
Counterexample Guided Abstraction
Refinement (CEGAR)

Peyman Rasouli
Gianluca Turin

1

2

Abstraction

❖ Definition of abstraction on Wikipedia:
➢ Abstractions may be formed by reducing the information content of

a concept or an observable phenomenon, typically to retain only
information which is relevant for a particular purpose.

❖ Example:

Abstraction

Concrete Object Abstract Object

3

Abstraction in Model Checking

❖ State Explosion Problem: the size of the system state space grows
exponentially with the number of state variables in the system.

❖ Translating system/program into a Kripke structure
➢ Challenge: constructing and saving a naive Kripke structure on a computer is

impossible due to its size (state explosion problem)

❖ Obtaining an abstraction of the created structure

❖ Abstraction is aimed at reducing the state space for the system by
omitting irrelevant details to the property being verified.

How abstraction helps?

It assumes reduction in the information content

results in a reduction of the size of the Kripke structure ----

irrelevant information to the valuation of temporal
properties is omitted

In the end, abstraction not need to be a Kripke structure,
but it should allow evaluating temporal properties on that

4

Semantic Interpretation

❖ Notion of abstraction:
➢ defined via a function h mapping a Kripke structure to its abstraction.

❖ However, constructing a concrete Kripke structure and then applying h to
it is often impossible
➢ due to potentially too big or even infinite Kripke structure

❖ Therefore, abstractions are built by applying “non-standard” semantic
interpretations to system descriptions

5

Refinement Concept

6

A specification True in the abstract model

It will also be True in the concrete design

A specification False in the abstract model, generate counterexample

The counterexample may be the result of some behavior in the abstract
model which is not present in the concrete design

Refine the abstraction so that the behavior caused the
erroneous counterexample is eliminated

Counterexample Guided Abstraction Refinement
(CEGAR) Clarke et al., 2000

❖ Automatic refinement technique for ACTL* properties.

❖ Based on analysis of the structure of formulas appearing in the program.

❖ Uses information obtained from erroneous counterexamples.

❖ Keeps the size of the abstract state space small to avoid state explosion
problem.

7

CEGAR in Details

The initial abstract model is constructed using existential
abstraction techniques

a traditional model checker determines whether ACTL*
properties hold in the abstract model

8

YES
then the concrete model

also satisfies the property.

NO
model checker generates

a counterexample. It
might not be valid

(spurious)

CEGAR in Details (cont.)

❖ CEGAR provides a symbolic algorithm to determine whether
an abstract counterexample is spurious.

➢ If counterexample is not spurious:
■ it is reported to the user and model-checking stops.

➢ If counterexample is spurious:
■ the abstraction function must be refined to eliminate it.

9

CEGAR guarantees to either find a valid counterexample
or

prove that the systems satisfies the desired property.

Example

❖ Assume that for a traffic light controller we want to prove:

❖ using the abstraction function h:

❖ We see while .
➢ infinite trace which invalidates the specification is a

spurious counterexample
10

CEGAR Methodology
Given program and and ACTL* formula , our goal it to check whether the
Kripke structure corresponding to satisfies .
1. Generate the initial abstraction: generating an initial abstraction by examining

the transition blocks corresponding to the variables of the program.

2. Model-check the abstract structure: checking ,
a. if affirmative we conclude

b. if reveals a counterexample , we ascertain whether is an actual counterexamples

i. if is an actual counterexample, then report it to the user, otherwise it is a spurious
counterexample, and proceed to STEP 3.

3. Refine the abstraction: transforming the abstraction function to a more specific one

a. after the refinement the abstract structure corresponding to the refined abstraction
function does not admit the spurious counterexample .

b. after refining the abstraction function, return to STEP 2.
11

Advantages of CEGAR

1. The technique is complete for ACTL* specifications, i.e., it guarantees to either
find a valid counterexample or prove that the system satisfies the desired
property.

2. The initial abstraction and the refinement steps are efficient and entirely
automatic. All algorithms are symbolic.

3. In comparison to other methods, CEGAR allows a finer refinement of abstract
states.

4. The refinement procedure is guaranteed to eliminate spurious counterexamples
while keeping the state space of the abstract model small.

12

Transition Blocks

❖ Each variable in the program has an associated transition block
which defines the initial value and the transition relation for the variable.

❖ is the initial expression for
❖ is a condition (a predicate)
❖ is an expression
❖ Semantic of the transition block is similar to sematic of case statement in SMV 13

Identification of spurious path counterexample

14

Identification of spurious loop counterexample

15

Algorithm PolyRefine

16

Thank you

17

