
Bounded Model Checking

Henrik Torland Klev

November 2019

1 Introduction

My initial idea was to use chapter 10 ”SAT-based Model Checking” of [1] as
a basis for this presentation. However, said chapter turned out to be more of
a reference-guide to more intriguing sources. After some pondering research,
I came to the conclusion that, when available, the primary source is usually a
good place to start. This lead me to the 1999 paper [2] where they propose using
boolean decision procedures as an alternative to the traditional ”Binary Decision
Diagram”-based symbolic representation methods. However, some concepts,
like wine and cheese, need time to mature into a better version of themselves.
Even though the concepts of bounded model checking are perfectly outlined
in the 1999 paper, a few years later a revised edition was published [3]. This
newer versions gives a broader view of BMC in the grand scheme of verification,
along with a section on completeness intended to satisfy critics of non-complete
verification. As such, this presentation will focus primarily on the 2003 version,
and is intended to provide a more context-based understanding of the field at
that time. For a more detailed explanation, the reader is referred to the paper
itself. Finally, it feels as if a disclaimer belongs here; as this is merely a student
presentation, it should not be considered as part of the official curriculum unless
explicitly approved by the courses lecturers.

2 Motivation

What common characteristics is shared by Michael Jackson’s ”Thriller”, the
dissolving of ATT’s stable US monopoly, and the Falklands War? They are all
far less interesting than the two main events of 1982, namely [4] and [5]. One
interesting anecdote regarding Model Checking is that it was ”invented” twice
in the same year by two different duos. However, this is by far the most interest-
ing feature of model checking. What makes it such an interesting subject is its
ability to exhaustively examine the reachable stats of a program, its guaranteed
termination for finite state-spaces, and its ability to produce counterexamples.
As such, it can be produce a certificate of correctness (with regard to a spec-
ification), or, if faulty, give concrete, replicable proof of a bug; all while being
immune to the halting problem [6]! Model checking employs algorithms that

1

use instructions of a system under test to generate sets of states that are to be
analyzed. These states must be stored to ensure that they are visited at most
once. Unfortunately, the number of states exhibits exponential growth. The
state-space can grow so prohibitively large that the challenge of storing them
has been given its own name: the state-space explosion problem.

Attempts to combat this challenge has resulted in some notable break-
throughs, and it was the introduction of symbolic model checking that made the
first step towards a wider acceptance in the industry. Symbolic model check-
ing differs from the original explicit-state model checking techniques employs
higher levels of abstraction in order to store less states, in contrast to storing
each individual state in isolation. As an example of the difference between the
two camps, consider the following recursive function:

func t i on sum(x){
i f (x <= 0){

re turn x ;
}
sum(x−1);

}
sum (2 0) ;

Here, an explicit-state model checker would store the states

x = 20 ,
x = 19 ,
x = 18 ,
x = 17 ,

.

.

.
x = 0

while the symbolic model checker would store the set of states internally as

0 <= x <= 20 .

Within the camp of explicit-state model checking, an influential paper was re-
leased in 1996 introducing Partial Order Reduction as a way to combat the
state-explosion problem [7]. However, as we focus on symbolic model checking,
we are more interested in the events of 1986 [8] (BDDs), 1999[2] (BMC), and
2000[9] (CEGAR).

In addition to the two branches of model checking (explicit-state and sym-
bolic), there is an independent verification method known as State Analysis
built on the formal basis of Abstract Interpretation [10]. The key selling point
of state analysis is its efficiency. [11] did a comparison between a state anal-
ysis tool known as ”Parfait” with a bounded model checking tool ”CBMC”.
Tests were performed on the BegBunch benchmarking framework provided by
Sun Labs at Oracle. The results can be seen in figure 1. Notice the trade-off
between efficiency and accuracy.

2

(a) Iowa Verification Results (b) Samate Verification Results

(c) Cigtail Verification Results (d) Overall Verification Results

Figure 1: Various Verification Results

Before we continue, it can be beneficial to take a step back to remember
why we go through all this trouble. What is our goal? Our goal is to provide
a rigorous guarantee of quality, in a highly automated and scalable way, to
cope with the enormous complexity of software systems. The next section will
introduce Bounded Model Checking as a way to reach our goal.

3 Bounded Model Checking

Why should one pick BMC as the formal technique for verification as opposed
to more traditional BDD-based methods? This question can be a bit mislead-
ing; BMC does not provide the same certificate or guarantee of correctness as
that of its unbounded counterpart. BMC sacrifices verification on behalf of
finding (minimal) counterexamples. Therefore, if a strong guarantee of correct-
ness is sought after, consider reading up on the traditional approaches instead.
I suggest that the better question to ask is: when should one use BMC as a
complement to BDD? One of the main drawbacks of BDDs is that it might not
terminate; sometimes the state-space is too large, and might even be infinite. In
such a scenario, the practical solution is to run BDD until you run out of time
and/or space before you claim that you have verified the system. BMC, on the
other hand, is more efficient at finding counterexamples due to its breadth-first
approach and the abolished need for manual user intervention. In addition, the

3

counterexamples are of minimal length, which makes them easier to understand
(and fix). Therefore, if the system is too large for BDD-verification, or there is
little faith in the system due to the (assumed large) presence of bugs, BMC will
be a useful, efficient tool.

The idea behind bounded model checking is as follows:

Search for counterexamples in executions whose length is bounded by some
integer k. If counterexample is found, return it. If not, increase k until problem
becomes intractable, or you have reached the Completeness Threshold.

The BMC problem can be reduced to SAT (which have become really ef-
ficient), and a k between 60 and 80 outperformed BDD-based techniques in
2003.

Before we dive into the semantics of BMC, we need to refresh some concepts.
To begin with, we start by defining the logic used for specifications - Linear
Temporal Logic, LTL.

3.1 Definition of Linear Temporal Logic

Assume we have an infinite, countable set of Boolean propositions P . We define
a model σ for a formula φ as an infinite sequence of truth of truth assignments
to propositions. Given a model σ = σ0, σ1, ..., we denote the set of propositions
at position i as σi. LTL formulas are constructed using a combination of the
regular Boolean connectives and temporal operators:

φ ::= p | ¬φ | φ1 ∧ φ2 |Xφ |Gφ | Fφ .

Here, X is the temporal operator next, G is Global and F is Finally. These are
equivalent to the notations seen previously; they correspond to ,, � and ♦
respectively. Further, for a formula φ and a position i ≥ 0, φ hold at position i
of σ, defined inductively as:

• For p ∈ P we have σ, i |= p iff p ∈ σi.

• σ, i |= ¬φ iff σ, i 6|= φ.

• σ, i |= φ1 ∧ φ2 iff σ, i |= φ1 and σ, i |= φ2.

• σ, i |= Xφ iff σ, i+ 1 |= φ.

• σ, i |= Gφ iff for all i ≥ 0, σ, i |= φ.

• σ, i |= Gφ iff for some i ≥ 0, σ, i |= φ.

Note that the other Boolean operators (e.g., or, implication) and temporal op-
erators (e.g., until, release) can be composed by a combination of the other
introduced operators.

We wrap up this subsection by reminding the reader of the two main types
of system properties one is interested in when regarding verification:

4

• Safety properties: what should always (not) happen, Gφ.

• Liveness properties: what should eventually happen, Fφ.

3.2 Definition of Kripke Structures

Kripke structures is one of the most popular formalism for representing tran-
sition systems in the context of model checking, and will be used extensively
throughout the rest of this presentation.

Definition 3.1 (Kripke structures) A Kripke Structure is a quadruple of
the form M = (S, I, T, L) where S is the set of states, I ⊆ S is the set of
initial states, T ⊆ S×S is the transition relation, and L : S → P is the labeling
function, where P is the powerset of the atomic propositions. Labeling is a way
to attach observations to the system: for a state s ∈ S the set L(s) is made of
the atomic propositions that hold in s.

3.3 Semantics for Bounded Model Checking

Before we can introduce the the semantics of BMC fully, we still have three
more concepts we have to introduce: paths, witnesses and k-loops. Let us do
them one by one:

Definition 3.2 (Paths) Each path π in M is a sequence π = (s0, s1, ...) of
states, given in an order that respect the transition relation in M (i.e., T). If s0
is an initial state, the path is initialized. The length of π, i.e. |π|, can be finite
of infinite. For simplicity, we assume the set of initial states is non-empty, and
that the transition relation T is total.

Definition 3.3 (Witness) LTL formulas are defined over all paths. Finding
counterexamples corresponds to fining a contradicting trace. If we find such a
trace, we call it a witness for the property. E.g., Gp corresponds to the question
whether there exists a witness to F¬p.

Definition 3.4 (k-loops) For l ≤ k we call a path π a (k, l)-loop if T (π(k), π(l))
and π = u · vω with u = (π(0), ..., π(l− 1)) and v = (π(l), ..., π(k)). We call π a
k-loop if there exist a k ≥ l ≥ 0 for which π is a (k, l)-loop.

Intuitively, we call a path π a (k, l)-loop if there is a transition from state k to
state l and π is composed of the states 0 to l−1 followed by an infinite repetition
of the states l to k. For illustrations, refer to the PowerPoint-presentation.

The semantics for a path with a loop are pretty boring, and needs little
further explanation as long as you understand the semantics of LTL. They are
explained in definition 3.5 and figure 2 below.

Definition 3.5 (Bounded Semantics for a Loop) Let k ≥ 0 and π be a k-
loop. Then an LTL formula f is valid along the path π with bound k iff π |= f .

5

Figure 2: Semantics for a path π containing a (k, l)-loop

However, if the path is not a k-loop, we have to be more pessimistic. Re-
member how we define validity: the formula f := Fp is valid along π in the
unbounded semantics if we can find an index i ≥ 0 such that p is valid along
the suffix πi of π. However, in the bounded semantics, the state π(k + 1) does
not exist. Therefore, we cannot define the bounded semantics recursively over
suffixes of π. We therefore introduce a new notation π |=i

k f , where i is the
current position in the prefix of π, which means that the suffix πi of π satisfies
f . This leads us to definition 3.6 and figure 3.

Definition 3.6 (Bounded Semantics without a Loop) Let k ≥ 0 and π
be a path that is not a k-loop. Then an LTL formula f is valid along π with
bound k iff π |=0

k f .

Before we delve into the next section, we provide evidence of how the exis-
tential model checking problem can be reduced to a bounded existential model
checking problem. These lemmas (and the corresponding theorem) are proven
elsewhere.

Lemma 3.1 If a LTL formula is valid along a path with a bound, it is valid
along a path without a bound.

Lemma 3.2 If a Kripke structure validates an unbounded existential LTL for-
mula, then there exist a k ≥ 0 such that the Kripke structure validates the
bounded existential LTL formula.

Theorem 3.1 A Kripke structure validates an unbound existential LTL for-
mula iff there exist a k ≥ 0 such that the Kripke structure validates the bounded
existential LTL formula.

6

Figure 3: Semantics for a path π which does not contain a (k, l)-loop

4 Transforming BMC to SAT

Although we are done with defining BMC, one major part has been left out
until now. Let us now talk about how to reduce the bounded model checking
problem into a Boolean satisfiability problem in order to take advantage of the
state-of-the-art efficiency provided by modern SAT-solvers. Our new sub-goal
as follows: Given a Kripke structure M , an LTL formula f and a bound k,
construct a propositional formula [M,f]k that is satisfiable iff π is a witness for
f . In short, the goal is accomplished by equation 1.

[M,f]k := [M]k ∧

((
¬Lk ∧ [f]0k

)
∨

k∨
l=0

(
lKk ∧l [f]0k

))
(1)

The first part (left of conjunction) constraints the path to be valid with
regards to the transition relation in M starting from an initial state. The second
part of the equation (left of disjunction) is the translation for a path without a
loop, while the third and final part (right of disjunction) is the translation for
a path with a loop. These parts will now be discussed in isolation.

Definition 4.1 (Unfolding of the Transition Relation) For a Kripke struc-
ture M , and a given k ≥ 0:

[M]k := I(s0) ∧
k−1∧
i=0

T (si, si+1)

This definition is rather simple to understand intuitively; the reader is re-
ferred to the PowerPoint for an illustration.

7

Before we can define the translation with a loop, with need two to define some
concepts in advance. Notice how we choose to define the third part of equation
1 before the second part. This is a consequence of the relation between the
parts; the second part is a simplified version of the third.

Definition 4.2 (Loop condition) The loop condition Lk is true iff there exist
a back loop from state sk to a previous state or to itself:

Lk :=

k∨
l=0

lLk

Definition 4.3 (Successor in a loop) Let k, l, i be non-negative integers such
that l, i ≤ k. The successor succ(i) of i in a (k, l)-loop is defined as

succ(i) := i+ 1 | i < k

succ(i) := l | i = k

Now we have all the parts we need in order to introduce the translations of
LTL formulas into propositional formulas.

Definition 4.4 (Translation of an LTL formula with a loop) Let f be an
LTL formula, and k, l, i ≥ 0, qith l, i ≤ k. The semantics are then seen in figure
5.

Figure 4: Translation of and LTL formula with a loop

Definition 4.5 (Translation of an LTL formula without a loop) Same prin-
ciples as definition 4.4 except succ(i) is simplified to i+1, and index l is no longer
needed. The semantics are seen in figure ??.

8

Figure 5: Translation of and LTL formula without a loop

5 Completeness

Just in case you come across someone claiming that ”Bounded model check-
ing is useless because it gives up completeness! You cannot use it to verify
correctness!” this section provides ways of reclaiming completeness. Note that
this part is more theoretical than practical, and if completeness is what you are
after, BDD might be more down your alley.

5.1 The Completeness Threshold

For every finite state system M , a property p, and a given translation scheme,
there exist a number CT , such that the absence of errors up to cycle CT proves
that M |= p. For formulas of the form Gp, this is simply the number of steps
required to reach all states. This is called the reachability diameter, and can be
seen in figure 6. This is really just a formal way of stating that rd(M) is the
longest, ”shortest path” from an initial state to any reachable state.

Figure 6: Equation for calculating the reachability diameter

The equation in figure 6 is hard to solve for realistic models. However, it is
possible to compute an over-approximation with a SAT instance (figure 7 which
calculates the longest loop-free path in M starting from an initial state.

9

Figure 7: Equation for calculating an over-approximation of the reachability
diameter

5.2 Translation of Liveness Properties

So far we have focused on existentially quantified temporal logic formulas: to
verify an existential LTL formula against a Kripke structure, one needs to find
a witness for said property. In the case of liveness, the dual is also true: if a
proof of liveness exist, it can be established by examining all finite sequences of
length k starting from initial states. Formally, this is defined as follows:

Definition 5.1 (Translation of Liveness Properties)

[M,∀Fp]k := I(s0) ∧
k−1∧
i=0

T (si, si+1)→
k∨

i=0

p(si)

5.3 Induction

The last way of regaining completeness consists of proving safety properties by
finding (manually) a strengthening inductive invariant - an invariant that is
inductive (i.e., its current correctness relies on its correctness in previous steps),
and implies the safety property in question. This is done over three steps (see
figure 8, 9 and 10).

Figure 8: 1. Check that the base-case is unsatisfiable.

Figure 9: 2. Check induction step is unsatisfiable.

10

Figure 10: 3. Establish that the strengthening inductive invariant implies the
property for an arbitrary i.

6 Summary

During this presentation we have stated the need for symbolic model check-
ing, defined the semantics for Bounded Model Checking, translated the BMC-
problem to a SAT-problem, and finally we discussed how to regain completeness.

For any further questions or comments, feel free to contact me at hen-
riktk@ifi.uio.no.

11

References

[1] Handbook of Model Checking. eng. Cham, 2018.

[2] A Biere et al. “Symbolic Model Checking without BDDs”. English. In:
Tools And Algorithms For The Construction And Analysis Of Systems
1579 (1999), pp. 193–207. issn: 0302-9743.

[3] Armin Biere et al. “Bounded Model Checking”. In: Advances in Computers
58 (2003). url: http://fmv.jku.at/papers/BiereCimattiClarkeStrichmanZhu-
Advances-58-2003-preprint.pdf.

[4] J.P. Queille and J. Sifakis. “Specification and verification of concurrent
systems in CESAR”. In: vol. 137. Springer Verlag, 1982, pp. 337–351.
isbn: 9783540114949.

[5] E.M. Clarke and E.A. Emerson. “Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic”. In: vol. 131. Springer
Verlag, 1982, pp. 52–71. isbn: 9783540112129.

[6] Alan M. (Alan Mathison) Turing. “On computable numbers, with an ap-
plication to the Entscheidungsproblem”. eng. In: New York, 1965, pp. 115–
153.

[7] Partial-Order Methods for the Verification of Concurrent Systems : An
Approach to the State-Explosion Problem. eng. Berlin, Heidelberg, 1996.

[8] Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”.
eng. In: IEEE Transactions on Computers C-35.8 (1986), pp. 677–691.
issn: 0018-9340.

[9] E. Clarke et al. “Counterexample-guided abstraction refinement”. In: vol. 1855.
Springer Verlag, 2000, pp. 154–169. isbn: 3540677704.

[10] P. Cousot and R. Cousot. “Abstract interpretation: ”A” unified lattice
model for static analysis of programs by construction or approximation of
fixpoints”. In: vol. 130756. Association for Computing Machinery, 1977,
pp. 238–252.

[11] Kostyantyn Vorobyov and Padmanabhan Krishnan. “Comparing Model
Checking and Static Program Analysis: A Case Study in Error Detection
Approaches”. In: Jan. 2010.

12

