Using BDDs to capture data in Runtime verification (RV) [\[HP18\]](#page-34-0)

Per Ove Ringdal

November 29, 2019

KO K K Ø K K E K K E K V K K K K K K K K K

Contents

[Motivation](#page-2-0)

[Syntax and semantics of QTL](#page-7-0)

[QTL Example](#page-29-0)

[An Efficient Algorithm Using BDDs](#page-30-0)

[Summary](#page-33-0)

[References](#page-34-1)

Verifying file operations

Problem: We have a program that writes data to files, and we want to verify that some property always holds.

KELK KØLK VELKEN EL 1990

```
Assume file API which yields the following events:
open(f): file f was open
write(f, d): data d was written to file fclose(f): file f was closed
```
Property:

A file should be open when writing data to it.

Runtime Verification - Definition

What is Runtime Verification?

- \blacktriangleright Lightweight formal method that complements classical exhaustive verification techniques [\[Bar+18\]](#page-34-2)
- Analyse a single execution trace of a system
- \triangleright At the price of limited execution coverage, we get precise information on the runtime behavior

Runtime Verification - Analysing execution traces

We analyse the system against a property, yielding an alarm when the property is violated. [\[HP18\]](#page-34-0)

The property for the file API can be written as: "A file can only be written to if it has been opened in the past, and not closed since then."

Or in Quantified Temporal Logic (QTL), which will be explained later: $\forall f((\exists d \text{ write}(f, d)) \rightarrow \neg \text{close}(f)$ S open(f))

KELK KØLK VELKEN EL 1990

Execution trace examples

Example

KORK EXTERNE PROVIDE

Data reclamation

When data cannot affect the rest of the execution we want to discard this data.

For instance, when a file is closed, we can forget that it was opened before that

Syntax and semantics of QTL

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Syntax and semantics of QTL - Assignment

Definition

Let X be a finite set of variables. An assignment over a set of variables $W \subseteq X$ maps each variable $x \in W$ to a value from its associated domain $domain(x)$.

Syntax and semantics of QTL - Assignment

Definition

Let X be a finite set of variables. An assignment over a set of variables $W \subseteq X$ maps each variable $x \in W$ to a value from its associated domain *domain(x)*.

KORKARYKERKER POLO

Example

 $[x \mapsto 5, y \mapsto "abc"]$ maps x to 5 and y to 'abc'.

Syntax and semantics of QTL - Predicate names

Definition

Let T be a set of *predicate names*, where each predicate name p is associated with some domain $domain(p)$. A predicate is constructed from a predicate name and a variable or a constant of the same type. Predicates over constants are called ground predicates.

Syntax and semantics of QTL - Predicate names

Definition

Let T be a set of *predicate names*, where each predicate name p is associated with some domain $domain(p)$. A predicate is constructed from a predicate name and a variable or a constant of the same type. Predicates over constants are called ground predicates.

Example

If the predicate name p and the variable x are associated with the domain of strings, we have predicates like $p("gaga")$ and $p(x)$,

Syntax and semantics of QTL - Events

Definition

An event is a finite set of ground predicates.

Syntax and semantics of QTL - Events

Definition

An event is a finite set of ground predicates.

Example

If $T = \{p, q, r\}$, then $\{p("xyzzy")$, $q(3)\}$ is a possible event.

Syntax and semantics of QTL - Events

Definition

An event is a finite set of ground predicates.

Example

If $T = \{p, q, r\}$, then $\{p("xyzzy")$, $q(3)\}$ is a possible event.

Definition

An execution trace $\sigma = s_1, s_2, \ldots$ is a finite sequence of events.

Definition

The formulas of QTL are defined by the following grammar.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 $\varphi \equiv true$ $| p(a)$ $| p(x)$ $|\varphi \wedge \varphi$ $| \neg \varphi |$ $|\varphi S \varphi$ $|\; \ominus \; \varphi$ $\exists x \varphi$

Definition

The formulas of QTL are defined by the following grammar.

 $\varphi \equiv true$ $| p(a)$ holds when a is a constant in *domain(p)* and $p(a)$ occurs in the most recent event $| p(x)$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\begin{array}{c}\n \mid \varphi \land \varphi \\
 \mid \neg \varphi \\
 \mid \varphi \land \varphi \\
 \mid \varphi \land \varphi\n \end{array}
$$

 $|\ominus \varphi|$ ∃x ⊘

Definition

The formulas of QTL are defined by the following grammar.

- $\varphi \equiv true$
	- $| p(a)$ holds when a is a constant in *domain(p)* and $p(a)$ occurs in the most recent event
	- $| p(x) |$ holds with a binding of x to value a if $p(a)$ occurs in the most recent event

 $|\varphi \wedge \varphi$ $| \neg \varphi$ $|\varphi S \varphi$

 $|\; \ominus \; \varphi$ ∃x ⊘

Definition

The formulas of QTL are defined by the following grammar.

 $\varphi \equiv true$ $| p(a)$ holds when a is a constant in *domain(p)* and $p(a)$ occurs in the most recent event $| p(x) |$ holds with a binding of x to value a if $p(a)$ occurs in the most recent event $|\varphi \wedge \varphi$ $| \neg \varphi$ $|\varphi S \varphi|$ for $\varphi S \psi$, ψ held in past or now,

and since then φ has been true

 $|\; \ominus \; \varphi$ ∃x ω

Definition

The formulas of QTL are defined by the following grammar.

 $\varphi \equiv true$ $| p(a)$ holds when a is a constant in *domain(p)* and $p(a)$ occurs in the most recent event $| p(x) |$ holds with a binding of x to value a if $p(a)$ occurs in the most recent event

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 $|\varphi \wedge \varphi$ $| \neg \varphi$ $\vert \varphi S \varphi \vert$ for $\varphi S \psi$, ψ held in past or now, and since then φ has been true $|\theta \varphi| \propto \varphi$ is true in the previous event | ∃x ϕ

The following formulas can be derived from the definition:

$$
false = -true
$$

\n
$$
\varphi \lor \psi = \neg(\neg \varphi \land \neg \psi)
$$

\n
$$
\varphi \to \psi = \neg \varphi \land \psi
$$

\n
$$
P \varphi = true \ S \varphi
$$

\n
$$
H \varphi = \neg P \neg \varphi
$$

\n
$$
\forall x \varphi = \neg \exists x \neg \varphi
$$

The following formulas can be derived from the definition:

false =
$$
\neg
$$
true
\n $\varphi \lor \psi = \neg(\neg \varphi \land \neg \psi)$
\n $\varphi \to \psi = \neg \varphi \land \psi$
\n $P \varphi = \text{true } S \varphi \qquad \varphi \text{ held in the past or now}$
\n $H \varphi = \neg P \neg \varphi$
\n $\forall x \varphi = \neg \exists x \neg \varphi$

KO K K Ø K K E K K E K V K K K K K K K K K

The following formulas can be derived from the definition:

false =
$$
\neg
$$
true
\n $\varphi \lor \psi = \neg(\neg \varphi \land \neg \psi)$
\n $\varphi \to \psi = \neg \varphi \land \psi$
\n $P \varphi = true \quad S \varphi \qquad \varphi$ held in the past or now
\n $H \varphi = \neg P \neg \varphi \qquad \varphi$ always true in the past and now
\n $\forall x \varphi = \neg \exists x \neg \varphi$

KO K K Ø K K E K K E K V K K K K K K K K K

Syntax and semantics of QTL - free, hide

Definition

Let free(φ) be the set of free (i.e., unquantified) variables of a subformula φ .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Syntax and semantics of QTL - free, hide

Definition

Let free(φ) be the set of free (i.e., unquantified) variables of a subformula φ .

Definition

Let A_1 and A_2 be sets of assignments. The intersection $A_1 \cap A_2$ is defined like a database 'join' operator. The union $A_1 \cup A_2$ is defined as the operator dual of intersection.

Syntax and semantics of QTL - free, hide

Definition

Let free(φ) be the set of free (i.e., unquantified) variables of a subformula φ .

Definition

Let A_1 and A_2 be sets of assignments. The intersection $A_1 \cap A_2$ is defined like a database 'join' operator. The union $A_1 \cup A_2$ is defined as the operator dual of intersection.

Definition

Let Γ be a set of assignments over a set of variables W. We denote by hide(Γ, x) the sets of assigments over $W \setminus \{x\}$, obtained from Γ by removing the assignment to x for each element of Γ .

Syntax and semantics of QTL - I[φ, σ, i]

Definition

 $A_{\mathit{free}(\varphi)}$ is the set of all possible assignments of values to the variables that appear free in φ .

KORK ERKER ADAM ADA

Syntax and semantics of QTL - $\mathbb{I}[\varphi, \sigma, i]$

Definition

 $A_{\mathit{free}(\varphi)}$ is the set of all possible assignments of values to the variables that appear free in φ .

Definition

Let I[φ, σ, i] be the semantic function, defined below. It returns the set of assignments that satisfy φ after the *i*th event of the exection σ. The empty set of assignments ∅ behaves as the Boolean constant 0 and the singleton set that contains an assignment over an empty set of variables $\{\epsilon\}$ behaves as the Boolean constant 1.

KORKAR KERKER SAGA

Syntax and semantics of QTL - I[φ, σ, i] cont.

$$
I[\varphi, \sigma, 0] = \emptyset
$$

\n
$$
I[true, \sigma, i] = \{ \epsilon \}
$$

\n
$$
I[\rho(a), \sigma, i] = \text{if } \rho(a) \in \sigma[i] \text{ then } \{ \epsilon \} \text{ else } \emptyset
$$

\n
$$
I[\rho(x), \sigma, i] = \{ [x \mapsto a] \mid \rho(a) \in \sigma[i] \}
$$

\n
$$
I[\varphi \wedge \psi, \sigma, i] = I[\varphi, \sigma, i] \cap I[\psi, \sigma, i]
$$

\n
$$
I[\neg \varphi, \sigma, i] = A_{\text{free}(\varphi)} \setminus I[\varphi, \sigma, i]
$$

\n
$$
I[\varphi \ S \ \psi, \sigma, i] = I[\psi, \sigma, i] \cup (I[\varphi, \sigma, i] \cap I[\varphi \ S \ \psi, \sigma, i-1])
$$

\n
$$
I[\ominus \varphi, \sigma, i] = I[\varphi, \sigma, i-1]
$$

\n
$$
I[\exists x \ \varphi, \sigma, i] = \text{hide}(I[\varphi, \sigma, i], x)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

QTL Example

Kロトメ部トメミトメミト ミニのQC

An Efficient Algorithm Using BDDs

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Boolean functions as Binary Decision Diagrams

Here Ordered Binary Decision Diagrams (OBDD) are used. BDDs are a way of efficiently representing a boolean function $(f: 2^n \rightarrow 2)$ as a directed asyclic graph.

KORK EXTERNE PROVIDE

Algorithm for monitoring QTL

- 1. Initially, for each subformula φ , now $(\varphi) \coloneqq BDD(\perp)$
- 2. Observe a new event (as set of ground predicates) s as input
- 3. Let $pre := now$
- 4. Make the following updates for each subformula. If φ is a subformula of ψ then now(φ) is updated before now(ψ)

\n- $$
now(true) := BDD(\top)
$$
\n
\n- $now(p(a)) := \text{if } p(a) \in s \text{ then } BDD(\top) \text{ else } BDD(\bot)$ \n
\n- $now(p(x)) := \text{build}(x, V) \text{ where } V = \{a \mid p(a) \in s\}$ \n
\n- $now(\varphi \land \psi) := \text{and}(now(\varphi), now(\psi))$ \n
\n- $now(\neg \varphi) := \text{not}(now(\varphi))$ \n
\n- $now(\varphi \land \psi) := \text{or}(now(\psi), and(now(\varphi), pre(\varphi \land \psi)))$ \n
\n- $now(\ominus \varphi) := \text{pre}(\varphi)$ \n
\n- $now(\exists x \varphi) := \text{exists}(\langle x_0, \ldots, x_{k-1} \rangle, now(\varphi))$ \n
\n- 5. Goto step 2
\n

Summary

- \blacktriangleright First-order past time temporal logic properties (QTL)
- \blacktriangleright The properties contains data (ground predicates) over infinite domains

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

References I

F

F.

Ezio Bartocci et al. "Introduction to Runtime Verification". In: Lectures on Runtime Verification: Introductory and Advanced Topics. Ed. by Ezio Bartocci and Yliès Falcone. Cham: Springer International Publishing, 2018, pp. 1–33. ISBN: 978-3-319-75632-5. doi: [10.1007/978-3-319-75632-5_1](https://doi.org/10.1007/978-3-319-75632-5_1). url: https://doi.org/10.1007/978-3-319-75632-5_1.

Klaus Havelund and Doron Peled. "BDDs on the Run". In: Leveraging Applications of Formal Methods, Verification and Validation. Industrial Practice. Ed. by Tiziana Margaria and Bernhard Steffen. Cham: Springer International Publishing, 2018, pp. 58–69. isbn: 978-3-030-03427-6. url: [https:](https://link.springer.com/chapter/10.1007%2F978-3-030-03427-6_8) [//link.springer.com/chapter/10.1007%2F978-3-](https://link.springer.com/chapter/10.1007%2F978-3-030-03427-6_8) [030-03427-6_8](https://link.springer.com/chapter/10.1007%2F978-3-030-03427-6_8).