
Computation Tree Logic
IN5110 Model checking

Brage Joachim Andersen & Vegar Skaret

November 29, 2019

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 1 / 25

Main early contributions

Linear Temporal Logic (LTL) proposed in 1977 (Pnueli) [2]

Computation Tree Logic (CTL) proposed in 1980 (Clarke and
Emerson)

CTL also introduced by Sifakis in 1981 independently of Clarke and
Emerson

CTL* introduced in 1986 (Emerson and Halpern)

Pnueli Clarke Emerson Sifakis Halpern

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 3 / 25

”War” of the branching- and linear-time logics

Papers in the 80’s and 90’s comparing LTL and CTL

Concensus: while specifying is easier in LTL, verification is easier for
CTL

Moshe Vardi, 2001: Branching vs. Linear Time: Final Showdown

Vardi concludes: LTL is usually preferred over CTL.

CTL ”is unintuitive and hard to use, it does not lend itself to
compositional reasoning, and it is fundamentally incompatible with
semi-formal verification.”

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 4 / 25

The Computation Tree

a ∅ a

Figure: Transition system

a

a ∅

a ∅ a

Figure: Start of the transition
system’s computation tree

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 6 / 25

CTL Syntax 1

Basic Syntax

Φ ::= > | a | ¬Φ | Φ1 ∧ Φ2 | ∃ϕ | ∀ϕ
ϕ ::= ©Φ | Φ1UΦ2

Where a is an atomic proposition. Φ is called a state formula and ϕ is
called a path formula. Note that a path formula must be preceded by a
quantifier to be a legal CTL formula.

Abbreviations

∃♦Φ ≡ ∃(>UΦ)
∀♦Φ ≡ ∀(>UΦ)
∃�Φ ≡ ¬∀♦¬Φ
∀�Φ ≡ ¬∃♦¬Φ

⊥ ≡ ¬>
Φ1 ∨ Φ2 ≡ ¬Φ1 ∧ ¬Φ2

Φ1 → Φ2 ≡ ¬Φ1 ∨ Φ2

Weak until and release can be defined similarly.

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 7 / 25

CTL Syntax 2

Some legal formulas

∀�black

∀(grayUblack)

∃© ∀�black

Some illegal formulas

�black

grayUblack

∃©�black

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 8 / 25

CTL Semantics 1: Intuition

For path formulas: ©, �, ♦, and U have the same semantics as in
LTL:

I ©: ”next”
I U: ”until”
I �: ”always”
I ♦: ”eventually”

State formulas can quantify over paths beginning in the current state.
∀ϕ means that ϕ is true for all paths from the current state. ∃ϕ
means that it is true for at least one path.

CTL formulas are interpreted over the states s and paths π of a
transition system TS

Some CTL formulas verbalized:
I ∃♦Φ: ”Φ holds potentially”
I ∀♦Φ: ”Φ is inevitable”
I ∃�Φ: ”potentially always Φ”
I ∀�Φ: ”invariantly Φ”

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 9 / 25

CTL Semantics 2: Formal

State semantics

A CTL formula Φ is true relative to a state s, written s |= Φ, in the
following cases:
s |= a iff a ∈ L(s)
s |= ¬Φ iff not s |= Φ
s |= Φ ∧Ψ iff (s |= Φ) and s |= Ψ
s |= ∃ϕ iff π |= ϕ for some π ∈ Paths(s)
s |= ∀ϕ iff π |= ϕ for all π ∈ Paths(s)

Where:

L(s) is a labeling function that returns a set with all atomic
propositions in s that are true

Paths(s) denotes the set of all maximal paths starting in the state s.
A maximal path is a path that cannot be prolonged.

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 10 / 25

CTL Semantics 3: Formal

Path semantics

A CTL formula Φ is true relative to a path π, written π |= Φ, in the
following cases:

π |=©Φ iff π[1] |= Φ
π |= ΦUΨ iff ∃j ≥ 0. (π[j] |= Ψ ∧ (∀ ≤ k < j .π[k] |= Φ))

Where π[1] means the next state, as in the second state on the path.

In English (kind of):

π satisfies ©Φ iff the second state on the path satisfies Φ.

π satisfies ΦUΨ iff Φ is true for all the states before Ψ is true on the
path.

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 11 / 25

CTL Semantics Example 1

∀�black

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
∃�black

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 12 / 25

CTL Semantics Example 2

∀♦black

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
∀(grayUblack)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 13 / 25

CTL Semantics Example 3

∃© ∀�black

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
∀�∃© black

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 14 / 25

The Satisfaction Set Sat(Φ)

The satisfaction set Sat(Φ) is the set of states in a transition system TS
that satisfies Φ.

A transition system satisfies Φ, written TS |= Φ, iff all the initial states of
the TS satisfies Φ: I ⊆ Sat(Φ), where I is the set of initial states in TS.

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 16 / 25

Model-checking CTL

The task is to check whether a transition system TS satisifies a CTL
formula Φ. This is the case when all the initial states I of the TS satisfy Φ.

Basic Algorithm

1 The set Sat(Φ) of all states satisfying Φ is computed recursively
(”from inside and out”)

2 TS |= Φ iff I ⊆ Sat(Φ)

This can achieved by a bottom-up traversal of the CTL formula’s parse
tree.

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 17 / 25

Model-checking Example 1: Is death inevitable?

born

hungry

eat

dead

sleep

content

∀♦dead?

Sat(∀♦dead) = {dead}

The initial state born /∈ Sat(∀♦dead),
so TS 6|= ∀♦dead

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 18 / 25

Model-checking Example 2

Φ = ∃© hungry ∧ ∃(eat U ¬dead)

∧

∃©

hungry

∃U

eat ¬

dead Sat(dead) = {dead}

Sat(¬dead) = {born,
hungry , eat, content, sleep}

Sat(∃(eatU¬dead)) = {born,
hungry , eat, content, sleep}

Sat(∃© hungry) =

{born}

Sat(Φ) = {born}

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 19 / 25

Model-checking Example 2

born

hungry

eat

dead

sleep

content

Sat(Φ) = {born}

Because the only initial state is in
the formula’s satisfaction set, the

transition system satisfies the
formula.

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 20 / 25

LTL Comparison

CTL and LTL are not equally expressive, but neither is more expressive
than the other.

Theorem 6.18 [1]

Let Φ be a CTL formula, and ϕ the LTL formula that is obtained by
eliminating all path quantifiers in Φ. Then:

Φ ≡ ϕ or there exists no LTL formula that is equivalent to Φ.

Lemma 6.19

∀♦∀�a 6≡ ♦�a

a ∅ a

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 22 / 25

CTL*

The CTL* syntax is the same as CTL with the addition of allowing
path formulas to appear without being prefixed by a quantifier.

Any CTL or LTL formula is also a CTL* formula. But there are also
CTL* formulas that aren’t CTL or LTL formulas.

Example CTL* Formulas

∀�a
∀♦�(aUb)
∀∃�♦a

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 23 / 25

Hierarchy of expressiveness

CTL LTL

CTL*

µ

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 24 / 25

References

Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press, 2008. isbn: 978-0-262-02649-9.

Edmund M. Clarke. “The Birth of Model Checking”. In: Lecture
Notes in Computer Science 5000 (2008), pp. 1–26.

Moshe Y. Vardi. “Branching vs. Linear Time: Final Showdown”. In:
Lecture Notes in Computer Science 2031 (2001), pp. 1–22.

Brage J. Andersen, Vegar Skaret CTL and BDD November 29, 2019 25 / 25

	History
	Computation Tree Logic
	Explicit Model-checking of CTL
	LTL and CTL*

