

Counterexample Guided Abstraction Refinement (CEGAR)

Peyman Rasouli Gianluca Turin

UiO: Department of Informatics

University of Oslo

Abstraction

- ❖ Definition of abstraction on Wikipedia:
	- ➢ **Abstractions** may be formed by reducing the information content of a concept or an observable phenomenon, typically to retain only information which is relevant for a particular purpose.
- ❖ Example:

Abstraction in Model Checking

- ❖ **State Explosion Problem:** the size of the system state space grows *exponentially* with the number of state variables in the system.
- \bullet Translating system/program into a Kripke structure $M = (S, I, R, L)$
	- ➢ **Challenge:** constructing and saving a **naive** Kripke structure on a computer is impossible due to its **size** (state explosion problem)
- ❖ Obtaining an abstraction of the created structure $\widehat{M} = (\widehat{S}, \widehat{I}, \widehat{R}, \widehat{L})$
- ❖ **Abstraction** is aimed at **reducing the state space** for the system by **omitting irrelevant details** to the property being verified.

How abstraction helps?

It assumes reduction in the information content results in a reduction of the size of the Kripke structure M irrelevant information to the valuation of temporal properties is omitted In the end, abstraction not need to be a Kripke structure, but it should allow evaluating temporal properties on that

Semantic Interpretation

- ❖ Notion of abstraction:
	- ➢ defined via a function *h* mapping a Kripke structure to its abstraction.
- ❖ **However,** constructing a concrete Kripke structure and then applying *h* to it is often impossible
	- ➢ *due to potentially too big or even infinite Kripke structure*
- ❖ **Therefore,** abstractions are built by applying **"non-standard" semantic interpretations** to system descriptions

Refinement Concept

A specification **False** in the abstract model, generate **counterexample** The **counterexample** may be the result of some behavior in the abstract model which is not present in the concrete design **Refine** the abstraction so that the behavior caused the **erroneous counterexample** is eliminated

Counterexample Guided Abstraction Refinement (CEGAR) Clarke et al., 2000

- ❖ Automatic refinement technique for **ACTL* properties.**
- ❖ Based on analysis of the structure of formulas appearing in the program.
- ❖ Uses information obtained from erroneous counterexamples.
- ❖ Keeps the size of the abstract state space small to avoid state explosion problem.

CEGAR in Details

CEGAR in Details (cont.)

- ❖ CEGAR provides a **symbolic algorithm** to determine whether an abstract counterexample is **spurious.**
	- ➢ If counterexample is not spurious:
		- it is reported to the user and model-checking stops.
	- \triangleright If counterexample is spurious:
		- the abstraction function must be refined to eliminate it.

CEGAR guarantees to either **find** a valid counterexample

or

prove that the systems satisfies the desired property.

Example

- ❖ Assume that for a traffic light controller we want to **prove**: $\psi = AGAF(state = red)$
- ❖ using the **abstraction function** *h*:

$$
h(\text{red}) = \text{red} \text{ and } h(\text{green}) = h(\text{yellow}) = \text{go}.
$$

- ❖ We see $M \models \psi$ while $\widehat{M} \not\models \psi$.
	- \triangleright infinite trace $\langle red, go, go, \dots \rangle$ which invalidates the specification is a **spurious counterexample**

CEGAR Methodology

Given program P and and ACTL* formula φ our goal it to check whether the Kripke structure M corresponding to P satisfies φ .

- **1. Generate the initial abstraction:** generating an initial abstraction h by examining the transition blocks corresponding to the variables of the program.
- **2. Model-check the abstract structure:** checking $\widehat{M} \models \varphi$,
	- a. if affirmative we conclude $M \models \varphi$.
	- b. if reveals a counterexample \widehat{T} , we ascertain whether \widehat{T} is an actual counterexamples i. if \widehat{T} is an actual counterexample, then report it to the user, otherwise it is a spurious counterexample, and proceed to **STEP 3**.
- **3. Refine the abstraction:** transforming the abstraction function to a more specific one
	- a. after the refinement the abstract structure \widehat{M} corresponding to the refined abstraction function does not admit the spurious counterexample \widehat{T} .
	- b. after refining the abstraction function, return to **STEP 2**.

Advantages of CEGAR

- 1. The technique is complete for ACTL* specifications, i.e., it guarantees to either find a valid counterexample or prove that the system satisfies the desired property.
- 2. The initial abstraction and the refinement steps are efficient and entirely automatic. All algorithms are symbolic.
- 3. In comparison to other methods, CEGAR allows a finer refinement of abstract states.
- 4. The refinement procedure is guaranteed to eliminate spurious counterexamples while keeping the state space of the abstract model small.

Transition Blocks

❖ Each variable v_i in the program P has an associated **transition block** which defines the initial value and the transition relation for the variable.

- \clubsuit $I_i \subseteq D_{v_i}$ is the initial expression for v_i
- ❖ C_i^j is a condition (a predicate)
- \bullet A_i^j is an expression
- ❖ Semantic of the transition block is similar to sematic of **case** statement in SMV ¹³

Identification of spurious path counterexample

Fig. 3. An abstract counterexample

Algorithm SplitPATH $S := h^{-1}(\hat{s_1}) \cap I$ $i := 1$ while $(S \neq \emptyset \text{ and } j < n)$ { $j := j + 1$ $S_{\text{prev}} := S$ $S := Im g(S, R) \cap h^{-1}(\hat{s}_i)$ if $S \neq \emptyset$ then output counterexample else output j, S_{prev}

Fig. 4. SplitPATH checks spurious path.

Identification of spurious loop counterexample

Fig. 5. A loop counterexample, and its unwinding.

Algorithm PolyRefine

Fig. 6. Three sets $S_{i,0}$, $S_{i,1}$, and $S_{i,x}$

Algorithm PolyRefine for $j := 1$ to m { $\equiv'_i := \equiv_i$ for every $a, b \in E_j$ { if $proj(S_{i,0}, j, a) \neq proj(S_{i,0}, j, b)$
then $\equiv'_i := \equiv'_i \setminus \{(a, b)\}$ }

Fig. 7. The algorithm PolyRefine

UiO: Department of Informatics

University of Oslo

Thank you