
Using BDDs to capture data in Runtime
verification (RV) [HP18]

Per Ove Ringdal

November 29, 2019



Contents

Motivation

Syntax and semantics of QTL

QTL Example

An Efficient Algorithm Using BDDs

Summary

References



Verifying file operations

Problem: We have a program that writes data to files, and we
want to verify that some property always holds.

Assume file API which yields the following events:
open(f ): file f was open
write(f , d): data d was written to file f
close(f ): file f was closed

Property:
A file should be open when writing data to it.



Runtime Verification - Definition

What is Runtime Verification?

I Lightweight formal method that complements classical
exhaustive verification techniques [Bar+18]

I Analyse a single execution trace of a system

I At the price of limited execution coverage, we get precise
information on the runtime behavior



Runtime Verification - Analysing execution traces

We analyse the system against a property, yielding an alarm when
the property is violated. [HP18]

The property for the file API can be written as: ”A file can only be
written to if it has been opened in the past, and not closed since
then.”

Or in Quantified Temporal Logic (QTL), which will be explained
later:
∀f ((∃d write(f , d))→ ¬close(f ) S open(f ))



Execution trace examples

Example

not valid:

{open(f1)} {close(f1)} {write(f1, 2)}

valid:

{open(f1)} {write(f1, 2)} {close(f1)}



Data reclamation

When data cannot affect the rest of the execution we want to
discard this data.

For instance, when a file is closed, we can forget that it was
opened before that

. . .

{open(f1)} {close(f1)}

Can discard open(f1)



Syntax and semantics of QTL



Syntax and semantics of QTL - Assignment

Definition

Let X be a finite set of variables. An assignment over a set of
variables W ⊆ X maps each variable x ∈W to a value from its
associated domain domain(x).

Example

[x 7→ 5, y 7→ ”abc”] maps x to 5 and y to ‘abc’.



Syntax and semantics of QTL - Assignment

Definition

Let X be a finite set of variables. An assignment over a set of
variables W ⊆ X maps each variable x ∈W to a value from its
associated domain domain(x).

Example

[x 7→ 5, y 7→ ”abc”] maps x to 5 and y to ‘abc’.



Syntax and semantics of QTL - Predicate names

Definition

Let T be a set of predicate names, where each predicate name p is
associated with some domain domain(p). A predicate is
constructed from a predicate name and a variable or a constant of
the same type. Predicates over constants are called ground
predicates.

Example

If the predicate name p and the variable x are associated with the
domain of strings, we have predicates like p(”gaga”) and p(x),



Syntax and semantics of QTL - Predicate names

Definition

Let T be a set of predicate names, where each predicate name p is
associated with some domain domain(p). A predicate is
constructed from a predicate name and a variable or a constant of
the same type. Predicates over constants are called ground
predicates.

Example

If the predicate name p and the variable x are associated with the
domain of strings, we have predicates like p(”gaga”) and p(x),



Syntax and semantics of QTL - Events

Definition

An event is a finite set of ground predicates.

Example

If T = {p, q, r}, then {p(”xyzzy”), q(3)} is a possible event.

Definition

An execution trace σ = s1, s2, . . . is a finite sequence of events.



Syntax and semantics of QTL - Events

Definition

An event is a finite set of ground predicates.

Example

If T = {p, q, r}, then {p(”xyzzy”), q(3)} is a possible event.

Definition

An execution trace σ = s1, s2, . . . is a finite sequence of events.



Syntax and semantics of QTL - Events

Definition

An event is a finite set of ground predicates.

Example

If T = {p, q, r}, then {p(”xyzzy”), q(3)} is a possible event.

Definition

An execution trace σ = s1, s2, . . . is a finite sequence of events.



Syntax and semantics of QTL - Formulas

Definition

The formulas of QTL are defined by the following grammar.

ϕ ::= true

| p(a)

holds when a is a constant in domain(p) and

p(a) occurs in the most recent event

| p(x)

holds with a binding of x to value a if p(a)

occurs in the most recent event

| ϕ ∧ ϕ
| ¬ϕ
| ϕ S ϕ

for ϕ S ψ, ψ held in past or now,

and since then ϕ has been true

| 	 ϕ

ϕ is true in the previous event

| ∃x ϕ



Syntax and semantics of QTL - Formulas

Definition

The formulas of QTL are defined by the following grammar.

ϕ ::= true

| p(a) holds when a is a constant in domain(p) and

p(a) occurs in the most recent event

| p(x)

holds with a binding of x to value a if p(a)

occurs in the most recent event

| ϕ ∧ ϕ
| ¬ϕ
| ϕ S ϕ

for ϕ S ψ, ψ held in past or now,

and since then ϕ has been true

| 	 ϕ

ϕ is true in the previous event

| ∃x ϕ



Syntax and semantics of QTL - Formulas

Definition

The formulas of QTL are defined by the following grammar.

ϕ ::= true

| p(a) holds when a is a constant in domain(p) and

p(a) occurs in the most recent event

| p(x) holds with a binding of x to value a if p(a)

occurs in the most recent event

| ϕ ∧ ϕ
| ¬ϕ
| ϕ S ϕ

for ϕ S ψ, ψ held in past or now,

and since then ϕ has been true

| 	 ϕ

ϕ is true in the previous event

| ∃x ϕ



Syntax and semantics of QTL - Formulas

Definition

The formulas of QTL are defined by the following grammar.

ϕ ::= true

| p(a) holds when a is a constant in domain(p) and

p(a) occurs in the most recent event

| p(x) holds with a binding of x to value a if p(a)

occurs in the most recent event

| ϕ ∧ ϕ
| ¬ϕ
| ϕ S ϕ for ϕ S ψ, ψ held in past or now,

and since then ϕ has been true

| 	 ϕ

ϕ is true in the previous event

| ∃x ϕ



Syntax and semantics of QTL - Formulas

Definition

The formulas of QTL are defined by the following grammar.

ϕ ::= true

| p(a) holds when a is a constant in domain(p) and

p(a) occurs in the most recent event

| p(x) holds with a binding of x to value a if p(a)

occurs in the most recent event

| ϕ ∧ ϕ
| ¬ϕ
| ϕ S ϕ for ϕ S ψ, ψ held in past or now,

and since then ϕ has been true

| 	 ϕ ϕ is true in the previous event

| ∃x ϕ



Syntax and semantics of QTL - Formulas derived

The following formulas can be derived from the definition:

false = ¬true
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ = ¬ϕ ∧ ψ
P ϕ = true S ϕ

ϕ held in the past or now

H ϕ = ¬P ¬ϕ

ϕ always true in the past and now

∀x ϕ = ¬∃x ¬ϕ



Syntax and semantics of QTL - Formulas derived

The following formulas can be derived from the definition:

false = ¬true
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ = ¬ϕ ∧ ψ
P ϕ = true S ϕ ϕ held in the past or now

H ϕ = ¬P ¬ϕ

ϕ always true in the past and now

∀x ϕ = ¬∃x ¬ϕ



Syntax and semantics of QTL - Formulas derived

The following formulas can be derived from the definition:

false = ¬true
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ = ¬ϕ ∧ ψ
P ϕ = true S ϕ ϕ held in the past or now

H ϕ = ¬P ¬ϕ ϕ always true in the past and now

∀x ϕ = ¬∃x ¬ϕ



Syntax and semantics of QTL - free, hide

Definition

Let free(ϕ) be the set of free (i.e., unquantified) variables of a
subformula ϕ.

Definition

Let A1 and A2 be sets of assignments. The intersection A1 ∩ A2 is
defined like a database ‘join’ operator. The union A1 ∪ A2 is
defined as the operator dual of intersection.

Definition

Let Γ be a set of assignments over a set of variables W. We denote
by hide(Γ, x) the sets of assigments over W \ {x}, obtained from Γ
by removing the assignment to x for each element of Γ.



Syntax and semantics of QTL - free, hide

Definition

Let free(ϕ) be the set of free (i.e., unquantified) variables of a
subformula ϕ.

Definition

Let A1 and A2 be sets of assignments. The intersection A1 ∩ A2 is
defined like a database ‘join’ operator. The union A1 ∪ A2 is
defined as the operator dual of intersection.

Definition

Let Γ be a set of assignments over a set of variables W. We denote
by hide(Γ, x) the sets of assigments over W \ {x}, obtained from Γ
by removing the assignment to x for each element of Γ.



Syntax and semantics of QTL - free, hide

Definition

Let free(ϕ) be the set of free (i.e., unquantified) variables of a
subformula ϕ.

Definition

Let A1 and A2 be sets of assignments. The intersection A1 ∩ A2 is
defined like a database ‘join’ operator. The union A1 ∪ A2 is
defined as the operator dual of intersection.

Definition

Let Γ be a set of assignments over a set of variables W. We denote
by hide(Γ, x) the sets of assigments over W \ {x}, obtained from Γ
by removing the assignment to x for each element of Γ.



Syntax and semantics of QTL - I[ϕ, σ, i ]

Definition

Afree(ϕ) is the set of all possible assignments of values to the
variables that appear free in ϕ.

Definition

Let I[ϕ, σ, i ] be the semantic function, defined below. It returns the
set of assignments that satisfy ϕ after the ith event of the exection
σ. The empty set of assignments ∅ behaves as the Boolean
constant 0 and the singleton set that contains an assignment over
an empty set of variables {ε} behaves as the Boolean constant 1.



Syntax and semantics of QTL - I[ϕ, σ, i ]

Definition

Afree(ϕ) is the set of all possible assignments of values to the
variables that appear free in ϕ.

Definition

Let I[ϕ, σ, i ] be the semantic function, defined below. It returns the
set of assignments that satisfy ϕ after the ith event of the exection
σ. The empty set of assignments ∅ behaves as the Boolean
constant 0 and the singleton set that contains an assignment over
an empty set of variables {ε} behaves as the Boolean constant 1.



Syntax and semantics of QTL - I[ϕ, σ, i ] cont.

I[ϕ, σ, 0] = ∅
I[true, σ, i ] = {ε}
I[p(a), σ, i ] = if p(a) ∈ σ[i ] then {ε} else ∅
I[p(x), σ, i ] = {[x 7→ a] | p(a) ∈ σ[i ]}

I[ϕ ∧ ψ, σ, i ] = I[ϕ, σ, i ] ∩ I[ψ, σ, i ]

I[¬ϕ, σ, i ] = Afree(ϕ) \ I[ϕ, σ, i ]
I[ϕ S ψ, σ, i ] = I[ψ, σ, i ] ∪ (I[ϕ, σ, i ] ∩ I[ϕ S ψ, σ, i − 1])

I[	 ϕ, σ, i ] = I[ϕ, σ, i − 1]

I[∃x ϕ, σ, i ] = hide(I[ϕ, σ, i ], x)



QTL Example



An Efficient Algorithm Using
BDDs



Boolean functions as Binary Decision Diagrams

Here Ordered Binary Decision Diagrams (OBDD) are used.
BDDs are a way of efficiently representing a boolean function
(f : 2n → 2) as a directed asyclic graph.

1BDD(>):

a

10

a:

a

b

10

a ∧ b:



Algorithm for monitoring QTL

1. Initially, for each subformula ϕ, now(ϕ) := BDD(⊥)

2. Observe a new event (as set of ground predicates) s as input

3. Let pre := now

4. Make the following updates for each subformula. If ϕ is a
subformula of ψ then now(ϕ) is updated before now(ψ)
I now(true) := BDD(>)
I now(p(a)) := if p(a) ∈ s then BDD(>) else BDD(⊥)
I now(p(x)) := build(x ,V ) where V = {a | p(a) ∈ s}
I now(ϕ ∧ ψ) := and(now(ϕ), now(ψ))
I now(¬ϕ) := not(now(ϕ))
I now(ϕ S ψ) := or(now(ψ), and(now(ϕ), pre(ϕ S ψ)))
I now(	 ϕ) := pre(ϕ)
I now(∃x ϕ) := exists(〈x0, . . . , xk−1〉, now(ϕ))

5. Goto step 2



Summary

I First-order past time temporal logic properties (QTL)

I The properties contains data (ground predicates) over infinite
domains



References I

Ezio Bartocci et al. “Introduction to Runtime
Verification”. In: Lectures on Runtime Verification:
Introductory and Advanced Topics. Ed. by
Ezio Bartocci and Yliès Falcone. Cham: Springer
International Publishing, 2018, pp. 1–33. isbn:
978-3-319-75632-5. doi:
10.1007/978-3-319-75632-5_1. url:
https://doi.org/10.1007/978-3-319-75632-5_1.

Klaus Havelund and Doron Peled. “BDDs on the Run”.
In: Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice. Ed. by
Tiziana Margaria and Bernhard Steffen. Cham:
Springer International Publishing, 2018, pp. 58–69.
isbn: 978-3-030-03427-6. url: https:
//link.springer.com/chapter/10.1007%2F978-3-

030-03427-6_8.

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://link.springer.com/chapter/10.1007%2F978-3-030-03427-6_8
https://link.springer.com/chapter/10.1007%2F978-3-030-03427-6_8
https://link.springer.com/chapter/10.1007%2F978-3-030-03427-6_8

	Motivation
	Syntax and semantics of QTL
	QTL Example
	An Efficient Algorithm Using BDDs
	Summary
	References
	References


