

and continuous time

Discrete-Event Simulations
priority queue
sorted by time of next event
implementation: sorted heap

35

• Event routines
– Specific routines to handle

event

– Often handled by callback from
event scheduler

• straightforward in object-
oriented language

– or connect to real systems for
emulation

35

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event
callback

event callback
event’s code
probably generates
new events

only difference
between discrete

and continuous time

Discrete-Event Simulations
priority queue
sorted by time of next event
implementation: sorted heap

global clock
continuous time
implementation: float

36

• Input routines
– Get input from user (or config

file, script or GUI)

– Often get all input before
simulation starts
(not true for emulation and
trace-driven simulations)

– May allow range of inputs and
number or repetitions, etc.

• Input options
– Traces can be connected to

event callbacks or directly to
the event queue

– Event callbacks can
encapsulate emulation

36

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event
callback

event callback
event’s code
probably generates
new events

only difference
between discrete

and continuous time

Discrete-Event Simulations
priority queue
sorted by time of next event
implementation: sorted heap

global clock
continuous time
implementation: float

37

• Report generators
– Routines executed at end of

simulation, final result and print

– Can include graphical
representation, too

– Ex: may compute total wait
time in queue or number of
processes scheduled

37

event dispatcher
dequeue an event
check new time
advance global clock
dispatch event’s code

event
callback

event callback
event’s code
probably generates
new events

only difference
between discrete

and continuous time

Discrete-Event Simulations
priority queue
sorted by time of next event
implementation: sorted heap

global clock
continuous time
implementation: float

39

Questions

• Which type of simulation for each of
– Model requester access patterns to a server where a

large number of factors determine requester

– Model scheduling in a multiprocessor with request
arrivals from known distribution

– Complex mathematical integral

Department of Informatics
Networks and Distributed Systems (ND) group

Mistakes in simulation

Özgü Alay
Carsten Griwodz

41

Common Mistakes in Simulation
• Inappropriate level of detail

– Level of detail often potentially unlimited
– But more detail requires more time to develop

• And often to run!

– Can introduce more bugs, making more inaccurate not less!
– Often, more detailed viewed as “better” but may not be the

case
• More detail requires more knowledge of input parameters
• Getting input parameters wrong may lead to more inaccuracy

(Ex: disk service times exponential vs. simulating sector and arm
movement)

– Start with less detail, study sensitivities and introduce detail in
high impact areas

42

Common Mistakes in Simulation
• Improper language

– Choice of language can have significant impact on time to develop

– Special-purpose languages can make implementation, verification
and analysis easier

• Unverified models
– Simulations are generally large computer programs

– Unless special steps taken, they have bugs or errors

• Invalid models
– No errors, but does not represent real system

– Need to validate models by analysis, measurement or intuition

Ideas for verification of simulation models discussed in this lecture

43

Common Mistakes in Simulation
• Improperly handled initial conditions

– Often, initial trajectory are not representative of steady state
• Including initial data can lead to inaccurate results

– Typically want to discard, but need method to do so effectively

– Discussed in this lecture

– However:
• the goal of a study may be the exploration of the initial behaviour of a

system

• Too short simulation runs
– Attempt to save time
– Makes even more dependent upon initial conditions
– Correct length depends upon the accuracy desired (confidence intervals)
– Discussed in this lecture

44

Common Mistakes in Simulation
• Poor random number generators and seeds

– “Home grown” are often not random enough
• Makes artifacts

– Best to use well-known one
– Choose seeds that are different (Jain chapter 26)
– since Jain’s book:

• operating systems’ random number generators were proven to be poor,
simplifying man-in-the-middle attacks on TCP connections

• since then, operating systems have been equipped with much better
generators (Linux: /dev/random, /dev/urandom)

• still, simulators need a lot of random numbers and OS generators can be
saturated

45

Common Mistakes in Simulation
Mistake Relevance
Inappropriate level of detail high
Improper language costs mostly time
Unverified models high
Invalid models high
Improperly handled initial conditions problematic combined with next
Too short simulation runs high if not discovered in analysis, or

simulation is not repeatable
Poor random number generators and
seeds

problem has changed since Jain’s
book

46

More Causes of Failure

• Large software
– Quotations above apply to software development projects,

including simulations
– If large simulation efforts are not managed properly, they can

fail

• Inadequate time estimate
– Need time for validation and verification
– Time needed can often grow as more details added

Any given program, when running, is obsolete. If a program is useful, it will
have to be changed. Program complexity grows until it exceeds the capacity
of the programmer who must maintain it. - Datamation 1968

47

More Causes of Failure

• No achievable goal
– Common example is “model X”

• But there are many levels of detail for X

– Goals: Specific, Measurable, Achievable, Repeatable,
Time-bound (SMART)

– Project without goals continues indefinitely

• Incomplete mix of essential skills
– Team needs one or more individuals with certain skills
– Need: leadership, modeling and statistics, programming,

knowledge of modeled system

48

Simulation Checklist

• Checks before developing simulation
– Is the goal properly specified?

– Is detail in model appropriate for goal?

– Does team include right mix
(leadership, modeling, programming, background)?

– Has sufficient time been planned?

• Checks during simulation development
– Is random number random?

– Is model reviewed regularly?

– Is model documented?

49

Simulation Checklist

• Checks after simulation is running
– Is simulation length appropriate?

– Are initial transients removed?

– Has model been verified?

– Has model been validated?

– Are there any surprising results?

• If yes, have they been validated?

49

Department of Informatics
Networks and Distributed Systems (ND) group

Analysis of results (verification)

Özgü Alay
Carsten Griwodz

51

Analysis of Simulation Results

• Would like model output to be close to that of real system

• Made assumptions about behavior of real systems

• 1st step, test if assumptions are reasonable
– Validation, or representativeness of assumptions

• 2nd step, test whether model implements assumptions
– Verification, or correctness

Always assume that your assumption is invalid.
– Robert F. Tatman

52

Model Verification Techniques
• Good software engineering practices will result in fewer bugs
• Top-down, modular design
• Assertions (antibugging)

– Say, total packets = packets sent + packets received
– If not, can halt or warn

• Structured walk-through
• Simplified, deterministic cases

– Even if a simulation is complicated and non-deterministic, use
simple repeatable values (maybe fixed seeds) to debug

• do not use /dev/random or /dev/urandom as random number
source while debugging, use a random number generator that is thread-
specific with a user-adjustable seed

• Tracing
– via print statements or debugger

53

Model Verification Techniques
• Continuity tests

– Slight change in input should yield slight change in output, otherwise
error

• Degeneracy tests
– Try known extremes (e.g. lowest and highest) since they may reveal

bugs

Th
ro

ug
hp

ut

Queue length

Th
ro

ug
hp

ut

Queue length

non-sense result
probably simulation error

expected result
no indication for error

54

Model Verification Techniques
• Consistency tests – similar inputs produce similar outputs

– Ex: 2 sources at 50 pkts/sec produce same total as 1 source at
100 pkts/sec

• Seed independence – random number generator starting
value should not affect final conclusion
– it will probably change the specific output

– it should not change the overall conclusions

– however:

• this can be the real behaviour in an unstable system

• the simulated period may be too short to reach stability

55

Model Validation Techniques
• Ensure assumptions used are reasonable

– Want final simulated system to be like real systems
• Unlike verification, techniques to validate one simulation may be different

from one model to another

• Three key aspects to validate:
– Assumptions
– Input parameter values and distributions
– Output values and conclusions

• Compare validity of each to one or more of:
– Expert intuition
– Real system measurements
– Theoretical results

à 9 combinations
Not all are always
possible

56

Model Validation Techniques - Expert
Intuition

• Most practical, most common
• “Brainstorm” with people

knowledgeable in area
• Assumptions validated first,

followed soon after by input.
Output validated as soon as
output is available (and
verified), even if preliminary

• Present measured results
and compare to simulated
results (can see if experts can
tell the difference)

56

Th
ro

ug
hp

ut

Packet Loss Probability

0.2 0.4 0.8

Which alternative
looks invalid? Why?

57

Model Validation Techniques - Real System
Measurements
• Most reliable and preferred

• May be infeasible because system does not exist or too
expensive to measure
– That could be why simulating in the first place!

• But even one or two measurements add an enormous
amount to the validity of the simulation

• Should compare input values, output values, workload
characterization
– Use multiple traces for trace-driven simulations

• Can use statistical techniques (confidence intervals) to
determine if simulated values different than measured values

57

58

Model Validation Techniques -
Theoretical Results
• Can be used to compare a simplified system with simulated

results
• May not be useful for sole validation but can be used to

complement measurements or expert intuition
– Ex: measurement validates for one processor, while analytic

model validates for many processors

• Note, there is no such thing as a “fully validated” model
– Would require too many resources and may be impossible
– Can only show is invalid

• Instead, show validation in a few select cases, to lend
confidence to the overall model results

58

Department of Informatics
Networks and Distributed Systems (ND) group

Analysis of results
Initial transients

Özgü Alay
Carsten Griwodz

60

Transient Removal
• Most simulations only want steady state

– Remove initial transient state
– but not always

e.g. initial competition between TCP flows is interesting

• Trouble is, not possible to define exactly what constitutes end
of transient state

• Use heuristics:
– Long runs
– Proper initialization
– Truncation
– Initial data deletion
– Moving average of replications
– Batch means

61

Long Runs

• Use very long runs

• Effects of transient state will be amortized

• But … wastes resources

• And tough to choose how long is “enough”

• Recommendation … don’t use long runs alone

62

Proper Initialization

• Start simulation in state close to expected state
– Ex: CPU scheduler may start with some jobs in the queue

• Determine starting conditions by previous
simulations or simple analysis

• May result in decreased run length, but still may not
provide confidence that the simulation has reached
a stable condition

63

Truncation
• Assume variability during

steady state is less than
during transient state

• Variability measured in
terms of range
– (min, max)

• If a trajectory of range
stabilizes, then assume that
simulation is in stable state

• Method:
– Given n observations

{x1, x2, …, xn}
– ignore first l observations

– Calculate (min,max) of
remaining n-l

– Repeat for l = 1…n
– Stop when observation l+1

is neither min nor max

64

Truncation Example
• Sequence:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 10, 11, 10, 9…
• Ignore first (l=1),

range is (2, 11) and
2nd observation (l+1) is the min

• Ignore second (l=2),
range is (3,11) and
3rd observation (l+1) is min

• Finally, l=9 and
range is (9,11) and
10th observation is
neither min nor max

• So, discard first 9 observations

Transient
Interval

65

Truncation Example 2

• Find duration of transient interval for:
11, 4, 2, 6, 5, 7, 10, 9, 10, 9, 10, 9, 10

66

Truncation Example 2

• Find duration of transient interval for:
11, 4, 2, 6, 5, 7, 10, 9, 10, 9, 10, 9, 10

• When l=3,
range is (5,10) and
4th (6) is not min or max

• So, discard only 3
instead of 6

“Real” transient

Assumed transient

67

Initial Data Deletion
• Study average after some initial observations are deleted

from sample
– If average does not change much,

must be deleting from steady state
– However, since randomness can cause some fluctuations during

steady state,
need multiple runs (with different seeds)

• Given m replications (m simulation runs with different seeds)
of size n (n observations are taken)
each with xij j-th observation of i-th replication
– Note: j varies along time axis and i varies across replications

68

Initial Data Deletion
• Get mean trajectory for observation j

+𝑋' =
1
𝑚
/
&(!

)

𝑥&'

• Get overall mean

1𝑋 =
1
𝑛
/
'(!

*

+𝑋'

• Assume transient state l long, delete first l and compute mean for the
rest, so for all 𝑙 = 1. . 𝑛

%𝑥# =
1

𝑛 − 𝑙
+
$%#&"

'

%𝑋$

69

Initial Data Deletion
• Compute relative change for all 𝑙 = 1. . 𝑛

𝑅! =
'𝑥! − *𝑋
*𝑋

• Plot Rl over l
• Relative change graph will stabilize at knee

• Choose l there and delete 1 through l

70

Initial Data Deletion

xij

j

%𝑋$

j

l l

transient
interval

knee

%𝑥# %𝑥# − -𝑋
-𝑋

71

Moving Average of Independent
Replications
• Compute mean over moving time

window
• Get mean trajectory

+𝑥' =
1
𝑚
/
&(!

)

𝑥&'

• Set k=1. Plot moving average of 2k+1
values:

4𝑥' =
1

2𝑘 + 1
/
+(,-

-

𝑥'.+

for j=k+1, k+2,…,n-k
• Repeat for k=2,3… and plot until

smooth
• Find knee.

Value at j is length of transient phase.

j

j

transient
interval

knee

%𝑥$

.𝑥$

72

Batch Means
• run for long time

– make N observations in each run

• divide up into batches

– m batches size n each, so that m = (
'

• compute batch means

+𝑥& =
1
𝑛

/
'(&).!

&).*

𝑥'

• and overall mean

𝑥̿ =
1
𝑚
/
&(!

)

+𝑥&

R
es

po
ns

es

Observation number

n 2n 3n 4n 5n

V
ar

ia
nc

e
of

ba
tc

h
m

ea
ns

transient
interval

Batch size n

(Ignore)

73

Batch Means
• Compute the variance of batch

means as a function of batch size n

𝑣𝑎𝑟(𝑥) =
1

𝑚 − 1
+
)%"

*

%𝑥) − 𝑥̿ !

• Plot variance versus size n

• When n starts decreasing,
the end of the transient interval has
been found

R
es

po
ns

es

Observation number

n 2n 3n 4n 5n

V
ar

ia
nc

e
of

ba
tc

h
m

ea
ns

transient
interval

Batch size n

(Ignore)

Department of Informatics
Networks and Distributed Systems (ND) group

Analysis of results
Termination criteria

Özgü Alay
Carsten Griwodz

75

Terminating Simulations
• For some simulations, transition state is of interest
• In these cases, transient removal cannot be performed

• Sometimes upon termination you also get final conditions
that do not reflect steady state
– Can apply transition removal conditions to end of

simulation
– very frequently in open-loop simulation where the

remaining samples are “draining” from the system

75

76

Terminating Simulations
• Take care when gathering at end of simulation

– For example mean service time should include only those process
that finish

– and not those that are either in a queue or being processed when
the simulation ends

• Also, take care of values at event times
– Ex: queue length needs to consider area under curve
– Say t=0 two jobs arrive, t=1 first job leaves, t=4 second

job leaves
– queue lengths q0=2, q1=1, q4=0 but q average not

⁄2 + 1 + 0 3 = 1
– Instead, area is 2 + 1 + 1 + 1 so q average ⁄5 4 = 1.25

76

77

Stopping Criteria
• Important to run long enough

– Stopping too short may give variable results
– Stopping too long may waste resources

• Should get confidence intervals on mean to desired width:
𝑥̅ ± 𝑧!,/0

𝑣𝑎𝑟(𝑥̅)

• Variance of sample mean of independent observations:

𝑣𝑎𝑟 𝑥̅ =
1
𝑛
𝑣𝑎𝑟(𝑥)

• But only if observations independent! Most simulations not
– Ex: if queuing delay for packet i is large then will likely be large for

packet i+1
• So, use: independent replications, batch means, regeneration (all next)

77

separate slide

78

Confidence interval
The probability

that the values drawn for an infinite series of samples
stays within the boundaries around the computed average value
with a confidence of 1 − 𝛼 C 100%

 is defined by the boundaries x ± 𝑧!,!"
𝑣𝑎𝑟 𝑥

where the values 𝑧1 are the quantities of the normal distribution.

Values for can 𝑧1 be looked up in a table (Appendix A.2 in the Jain book)

• for example for a 95-percentile
• 𝛼 =0.05

• 𝑝 = 1 − /
0
= 0.975

• 𝑧2.4%5 = 1.960
then compute the confidence interval as 1.96	𝑣𝑎𝑟 𝑥
or in Excel
=CONFIDENCE(0.05,sqrt(var(x)),1)

the first is alpha, the second the standard deviation (𝑣𝑎𝑟(𝑥)), the 1 is unclear

79

Independent Replications
• Assume replications are independent

– Different random seed values
• Collect m replications of size n+n0 each

– n0 is length of transient phase
• Mean for each replication ∀𝑖: 1. . 𝑚

+𝑥& =
1
𝑛

/
'(*#.!

#.

𝑥&'

• Overall mean for all replications: 𝑥̿ = !
)
∑&(!) +𝑥&

• Calculate variance of replicate means

𝑣𝑎𝑟(𝑥̅) =
1

𝑚 − 1
/
&(!

)

+𝑥& − 𝑥̿ 0

• Confidence interval is
𝑥̿ ± 𝑧!, 6/ 0

𝑣𝑎𝑟(𝑥̅)
• Note, width proportional to 𝑚𝑛, but reduce “waste” of mn0 observations,

increase length n
79

80

Batch Means
• Collect long run of N samples + n0

– n0 is length of transient phase
• Divide into m batches of n observations each

– n large enough so little correlation between

• Mean for each batch i ∀𝑖: 1. . 𝑚 %𝑥) =
"
'
∑$%"' 𝑥)$

• Overall mean for all replications𝑥̿ = "
*
∑)%"* %𝑥)

• Calculate variance of replicate means

𝑣𝑎𝑟(𝑥̅) =
1

𝑚 − 1
/
&(!

)

+𝑥& − 𝑥̿ 0

• Confidence interval is
𝑥̿ ± 𝑧!,/0

𝑣𝑎𝑟(𝑥̅)

• Note, similar to independent replications but less waste (only n0)

80

81

Batch Means
• How to choose n? Want covariance of successive means small compared to

variance

𝑐𝑜𝑣(+𝑥& , 𝑥&.!) =
1

𝑚 − 2
/
&(!

)

+𝑥& − 𝑥̅ 𝑥&.! − 𝑥̅

• Start n=1, then double n
• Example:

Size Cov Var
1 -0.187 1.799
2 0.026 0.811
4 0.110 0.420
…
64 0.00010 0.06066

• Becomes less than 1%, so n=64 brings us beyond the distance where x and x+n
are dependent

• so can use n=64 as batch size
81

82

Method of Regeneration
• Consider CPU scheduling

• Jobs arriving after queue
empty not dependent upon
previous

• Note, system with two
queues would need both to
be idle

• Not all systems are
regenerative
– Not those with “long”

memories

• Note, unlike in batch
methods, the cycles can be
of different lengths

Q
 le

ng
th

Time

Regeneration
Points

Regeneration
Cycles

83

Method of Regeneration
• m cycles of length n1,n2,…,nm
• jth observation in cycle i: xij
• cycle means %𝑥) =

"
'!
∑$%"
'! 𝑥)$

• Note, for the overall mean, we known that

 𝑥̿ ≠ "
*
∑ %𝑥)

• since cycles have different lengths.

So, to compute confidence intervals è next slide

84

Method of Regeneration
• Compute sums:

𝑦) =+
$%"

'!

𝑥)$

• Compute overall mean:

𝑥̿ =
∑)%"* 𝑦)
∑)%"* 𝑛)

• Calculate difference between
mean and observed sums:
𝑤) = 𝑦) − 𝑛)𝑥̿∀𝑖 ∈ 1. . 𝑚

• Calculate variance of differences:

𝑣𝑎𝑟(𝑤) =
1

𝑚 − 1
+
)%"

*

𝑤)!

• Compute mean cycle length:

𝑛 =
1
𝑚
+
)%"

*

𝑛)

• Confidence interval:

𝑥̿ ± 𝑧"+,/!
𝑣𝑎𝑟(𝑤)
-𝑛 𝑚

85

Question

• Imagine you are called in as an expert to review a
simulation study. Which of the following would you
consider non-intuitive and would want extra
validation?

1. Throughput increases as load increases

2. Throughput decreases as load increases

3. Response time increases as load increases

4. Response time decreases as load increases

5. Loss rate decreases as load increases

85

