

Satisfiability Modulo Theories IN5110

Gaute Berge Sondre Lunde

8. November 2019

Satisfiability Modulo Theories

Gaute Berge, Sondre Lunde

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	0000000	000000	0	000	0

Contents

Motivation

SAT

Theories

SMT

Applications

Ζ3

References

Satisfiability Modulo Theories

Gaute Berge, Sondre Lunde

Motivation •	SAT 000000	Theories	SMT 000000	Applications 0	Z3	References 0

Motivation

What can SMT solvers be used for?

- Optimization
- Bounded model checking
- Brute force

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	●00000	00000000	000000	0	000	0
Boolean satisfia	bility problem					

Boolean satisfiability problem

- The problem of determining if there exists an interpretation that satisfies a given Boolean formula.
- Well known NP-complete problem

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	0●0000	00000000	000000	0	000	0
Boolean satisfiabili	ity problem					

Conjunctive Normal Form

Generally, the formulas are on Conjunctive Normal Form (CNF)

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	00●000	00000000	000000	0	000	0
Boolean satisfiabili	ity problem					

Clausal form

ifi

Formulas as sets of clauses

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000●00	00000000	000000	0	000	0
Boolean satisfiabili	ty problem					

SAT is fast

- Brute force is slow, but ...
- we often don't have to brute force
- Making SAT faster is heavily researched
- Conflict-Driven Clause Learning
- DPLL
- Utilizing the shape of the clauses

Encoding problems in propositional logic is difficult and annoying.

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	0000●0	00000000	000000	O	000	0
Boolean satisfiability problem						

Encoding constraints

$$\blacktriangleright f(y) = f(x) \land y \neq x$$

Looks a lot like first-order logic

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	○○○○○●	00000000	000000	0	000	0
Logic						

First-order logic

Satisfiability for general FOL is undecidable, however

- There are versions of FOL that are decidable
 - The set of first-order logical validities in the signature with only equality, established by Leopold Löwenheim in 1915.
 - The first-order theory of the natural numbers in the signature with equality and addition, also called Presburger arithmetic.
- We are often interested in the *expected* interpretation of common symbols

$$> x < y \land \neg (x < y + 0)$$

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	●○○○○○○	000000	0	000	
What is a theory						

What is a theory?

- ► A limited First-Order Logic
- with equality

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	○●○○○○○○	000000	0	000	
Syntax and semant	tics					

Syntax

The same as First-Order Logic, but with a single addition: We can have the equality-symbol between **terms**.

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	○O●○○○○○	000000	0	000	0
Syntax and semant	ics					

Semantics

Similar to first-order logic, but with restrictions on sorted variables.

$$\mathcal{A} \vDash t_1 = t_2 \text{ iff } t_1^{\mathcal{A}} = t_2^{\mathcal{A}}$$
$$\mathcal{A} \vDash \exists x : \sigma \phi \text{ iff } \mathcal{A}[x \to a] \vDash \phi \text{ for some } a \in \mathcal{A}_{\sigma}$$

. . .

. . .

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	○○○●○○○○	000000	0	000	
Theory of Equality						

Equality with Uninterpreted Function Symbols

Also known as the **empty theory**, due to imposing no restrictions on its models

Axioms:

- 1. $\forall x.x = x$ (Reflexivity)
- 2. $\forall x, y.(x = y) \rightarrow (y = x)$ (Symmetry)
- 3. $\forall x, y, z.(x = y) \land (y = z) \rightarrow (x = z)$ (Transitivity)

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000		000000	0	000	0
Theory of Equality						

Example

1.
$$\Phi = \{f(f(a)) = a, f(f(f(a))) = a, g(a) \neq g(f(a))\}$$

2. $\{\{a, f(f(a)), f(f(f(a)))\}, \{f(a)\}, \{g(a)\}, \{g(f(a))\}\}$

3.
$$a = f(f(a)) \implies f(a) = f(f(f(a)))$$

- 4. $\{\{a, f(f(a)), f(f(f(a))), f(a)\}, \{g(a)\}, \{g(f(a))\}\}$
- 5. $\{\{a, f(f(a)), f(f(f(a))), f(a)\}, \{g(a), g(f(a))\}\}$
- 6. (unsat)

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	○○○○●○○	000000	0	000	0
Theory of Equalit	-y					

Example: Power of equality

1.
$$\{a * (f(b) + f(c)) = d, b * (f(a) + f(c)) \neq d, a = b\}$$

- 2. Change * to h, and + to g
- 3. $\{h(a,g(f(b),f(c))) = d, h(b,g(f(a),f(c))) \neq d, a = b\}$
- 4. This can be proved unsat with Congruence Closure

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	○○○○○●○	000000	0	000	
Theory of Equality						

Example theories

- Equality
- Integer arithmetic
- Real arithmetic
- Bitvectors
- Arrays
- Algebraic Data Types

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	○○○○○○●	000000	0	000	0
Theory of Equality						

Arithmetic

Signature for Integer Arithmetic:

- A single sort Z, the integer number constants
- Function symbols $\Sigma^F = \{+, -, *\}$
- Predicate symbol $\Sigma^P = \{\leq\}$

The signature is paired with the standard model of the integers, the Σ -model that interprets Z as the set \mathbb{Z} , and the constants and operators in the usual way.

- Integers are decidable if multiplication is restricted. (LIA)
- (Reals are decidable even with multiplication)

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000		●○○○○○	0	000	0

Satisfiability Modulo Theories

Satisfiability Modulo Theories

Gaute Berge, Sondre Lunde

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	00000000	○●○○○○	0	000	0
Combining SAT an	d Theories					

Example

 $b + 2 = c \land f(read(write(a, b, 3), c - 2)) \neq f(c - b + 1)$

Arithmetic Array theory Uninterpreted Function Symbols By arithmetic, this is equivalent to

 $b+2 = c \wedge f(read(write(a, b, 3), b)) \neq f(3)$

then, by the array theory axiom: read(write(v, i, x), i) = x

$$b+2=c\wedge f(3)\neq f(3)$$

then, the formula is unsatisfiable

Motivation 0	SAT 000000	Theories 00000000	SMT ○○●○○○	Applications	Z3 000	References
Eager vs lazy						

Just convert to SAT Can lead to an explosion in terms of size.

Gaute Berge, Sondre Lunde

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	00000000	○○○●○○	0	000	0
Eager vs lazy						

Given a formula ϕ

- let ϕ^p be the boolean abstraction of ϕ
- If ϕ^{p} is unsat, then ϕ is unsat.
- otherwise we have a satisfying assignment µ^p, which is sent to the T-solver
- If μ is T-consistent, then ϕ is T-consistent
- ▶ otherwise, ¬µ^p is added as a clause to φ^p and the SAT solver is restarted.

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	00000000	○○○○●○		000	0
Eager vs lazy						

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	00000000	○○○○○●	0	000	
Eager vs lazy						

Hybrid approaches of lazy and eager

When to use which? When to combine?

- Best result from combining eager and lazy
- "Mostly Horn-clauses"
- Machine Learning-based heuristics

Motivation S	SAT	Theories	SMT	Applications	Z3	References
0	000000	0000000	000000	•	000	0

Applications

- Security
- Scheduling
- Optimization
- Model Checking
 - Bounded Model Checking

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000		000000	0	●○○	0

SMT solver created by $\mathsf{Microsoft}$

- Very fast
- Wide variety of theories
- Bindings to many popular languages (C, Python, Haskell, ++)

Motivation	SAT	Theories	SMT	Applications	Z3	References
	000000	00000000	000000	0	○●○	0
Eight Queens						

Eight Queens

Satisfiability Modulo Theories

Gaute Berge, Sondre Lunde

Motivation	SAT	Theories	SMT	Applications	Z3	References
0	000000	00000000	000000	0	00•	0
Eight Queens						

Eight Queens

1 million USD prize if you can create an AI that solves the 1000x1000 problem, or prove that it is not possible.

Motivation 0	SAT 000000	Theories 00000000	SMT 000000	Applications	Z3 000	References ●
Some	references					

Barrett, C., et.al. Satisfiability Modulo Theories in

- Biere, A., et.al. (eds.) (2009) The Handbook of Satisfiability, IOS Press: Amsterdam
- Barrett, C., et.al. Satisfiability Modulo Theories in
 - Clarke, E.M., et.al. (eds.) (2018) The Handook of Model Checking, Springer International Publishing
- Kanig, J., (2010) An Introduction to SMT solvers, http://www.open-do.org/wpcontent/uploads/2010/06/SMT_provers.pdf [Accessed Nov. 7. 2019]
- Griggio, A., (2014) Introduction to SMT, http://satsmt2014.forsyte.at/files/2014/07/SMTintroduction.pdf [Accessed Nov. 7. 2019]

Satisfiability Modulo Theories