IN5060

Quantitative Performance Analysis

User studies (cntd)

Does blur hide asynchrony?

study by Ragnhild Eg (Simula) et al., 2011

Perception of synchrony

Sensitivity for perceptual synchrony is subjective and depends on the content

Spoken sentences (Grant et al., 2003)

Discrimination thresholds: ≈50 ms audio lead, ≈200 ms audio lag

Hitting table with wand (Levitin et al., 2000)

Synchrony thresholds set to 75 %:41 ms Alead to 45 ms Alag

Music, baseball, speech (Vatakis & Spence, 2006)

 Temporal order judgements (audio/video first)

Stimuli

3 content types

Chess game

News broadcast

Drummer

9 asynchrony levels

Stimuli

Visual distortion, 4 levels, Gaussian blur filter

Undistorted

Blur 2x2 pixels

Blur 4x4 pixels

Blur 6x6 pixels

Procedure

Carried out at the Speech Lab, NTNU

Chess content - 200 ms audio lead

Chess content - 200 ms audio lag, blurred

News - 300 ms audio lag, blurred

Drums - 100 ms audio lag, blurred

Drums - 150 ms audio lead, slightly blurred

Audio streaming from PPT in Zoom is really bad.

See the examples here:

https://drive.google.com/drive/folders/1hxXFdh5xCeN 1pMril2kZzNwPC3ZmuL-u?usp=sharing

Design & Analysis

- 2 independent studies
- Full-factorial design
- 2 repetitions of each condition
- Binomial responses converted to percentages
- Repeated-measures ANOVAs
- Separate analyses for:
 - Audio lag and audio lead (different scales)
 - Content types (different response patterns)

Mean perceived synchrony, averaged across blur levels

		Alternatives					
	Measure- ments	Un- blurred	Blur 2x2	Blur 4x4	Blur 6x6		
	Audio lead 200	% noticed	% noticed	% noticed	% noticed		
Chess	Audio lead 150	% noticed	% noticed	% noticed	% noticed		
	Audio lead 100	% noticed	% noticed	% noticed	% noticed		
	Audio lead 50	% noticed	% noticed	% noticed	% noticed		

Assessment of relevance

	Visual distortion						
	Content	F-statistics					
ag	Chess	F(4,85)=88.79, p<.001					
년 양	TV2	F(4,85)=232.54, p<.001					
And	Drums	F(4,85)=197.57, p<.001					
ad	Chess	F(4,85)=71.77, p<.001					
<u>io</u>	TV2	F(4,85)=100.26, p<.001					
Aud	TV2 Drums	F(4,85)=126.31, p<.001					

5 settings18 participants

ANOVA

Analysis of Variance

A-B Comparison

Candidate	Audio lag	Audio in sync	Difference
[/]	$[b_i]$	$[a_i]$	$[d_i = b_i - a_i]$
1	5	6	-1
2	3	8	-5
3	14	10	4
4	10	15	-5
5	8	11	-3
6	7	3	4

Mean of differences $\bar{d}=-1$, Standard deviation $\sigma_d=4.15$

A-B Comparison

Mean of differences $\bar{d}=-1$ Standard deviation $\sigma_d=4.15$

- From mean of differences, appears that audio lag reduced performance
- However, standard deviation is large
- Is the variation between the two alternatives greater than the variation (error) in the measurements?
- Confidence intervals can work, but what if there are more than two alternatives?

Comparing more than two alternatives

Naïve approach

Compare confidence intervals

- Need to do for all pairs. This grows very quickly.
- Example: 7 alternatives would require 21 pair-wise comparisons

• possible combinations:
$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 1}$$

• for our case:
$$\binom{7}{2} = \frac{7*6}{2*1} = \frac{42}{2} = 21$$

Would not be surprising to find 1 pair differed (at 95%)

SPSS Chart of methods

From Field, A. P. (2013). Discovering statistics using IBM SPSS Statistics: And sex and drugs and rock 'n' roll (4th ed.). London: Sage.

SPSS Chart of methods

From Field, A. P. (2013). Discovering statistics using IBM SPSS Statistics: And sex and drugs and rock 'n' roll (4th ed.). London: Sage.

SPSS Chart of methods

From Field, A. P. (2013). Discovering statistics using IBM SPSS Statistics: And sex and drugs and rock 'n' roll (4th ed.). London: Sage.

ANOVA - Analysis of Variance

- Partitioning variation (not variance) into the part that can be explained and the part that cannot be explained
- Separates total variation observed in a set of measurements into:
 - 1. Variation within one system due to uncontrolled measurement errors
 - 2. Variation between systems due to real differences + random error
- Is variation (2) statistically greater than variation (1)?

One-way repeated measures ANOVA

- Make n measurements of k alternatives
- $y_{ij} = i$ th measurement on jth alternative
- Assumes errors are
 - independent
 - normally distributed
- In user studies, each measurement is the set of responses by one participant

Independent variable: categorical

	Alternatives							
Measure- ments	1	2		j		k		
1	<i>У</i> 11	<i>У</i> 12		<i>У</i> 1j		J k1		
2	<i>Y</i> 21	<i>y</i> 22		<i>y</i> _{2j}		<i>Y</i> 2k		
i	<i>y</i> ₁ 1	<i>y</i> i2		У _{іј}		У _{ik}		
п	<i>y</i> _{n1}	y n2		<i>Y</i> nj		y nk		

Observations: independent

	Alternatives							
Measure- ments	1	2		j		k		
1	<i>У</i> 11	<i>Y</i> 12		<i>Y</i> 1j		<i>y</i> k1		
2	<i>Y</i> 21	<i>Y</i> 22		<i>y</i> _{2j}		<i>Y</i> 2k		
i	<i>y</i> ₁ 1	y í2		У _{іј}		Уik		
п	<i>У</i> _{п1}	y _{n2}		<i>Y</i> nj	•••	y nk		

Dependent variable:

- continuous
- interval or ratio terms

		Alternatives ()							
Measure- ments	1	2		j		k			
1	<i>У</i> 11	<i>Y</i> 12		<i>Y</i> 1j		<i>y</i> k1			
2	<i>y</i> 21	<i>Y</i> 22		<i>y</i> _{2j}		<i>Y</i> 2k			
i	<i>Y</i> i1	<i>y</i> i2		У _{іј}		У _{ik}			
п	<i>y</i> _{n1}	y n2		<i>Y</i> nj		y nk			

Dependent variable:

- approximately normally distributed
- in each category of the indep. variable

	Alternatives (1997)						
Measure- ments	1	2		j		k	
1	<i>Y</i> 11	<i>У</i> 12		<i>У</i> 1j		⅓ 1	
2	<i>У</i> 21	<i>Y</i> 22		<i>Y</i> 2j		<i>Y</i> 2k	
i	<i>y</i> ₁ 1	y í2		y ij		У _{ik}	
Three ma	ain options:					<i>Y</i> nk	

- 1. More than 25 observations? No test required!
- 2. Visual confirmation by plotting a histogram of the value
- 3. Shapiro-Wilk test

All Measurements for All Alternatives

		Alternatives						
Measure- ments	1	2		j		k		
1	<i>У</i> 11	<i>У</i> 12		<i>Y</i> 1j		J k1		
2	<i>Y</i> 21	<i>Y</i> 22		<i>y</i> _{2j}		<i>Y</i> 2k		
i	<i>y</i> ₁ 1	Уíг		У́ij		Уik		
п	<i>y</i> _{n1}	y n2		<i>Y</i> nj		У _{пк}		

Overall Mean

Average of all measurements made of all alternatives:

$$\bar{y} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n} y_{ij}}{kn}$$

	Alternatives						
Measure- ments	1	2		j		k	
1	<i>У</i> 11	<i>У</i> 12		<i>Y</i> 1j		J k1	
2	½ 21	y 22		<i>y</i> _{2j}		<i>Y</i> 2k	
i	<i>y</i> ₁₁	<i>y</i> _{i2}		У _{ij}		У _{ik}	
п	<i>y</i> _{n1}	y n2		<i>Y</i> nj		У _{пк}	

Column Means

Column means are average values of all measurements within a single alternative

$$\overline{y_{.j}} = \frac{\sum_{i=1}^{n} y_{ij}}{n}$$

average performance of a single alternative

	Alternatives						
Measure- ments	1	2		j		k	
1	<i>У</i> 11	<i>Y</i> 12		<i>Y</i> 1j		<i>y</i> k1	
2	<i>Y</i> 21	<i>Y</i> 22	•••	<i>y</i> _{2j}		<i>Y</i> 2k	
i	<i>Y</i> i1	y i2		У _{іј}		Уik	
П	<i>y</i> _{n1}	y _{n2}		<i>Y</i> nj		$\mathcal{Y}_{\sf nk}$	
Column mean	<i>У</i> .1	У.2		<i>Y</i> .j		<i>Y</i> .k	

Effect = Deviation From Overall Mean

• α_j : effect of alternative j = deviation of column mean from overall mean: $\alpha_j = \overline{y_{.j}} - \overline{y}$

		Alternatives						
Measure- ments	1	2		j		k		
1	<i>Y</i> 11	<i>У</i> 12		<i>Y</i> 1j		J k1		
2	<i>У</i> 21	<i>Y</i> 22		<i>Y</i> 2j		<i>Y</i> 2k		
i	<i>Y</i> ₁ 1	<i>y</i> i2		У _{іј}		У _{ik}		
п	<i>y</i> _{n1}	y _{n2}		<i>Y</i> nj		У _{nk}		
Column mean	<i>У</i> .1	У.2		<i>У</i> . _j		<i>Y</i> .k		
Effect	a_1	\mathfrak{a}_2		a j		a_k		

Error = Deviation From Column Mean

• e_{ij} : error of each measurement = deviation from column mean: $e_{ij}=y_{ij}-\overline{y}_{.j}$

	Alternatives							
Measure- ments	1	2		j		k		
1	<i>У</i> 11	<i>Y</i> 12		Ø4i.		J k1		
2	<i>y</i> 21	<i>Y</i> 22		<i>y</i> _{2j}		<i>Y</i> 2k		
i	<i>Y</i> i1	Уíг		y ij		У́ik		
п	<i>У</i> _{n1}	y n2		J nj		$\mathcal{Y}_{\sf nk}$		
Column mean	<i>У</i> .1	У.2		<i>У</i> . _j		<i>Y</i> _{.k}		

Effects and Errors

- Effect is distance of column mean from overall mean
 - Horizontally across alternatives
- Error is distance of sample from column mean
 - Vertically within one alternative
 - Error across alternatives, too
- Note that neither Effect nor Error are absolute values, they can be positive of negative
- Individual measurements are then:

$$y_{ij} = \bar{y} + \alpha_j + e_{ij}$$

Sum of Squares of Differences

SST = differences between each measurement and overall mean

$$SST = \sum_{i=1}^{k} \sum_{i=1}^{n} (y_{ij} - \bar{y})^{2}$$

 \blacksquare SSA = variation due to effects of alternatives

$$SSA = n \sum_{j=1}^{k} \alpha_j^2 = n \sum_{j=1}^{k} (\overline{y_{.j}} - \overline{y})^2$$

 \blacksquare SSE = variation due to errors in measurements

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n} e_{ij}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{.j})^{2}$$

 $\blacksquare SSE = SST - SSA \iff SST = SSE + SSA$

ANOVA

Separates variation in measured values into:

- 1. variation due to effects of alternatives
 - SSA variation across column averages
- variation due to errors
 - SSE variation within a single column

If differences among alternatives are due to real differences:

→ SSA statistically greater than SSE

Comparing SSE and SSA

- Simple approach
 - $-\frac{SSA}{SST}$ = fraction of total variation explained by differences among alternatives

$$-\frac{SSE}{SST} = \frac{SST - SSA}{SST}$$
 = fraction of total variation due to experimental error

But is it statistically significant?

Comparing SSE and SSA

- Is it statistically significant?
- variance = mean square values

= total variation / degrees of freedom
$$\sigma_x^2 = \frac{SSx}{df(SSx)}$$

- df(SSx):
 - degrees of freedom
 - this is the number of independent terms in sum

Degrees of Freedom for Effects

df(SSA) = k - 1, since k alternatives

	Alternatives							
Measure- ments	1	2		j		k		
1	y 11	y 12		У 1j		<i>Y</i> k1		
2	y 21	Y 22	::	y 2j		y 2k		
	•••	•••				•••		
i	y i1	y i2	:	y ij		y ik		
		•••				•••		
n	y n1	y n2		y nj		y nk		
Column mean	Y .1	y .2		Y .j		<i>Y</i> .k		
Effect	α_1	a ₂		$a_{\rm j}$		a_k		

Degrees of Freedom for Errors

 $df(SSE) = k \cdot (n-1)$, since k alternatives, each with (n-1) degrees of freedom

	Alternatives							
Measure- ments	1	2		j		k		
1	Y 11	У 12		Y 1j		y k1		
2	y 21	y 22	4	<i>y</i> _{2j}		<i>Y</i> 2k		
			•••	•••				
i	y i1	Y i2	•••	y ij	•••	y ik		
	•••				•••	•••		
n	/ n1	y n2	•••	Ynj	•••	Y nk		
Column mean	Y .1	y .2		Y .j		y .k		
Effect	a_1	a_2		a_{j}		a_k		

Degrees of Freedom for Total

 $df(SST) = df(SSA) + df(SSE) = k \cdot n - 1$, since we consider all kn alternatives as independent experiments, thus fixing only 1 pair

	Alternatives							
Measure- ments	1	2		j		k		
1	Y 11	y 12		V 1j		Y k1		
2	Y 21	Y 22		<i>y</i> _{2j}		<i>Y</i> 2k		
::	•••	•••		•••				
i	y i1	y i2		y ij	•••	y ik		
				,,,				
n	y n1	y n2	•••	Y nj	•••	Y nk		
Column mean	Y .1	y .2		Y .j		Y.k		
Effect	a_1	a_2		aj		a _k		

Note: k(n-1) + k - 1 = kn - 1

Variances from Sum of Squares (Mean Square Value)

Variation between sample means

$$\sigma_a^2 = \frac{SSA}{k-1}$$

in user studies, this is the variance of the average scores for the different alternatives

Variation within the samples

$$\sigma_e^2 = \frac{SSE}{k(n-1)}$$

in user studies, this is the variance of the score differences between participants

Comparing Variances

Use F-test to compare ratio of variances

 an F-test is used to test if the standard deviations of two populations are equal

$$-F = \frac{\sigma_a^2}{\sigma_e^2}$$

- $-F_{[1-\alpha;df(num),df(denum)]} = F_{[1-\alpha,k-1,k(n-1)]} = tabulated critical values$
- table for p=0.001 at: http://www.tutor-homework.com/statistics_tables/f-table-0.001.html

if $F_{computed} > F_{table}$ for a given α

 \rightarrow we have $(1-\alpha)100\%$ **confidence** that variation due to actual differences in alternatives, SSA, is statistically greater than variation due to errors, SSE

Comparing Variances

Table of F-statistics P=0.001

t-statistics

F-statistics with other P-values: P=0.05 | P=0.01

Chi-square statistics

df(num)

																										
	df2\df1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24	26	28	30
	3	167.03	148.50	141.11	137.10	134.58	132.85	131.59	130.62	129.86	129.25	128.74	128.32	127.96	127.65	127.38	127.14	126.93	126.74	126.57	126.42	126.16	125.94	125.75	125.59	125.45
	4	74.14	61.25	56.18	53.44	51.71	50.53	49.66	49.00	48.48	48.05	47.71	47.41	47.16	46.95	46.76	46.60	46.45	46.32	46.21	46.10	45.92	45.77	45.64	45.53	45.43
	5	47.18	37.12	33.20	31.09	29.75	28.84	28.16	27.65	27.25	26.92	26.65	26.42	26.22	26.06	25.91	25.78	25.67	25.57	25.48	25.40	25.25	25.13	25.03	24.95	24.87
	6	35.51	27.00	23.70	21.92	20.80	20.03	19.46	19.03	18.69	18.41	18.18	17.99	17.83	17.68	17.56	17.45	17.35	17.27	17.19	17.12	17.00	16.90	16.81	16.74	16.67
	7	29.25	21.69	18.77	17.20	16.21	15.52	15.02	14.63	14.33	14.08	13.88	13.71	13.56	13.43	13.32	13.23	13.14	13.06	12.99	12.93	12.82	12.73	12.66	12.59	12.53
	8	25.42	18.49	15.83	14.39	13.49	12.86	12.40	12.05	11.77	11.54	11.35	11.20	11.06	10.94	10.84	10.75	10.67	10.60	10.54	10.48	10.38	10.30	10.22	10.16	10.11
	9	22.86	16.39	13.90	12.56	11.71	11.13	10.70	10.37	10.11	9.89	9.72	9.57	9.44	9.33	9.24	9.15	9.08	9.01	8.95	8.90	8.80	8.72	8.66	8.60	8.55
	10	21.04	14.91	12.55	11.28	10.48	9.93	9.52	9.20	8.96	8.75	8.59	8.45	8.33	8.22	8.13	8.05	7.98	7.91	7.86	7.80	7.71	7.64	7.57	7.52	7.47
n	11	19.69	13.81	11.56	10.35	9.58	9.05	8.66	8.36	8.12	7.92	7.76	7.63	7.51	7.41	7.32	7.24	7.18	7.11	7.06	7.01	6.92	6.85	6.79	6.73	6.68
denum	12	18.64	12.97	10.80	9.63	8.89	8.38	8.00	7.71	7.48	7.29	7.14	7.01	6.89	6.79	6.71	6.63	6.57	6.51	6.45	6.41	6.32	6.25	6.19	6.14	6.09
Sn	13	17.82	12.31	10.21	9.07	8.35	7.86	7.49	7.21	6.98	6.80	6.65	6.52	6.41	6.31	6.23	6.16	6.09	6.03	5.98	5.93	5.85	5.78	5.72	5.67	5.63
qe	14	17.14	11.78	9.73	8.62	7.92	7.44	7.08	6.80	6.58	6.40	6.26	6.13	6.02	5.93	5.85	5.78	5.71	5.66	5.60	5.56	5.48	5.41	5.35	5.30	5.25
df(15	16.59	11.34	9.34	8.25	7.57	7.09	6.74	6.47	6.26	6.08	5.94	5.81	5.71	5.62	5.54	5.46	5.40	5.35	5.29	5.25	5.17	5.10	5.04	4.99	4.95
p	16	16.12	10.97	9.01	7.94	7.27	6.81	6.46	6.20	5.98	5.81	5.67	5.55	5.44	5.35	5.27	5.21	5.14	5.09	5.04	4.99	4.91	4.85	4.79	4.74	4.70
	17	15.72	10.66	8.73	7.68	7.02	6.56	6.22	5.96	5.75	5.58	5.44	5.32	5.22	5.13	5.05	4.99	4.92	4.87	4.82	4.78	4.70	4.63	4.58	4.53	4.48
	18	15.38	10.39	8.49	7.46	6.81	6.36	6.02	5.76	5.56	5.39	5.25	5.13	5.03	4.94	4.87	4.80	4.74	4.68	4.63	4.59	4.51	4.45	4.39	4.34	4.30
	19	15.08	10.16	8.28	7.27	6.62	6.18	5.85	5.59	5.39	5.22	5.08	4.97	4.87	4.78	4.70	4.64	4.58	4.52	4.47	4.43	4.35	4.29	4.23	4.19	4.14
	20	14.82	9.95	8.10	7.10	6.46	6.02	5.69	5.44	5.24	5.08	4.94	4.82	4.72	4.64	4.56	4.50	4.44	4.38	4.33	4.29	4.21	4.15	4.09	4.05	4.01
	22	14.38	9.61	7.80	6.81	6.19	5.76	5.44	5.19	4.99	4.83	4.70	4.58	4.49	4.40	4.33	4.26	4.20	4.15	4.10	4.06	3.98	3.92	3.86	3.82	3.78
	24	14.03	9.34	7.55	6.59	5.98	5.55	5.24	4.99	4.80	4.64	4.51	4.39	4.30	4.21	4.14	4.07	4.02	3.96	3.92	3.87	3.80	3.74	3.68	3.63	3.59
	26	13.74	9.12	7.36	6.41	5.80	5.38	5.07	4.83	4.64	4.48	4.35	4.24	4.14	4.06	3.99	3.92	3.86	3.81	3.77	3.72	3.65	3.59	3.53	3.49	3.45
	28	13.50	8.93	7.19	6.25	5.66	5.24	4.93	4.70	4.51	4.35	4.22	4.11	4.01	3.93	3.86	3.80	3.74	3.69	3.64	3.60	3.52	3.46	3.41	3.36	3.32
	30	13.29	8.77	7.05	6.13	5.53	5.12	4.82	4.58	4.39	4.24	4.11	4.00	3.91	3.83	3.75	3.69	3.63	3.58	3.54	3.49	3.42	3.36	3.30	3.26	3.22

Comparing Variances: α

- Probability that x is in the interval $[c_1, c_2]$
 - formally written:

$$P(c_1 \le x \le c_2) = 1 - \alpha$$

- (c1, c2) confidence interval
- α significance level
- $-100(1-\alpha)$ confidence level

typical confidence levels are 90%, 95%, 99%

significance level $\alpha=0.1\equiv$ confidence level 90% significance level $\alpha=0.05\equiv$ confidence level 95% significance level $\alpha=0.01\equiv$ confidence level 99%

One-way repeated measures ANOVA Summary

Variation	Alternatives	Error	Total
Sum of squares	SSA	SSE	SST
Deg freedom	k-1	k(n-1)	kn-1
Mean square	$\sigma_a^2 = \frac{SSA}{k-1}$	$\sigma_e^2 = \frac{SSE}{k(n-1)}$	
Computed F	$rac{\sigma_a^2}{\sigma_e^2}$		
Tabulated F	$F_{[1-\alpha;k-1,k(n-1)]}$		

Measurements	1	2	3	Overall mean
1	0.0972	0.1382	0.7966	
2	0.0971	0.1432	0.5300	
3	0.0969	0.1382	0.5152	
4	0.1954	0.1730	0.6675	
5	0.0974	0.1383	0.5298	
Column mean				
Effects				

Measurements	1	2	3	Overall mean
1	0.0972	0.1382	0.7966	
2	0.0971	0.1432	0.5300	
3	0.0969	0.1382	0.5152	
4	0.1954	0.1730	0.6675	
5	0.0974	0.1383	0.5298	
Column mean	$\overline{y_{\cdot 1}} = 0.1168$	$\overline{y_{\cdot 2}} = 0.1462$	$\overline{y_{\cdot 3}} = 0.6078$	$\bar{y} = 0.2903$
Effects				
Column sum	0.5840	0.7309	3.0391	

Measurements	1	2	3	Overall mean
1	0.0972	0.1382	0.7966	
2	0.0971	0.1432	0.5300	
3	0.0969	0.1382	0.5152	
4	0.1954	0.1730	0.6675	
5	0.0974	0.1383	0.5298	
Column mean	$\overline{y_{\cdot 1}} = 0.1168$	$\overline{y_{\cdot 2}} = 0.1462$	$\overline{y_{\cdot 3}} = 0.6078$	$\bar{y} = 0.2903$
Effects $\alpha_j = \overline{y_{\cdot j}} - \overline{y}$				

Measurements	1	2	3	Overall mean
1	0.0972	0.1382	0.7966	
2	0.0971	0.1432	0.5300	
3	0.0969	0.1382	0.5152	
4	0.1954	0.1730	0.6675	
5	0.0974	0.1383	0.5298	
Column mean	$\overline{y_{\cdot 1}} = 0.1168$	$\overline{y_{\cdot 2}} = 0.1462$	$\overline{y_{\cdot 3}} = 0.6078$	$\bar{y} = 0.2903$
Effects	$\overline{\alpha_1} = -0.1735$	$\overline{\alpha_2} = -0.1441$	$\overline{\alpha_3} = 0.3175$	
SSA		0.7585		

Measurements	$e_{i1} = y_{i1} - \overline{y_{\cdot 1}}$	$e_{i2} = y_{i2} - \overline{y_{\cdot 2}}$	$e_{i3} = y_{i3} - \overline{y_{\cdot 3}}$	SSE
1	-0.0196	-0.0080	0.1888	
2	-0.0197	-0.0030	-0.0778	3 5
3	-0.0199	-0.0080	-0.0926	$\sum \sum e_{ij}^2$
4	0.0786	0.0268	0.0597	$\overline{j=1}$ $\overline{i=1}$
5	-0.0194	-0.0079	-0.0780	
Column mean	$\overline{y_{\cdot 1}} = 0.1168$	$\overline{y_{\cdot 2}} = 0.1462$	$\overline{y_{\cdot 3}} = 0.6078$	0.0685
SST=SSA+SSE				

Variation	Alternatives	Error	Total
Sum of squares	SSA = 0.7585	SSE = 0.0685	SST = 0.8270
Deg freedom	k - 1 = 2	k(N-1)=12	kn - 1 = 14
Mean square	$\sigma_a^2 = 0.3793$	$\sigma_3^2 = 0.0057$	
Computed F	$\frac{0.3793}{0.0057} = 66.4$		
Tabulated F	$F_{[0.95;2,12]} = 3.89$ $F_{[0.99;2,12]} = 6.93$ $F_{[0.999;2,12]} = 12.97$		

$$SSA/SST = 0.7585/0.8270 = 0.917$$

→ 91.7% of total variation in measurements is due to differences among alternatives

$$SSE/SST = 0.0685/0.8270 = 0.083$$

→ 8.3% of total variation in measurements is due to noise in measurements

Variation	Alternatives	Error	Total
Sum of squares	SSA = 0.7585	SSE = 0.0685	SST = 0.8270
Deg freedom	k - 1 = 2	k(N-1) = 12	kn - 1 = 14
Mean square	$\sigma_a^2 = 0.3793$	$\sigma_3^2 = 0.0057$	
Computed F	$\frac{0.3793}{0.0057} = 66.4$		
Tabulated F	$F_{[0.95;2,12]} = 3.89$ $F_{[0.99;2,12]} = 6.93$ $F_{[0.999;2,12]} = 12.97$		

Computed F statistic > tabulated F statistic

→ 99.9% confidence that differences among alternatives are statistically significant.

One-way repeated measures ANOVA Summary

- Useful for partitioning total variation into components
 - Experimental error
 - Including differences between human participants which can be due to actual differences but also due to lack of attention
 - Variation among alternatives
 - Including alternatives comprising a numeric score, a rank or a count
- Compare more than two alternatives
- Note, does not tell you where differences may lie
 - Use PostHoc tests

When to use One-way ANOVA

PostHoc testing:

- If ANOVA indicates that not all population means are equal
- Which ones are different?

Measure- ments	1	2		j		k
1	<i>У</i> 11	<i>У</i> 12		<i>У</i> 1j		<i>J</i> k1
2	<i>У</i> 21	<i>Y</i> 22		<i>Y</i> 2j		<i>Y</i> 2k
;	17	17		.,		1,4

A typical PostHoc option: Tukey's HSD (Honestly Significant Difference)

- Absolute differences of 2 columns' averages: $|\overline{y_{\cdot A}} \overline{y_{\cdot B}}|$
- Standard error MSE for all columns: average of column variances
- Compute $q_{A,B} = \frac{|\overline{y} \cdot A}{\sqrt{\frac{MSE}{n}}}$
- Check if $q_{A,B}$ is above the studentized range distribution for a percentage probability
 - https://real-statistics.com/statistics-tables/studentized-range-q-table/