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Motivation

What can SMT solvers be used for?

I Optimization
I Bounded model checking
I Brute force
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Boolean satisfiability problem

Boolean satisfiability problem

I The problem of determining if there exists an interpretation
that satisfies a given Boolean formula.

I Well known NP-complete problem
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Boolean satisfiability problem

Conjunctive Normal Form

Generally, the formulas are on Conjunctive Normal Form (CNF)
I p ∧ q ∧ r

I p ∧ (q ∨ p) ∧ r

I p ∧ (q → p) ∧ r Not CNF, but easily fixed
I p ∧ (¬q ∨ p) ∧ r
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Boolean satisfiability problem

Clausal form

Formulas as sets of clauses
I p ∧ (¬q ∨ p) ∧ r

I {{p}, {¬q, p}, {r}}
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Boolean satisfiability problem

SAT is fast

I Brute force is slow, but . . .
I we often don’t have to brute force
I Making SAT faster is heavily researched
I Conflict-Driven Clause Learning
I DPLL
I Utilizing the shape of the clauses

Encoding problems in propositional logic is difficult and annoying.
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Boolean satisfiability problem

Encoding constraints

I x < y

I x < 5 ∧ x > 10
I f (y) = f (x) ∧ y 6= x

Looks a lot like first-order logic
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Logic

First-order logic

Satisfiability for general FOL is undecidable, however . . .
I There are versions of FOL that are decidable

I The set of first-order logical validities in the signature with
only equality, established by Leopold Löwenheim in 1915.

I The first-order theory of the natural numbers in the signature
with equality and addition, also called Presburger arithmetic.

I We are often interested in the expected interpretation of
common symbols
I x < y ∧ ¬(x < y + 0)
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What is a theory

Theories

What is a theory?

I A limited First-Order Logic
I with equality
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Syntax and semantics

Syntax

The same as First-Order Logic, but with a single addition:
We can have the equality-symbol between terms.
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Syntax and semantics

Semantics

Similar to first-order logic, but with restrictions on sorted variables.

· · ·
A � t1 = t2 iff tA1 = tA2

A � ∃x : σφ iff A[x → a] � φfor some a ∈ Aσ

· · ·
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Theory of Equality

Equality with Uninterpreted Function Symbols

Also known as the empty theory, due to imposing no restrictions
on its models
Axioms:
1. ∀x .x = x (Reflexivity)
2. ∀x , y .(x = y)→ (y = x) (Symmetry)
3. ∀x , y , z .(x = y) ∧ (y = z)→ (x = z) (Transitivity)
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Theory of Equality

Example

1. Φ = {f (f (a)) = a, f (f (f (a))) = a, g(a) 6= g(f (a))}
2. {{a, f (f (a)), f (f (f (a)))}, {f (a)}, {g(a)}, {g(f (a))}}
3. a = f (f (a)) =⇒ f (a) = f (f (f (a)))

4. {{a, f (f (a)), f (f (f (a))), f (a)}, {g(a)}, {g(f (a))}}
5. {{a, f (f (a)), f (f (f (a))), f (a)}, {g(a), g(f (a))}}
6. (unsat)
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Theory of Equality

Example: Power of equality

1. {a ∗ (f (b) + f (c)) = d , b ∗ (f (a) + f (c)) 6= d , a = b}
2. Change ∗ to h, and + to g
3. {h(a, g(f (b), f (c))) = d , h(b, g(f (a), f (c))) 6= d , a = b}
4. This can be proved unsat with Congruence Closure
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Theory of Equality

Example theories

I Equality
I Integer arithmetic
I Real arithmetic
I Bitvectors
I Arrays
I Algebraic Data Types
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Theory of Equality

Arithmetic

Signature for Integer Arithmetic:

I A single sort Z, the integer number constants
I Function symbols ΣF = {+,−, ∗}
I Predicate symbol ΣP = {≤}

The signature is paired with the standard model of the integers, the
Σ-model that interprets Z as the set Z, and the constants and
operators in the usual way.
I Integers are decidable if multiplication is restricted. (LIA)
I (Reals are decidable even with multiplication)
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Satisfiability Modulo Theories
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Combining SAT and Theories

Example

b + 2 = c ∧ f (read(write(a, b, 3), c − 2)) 6= f (c − b + 1)

Arithmetic Array theory Uninterpreted Function Symbols By
arithmetic, this is equivalent to

b + 2 = c ∧ f (read(write(a, b, 3), b)) 6= f (3)

then, by the array theory axiom: read(write(v , i , x), i) = x

b + 2 = c ∧ f (3) 6= f (3)

then, the formula is unsatisfiable
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Eager vs lazy

Eager

Just convert to SAT
Can lead to an explosion in terms of size.
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Eager vs lazy

Lazy offline

Given a formula φ
I let φp be the boolean abstraction of φ
I If φp is unsat, then φ is unsat.
I otherwise we have a satisfying assignment µp, which is sent to

the T-solver
I If µ is T-consistent, then φ is T-consistent
I otherwise, ¬µp is added as a clause to φp and the SAT solver

is restarted.
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Eager vs lazy

Lazy online
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Eager vs lazy

Hybrid approaches of lazy and eager

When to use which? When to combine?

I Best result from combining eager and lazy
I “Mostly Horn-clauses”
I Machine Learning-based heuristics
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Applications

I Security
I Scheduling
I Optimization
I Model Checking

I Bounded Model Checking
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Z3

SMT solver created by Microsoft

I Very fast
I Wide variety of theories
I Bindings to many popular languages (C, Python, Haskell, ++)
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Eight Queens

Eight Queens
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Eight Queens

Eight Queens

1 million USD prize if you can create an AI that solves the
1000x1000 problem, or prove that it is not possible.
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