/ ! W
f] | s f e 2
/ y, 4 {4 f p \
4 / 7 ¥ 0 f i
{ £ g { / &4
! 3 / j f f g /
A 9 |
- / § 4
o /A | = | / ¢ A . /':', &

UiO ¢ Department of Informatics
University of Oslo

Counterexample Guided Abstraction
Refinement (CEGAR)

Peyman Rasouli
Gianluca Turin

UiO ¢ Department of Informatics
University of Oslo

Counterexample-guided Abstraction Refinement *

Edmund Clarke!, Orna Grumberg?, Somesh Jha', Yuan Lu?, and Helmut Veith!3

1 2

Carnegie Mellon University, Pittsburgh, USA Technion, Haifa, Israel
® Vienna University of Technology, Austria

Abstract. We present an automatic iterative abstraction-refinement methodol-
ogy in which the initial abstract model is generated by an automatic analysis of
the control structures in the program to be verified. Abstract models may admit
erroneous (or “spurious”) counterexamples. We devise new symbolic techniques
which analyze such counterexamples and refine the abstract model correspond-
ingly. The refinement algorithm keeps the size of the abstract state space small
due to the use of abstraction functions which distinguish many degrees of abstrac-
tion for each program variable. We describe an implementation of our method-
ology in NuSMYV. Practical experiments including a large Fujitsu IP core design
with about 500 latches and 10000 lines of SMV code confirm the effectiveness of
our approach.

1 Introduction

The state explosion problem remains a major hurdle in applying model checking to
large industrial designs. Abstraction is certainly the most important technique for han-
dling this problem. In fact, it is essential for verifying designs of industrial complex-
ity. Currently, abstraction is typically a manual process, often requiring considerable
creativity. In order for model checking to be used more widely in industry, automatic

UiO ¢ Department of Informatics
University of Oslo

Abstraction

% Definition of abstraction on Wikipedia:
> Abstractions may be formed by reducing the information content of
a concept or an observable phenomenon, typically to retain only
information which is relevant for a particular purpose.

< Example:

Abstraction>

Concrete Object Abstract Object

UiO ¢ Department of Informatics
University of Oslo

Abstraction in Model Checking

% State Explosion Problem: the size of the system state space grows
exponentially with the number of state variables in the system.

% Translating system/program into a Kripke structure M = (S,I,R, L)
> Challenge: constructing and saving a naive Kripke structure on a computer is
impossible due to its size (state explosion problem)

% Obtaining an abstraction of the created structure M = (S, 7, R, L)

% Abstraction is aimed at reducing the state space for the system by
omitting irrelevant details to the property being verified.

UiO ¢ Department of Informatics
University of Oslo

How abstraction helps?

It assumes reduction in the information content

¢

results in a reduction of the size of the Kripke structure M

¢

irrelevant information to the valuation of temporal
properties is omitted

¢

In the end, abstraction not need to be a Kripke structure,
but it should allow evaluating temporal properties on that

UiO ¢ Department of Informatics
University of Oslo

Semantic Interpretation

% Notion of abstraction:
> defined via a function h mapping a Kripke structure to its abstraction.

% However, constructing a concrete Kripke structure and then applying h to
it is often impossible
> due to potentially too big or even infinite Kripke structure

0.

% Therefore, abstractions are built by applying “non-standard” semantic
interpretations to system descriptions

UiO ¢ Department of Informatics
University of Oslo

Refinement Concept

A specification True in the abstract model

g

It will also be True in the concrete design

A specification False in the abstract model, generate counterexample

The counterexample may be the result of some behavior in the abstract
model which is not present in the concrete design

g

Refine the abstraction so that the behavior caused the
erroneous counterexample is eliminated

UiO ¢ Department of Informatics
University of Oslo

Counterexample Guided Abstraction Refinement
(CEGAR) Clarke et al., 2000

% Automatic refinement technique for ACTL* properties.
s Based on analysis of the structure of formulas appearing in the program.
% Uses information obtained from erroneous counterexamples.

% Keeps the size of the abstract state space small to avoid state explosion
problem.

UiO ¢ Department of Informatics
University of Oslo

CEGAR in Details

The initial abstract model is constructed using existential
abstraction techniques

¢

a traditional model checker determines whether ACTL*
properties hold in the abstract model

N

YES NO
then the concrete model model checker generates
also satisfies the property. a counterexample. It

might not be valid
(spurious)

UiO ¢ Department of Informatics
University of Oslo

CEGAR in Details (cont.)

/7

% CEGAR provides a symbolic algorithm to determine whether
an abstract counterexample is spurious.

> If counterexample IS not spurious:
m itis reported to the user and model-checking stops.

> If counterexample [ERolV[gle]VER

m the abstraction function must be refined to eliminate it.

CEGAR guarantees to either find a valid counterexample
or
prove that the systems satisfies the desired property.

UiO ¢ Department of Informatics
University of Oslo

Example

7/

% Assume that for a traffic light controller we want to prove:
) = AG AF (state = red)

K/

% using the abstraction function h:

h(red) = red and h(green) = h(yellow) = go.

% Wesee M = v while M - 1.
> infinite trace (red, go, go, ...) which invalidates the specification is a
spurious counterexample

UiO ¢ Department of Informatics
University of Oslo

CEGAR Methodology

Given program Pand and ACTL* formula ¥ our goal it to check whether the
Kripke structure M corresponding to P satisfies .

1. Generate the initial abstraction: generating an initial abstraction /;, by examining
the transition blocks corresponding to the variables of the program.

2. Model-check the abstract structure: checking M F V0,
a. if affirmative we conclude)/ |: ©.
b. if reveals a counterexample T we ascertain whether T is an actual counterexamples
ioif T is an actual counterexample, then report it to the user, otherwise it is a spurious
counterexample, and proceed to STEP 3.
3. Refine the abstraction: transforming the abstraction function to a more specific one

a. after the refinement the abstract structure M corresponding to the refined abstraction
function does not admit the spurious counterexample 7" .
b. after refining the abstraction function, return to STEP 2.

1"

UiO ¢ Department of Informatics
University of Oslo

Advantages of CEGAR

1. The technique is complete for ACTL* specifications, i.e., it guarantees to either
find a valid counterexample or prove that the system satisfies the desired
property.

2. The initial abstraction and the refinement steps are efficient and entirely
automatic. All algorithms are symbolic.

3. In comparison to other methods, CEGAR allows a finer refinement of abstract
states.

4. The refinement procedure is guaranteed to eliminate spurious counterexamples
while keeping the state space of the abstract model small.

UiO ¢ Department of Informatics
University of Oslo

Transition Blocks

Each variable v; in the program [P has an associated transition block
which defines the initial value and the transition relation for the variable.

init(v;) := I;; init(x) :=0; init(y) :=1;
next(v;) := case next(xr) := case next(y) := case
C: reset = TRUE : 0O; reset = TRUE : 0;
02 Af, <<y iz+1L (B=9)A (=2} i1
: ai=ugj 20 (&=7)20;
By Af, else : ; else : y;
esac; esac; esac;

o I; € D,, is the initial expression for V;

XS Cj is a condition (a predicate)

% AJ IS an expression

<o Semantlc of the transition block is similar to sematic of case statement in SMV

UiO ¢ Department of Informatics
University of Oslo

Identification of spurious path counterexample

h—— g ——ig Algorithm SplitPATH

\

A S while (S # 0 and 5 < n) {
T Emm e ji=g+1
Sprev =8
S:=Img(S,R)nh™(5;) }
if S # (then output counterexample
else output j, Sprev

Fig. 3. An abstract counterexample Fig. 4. SplitPATH checks spurious path.

UiO ¢ Department of Informatics
University of Oslo

Identification of spurious loop counterexample

Fig. 5. A loop counterexample, and its unwinding.

UiO ¢ Department of Informatics
University of Oslo

Algorithm PolyRefine
_

S

pNsTL) ATHE) RN

Fig. 6. Three sets .S; 0, .5;,1, and S »

Algorithm PolyRefine
forj:=1tom{

Y L —

:J - — :J
for every a,b € E; {
iprOj(Sa‘,o,j,a) ?é p?"Oj(S?j,o,j, b)

then =} := = \{(a,b)} H

Fig. 7. The algorithm PolyRefine

UiO ¢ Department of Informatics
University of Oslo

Thank you

