
Tamarin prover

Farzane Karami
November 2019

Tamarin

• A tool for modeling and analysis of security protocols
• Core team:
• David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, Benedikt

Schmidt

• https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

Tamarin

Tamarin

• Security protocols are specified as rewriting logic systems
• Security protocols
• Rewriting logic systems

Security protocols

• Securing communication between agents
• Transport Layer Security (TLS) to secure communication over the Internet
• Authentication
• Money transfer (HTTPS)
• Voting

• Cryptography

A bit of cryptography
• Asymmetric encryption: (public key and private key) [1]

• Symmetric encryption:
• The agents in a communication agree on a shared secret key
• Diffie Hellman (DH) key exchange algorithm

A bit of cryptography (DH)

𝑎, 𝑔, 𝑝
𝐴 = 𝑔'𝑚𝑜𝑑 𝑝

𝐾 = 𝐵'𝑚𝑜𝑑 𝑝
𝐾 = 𝑔'- 𝑚𝑜𝑑 𝑝

b
𝐵 = 𝑔- 𝑚𝑜𝑑 𝑝
𝐾 = 𝐴- 𝑚𝑜𝑑 𝑝

𝐾 = 𝑔'- 𝑚𝑜𝑑 𝑝

𝑔, 𝑝, 𝐴

𝐵

Man-in-the-middle attack

𝑎, 𝑔, 𝑝
𝐴 = 𝑔' 𝑚𝑜𝑑 𝑝

𝐾. = 𝑍' 𝑚𝑜𝑑 𝑝

b
𝐵 = 𝑔- 𝑚𝑜𝑑 𝑝

𝐾0 = 𝑍- 𝑚𝑜𝑑 𝑝

𝑔, 𝑝, 𝐴

𝐵

𝑧
𝑍 = 𝑔2 𝑚𝑜𝑑 𝑝
𝐾. = 𝐴2 𝑚𝑜𝑑 𝑝

𝑔, 𝑝, 𝑍

𝐾0 = 𝐵2 𝑚𝑜𝑑 𝑝

𝑍

Replay attack

• The attacker sends to the victim the same previous message which
was used before in the victim’s communication

• The victim thinks that it is a valid message and reacts to this message
accordingly

Security protocols

• Security protocols must be robust and work in hostile environments
where an attacker can:

⎻ eavesdrop messages
⎻ intercept messages
⎻ impersonate any agent
⎻ encrypt or decrypts massages with the keys he has got
⎻ repeat fake messages

• A model checker is required to check the correctness of protocols

Tamarin [2]
• A method based on operational semantics
• Protocols and adversaries are specified in multiset rewriting rules
• Security properties are defined as trace properties, checked against

the traces of the transition system

• Rewrite rules specify:
• the protocol initiator, responder, and trusted key server
• the attacker’s knowledge
• the messages on the network
• the state of a protocol changes by interacting messages

Rewriting Logic
• Modelling behavior of a dynamic system, which defines how the

system state evolves
• What is a dynamic system?
• For example, modelling how a person ages [4]

• One step of execution:

Person(‘Peter’, 50, married)

Person(‘’Peter’’, 50, divorced)

Person(‘’Peter’’, 50, dead)

Person(‘’Peter’’, 51, married)

Rewriting logic
• Equations define the deterministic features and rewrite rules define

the non-deterministic features
• Rules are labeled:

• 𝑏𝑖𝑟𝑡ℎ𝑑𝑎𝑦: 𝑃𝑒𝑟𝑠𝑜𝑛 𝑋,𝑁, 𝑆 ⟶ 𝑃𝑒𝑟𝑠𝑜𝑛 𝑋,𝑁 + 1, 𝑆

• 𝑑𝑖𝑣𝑜𝑟𝑐𝑒: 𝑃𝑒𝑟𝑠𝑜𝑛 𝑋,𝑁, 𝑆 ⟶ 𝑃𝑒𝑟𝑠𝑜𝑛 𝑋,𝑁, 𝑑𝑖𝑣𝑜𝑟𝑐𝑒𝑑
if 𝑁 > 40 ∧ 𝑆 == 𝑚𝑎𝑟𝑟𝑖𝑒𝑑

• 𝑚𝑎𝑟𝑟𝑖𝑎𝑔𝑒 ∶ … .

• ...

Rewriting logic
• A rewriting logic specification is a tuple ℛ = Σ, 𝐸, 𝐿, 𝑅 , where Σ is a

signature, 𝐸 is a set of equations, 𝐿 is a set of labels, and 𝑅 is a set of
unconditional and conditional labeled rewrite rules [5].
• 𝑙: 𝑡 ⟶ 𝑡′

• Rules are non-deterministically applied

• Rules are applied to the subterms of term 𝑡 (or 𝑡 itself), until it is not
reducible anymore

Modelling security protocols [6]

• Rewriting logic model for formalizing and reasoning about security
protocols
• Rewrite logic for specification of a protocol:
• Protocol roles
• Messages are represented as terms communicated between agents
• Protocol agents states evolve by getting messages
• Based on different roles each agent reacts to a message and generates events

Formalizing a protocol[6]

• Basic terms: Agent, Role, Fresh, Var, Func, TID, AdvConst, …
• agent names 𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏 𝜖 𝐴𝑔𝑒𝑛𝑡
• Protocol roles 𝐼𝑛𝑖𝑡, 𝑅𝑒𝑐𝑝 𝜖 𝑅𝑜𝑙𝑒
• Freshly generated terms like nonce, session keys
• Variables
• Function names
• Thread identifiers (the protocol role instance) 𝑡𝑖𝑑 𝜖 𝑇𝐼𝐷
• The set of fresh values generated by the adversary.
• A term t is local to a thread: t#tid

Terms and events[6]

• Term ::= BasicTerm | (Term,Term)| pk(Term) | sk(Term) | k(Term,Term)
| {| Term |}aTerm | {| Term |}sTerm | Func(Term∗)
• sk(Alice) : private key of agent Alice
• pk(Alice) : public key
• k(Alice, Bob) : shared symmetric key
• {|𝑡^|}`a

' : asymmetric encryption of the term t1 with the key t2

• Event ::= create(Role, Sub) | send(Term) | recv(Term)

A protocol Exm. [6]
• A protocol (P) is a mapping from roles to event sequences
• Role → 𝑒𝑣𝑒𝑛𝑡∗

Adversary power

• Dolev-Yao model:
• all communicated messages between agents are intercepted by the adversary
• all received messages are sent by the adversary

• The adversary knows agent names and their public key
• It can generate constants (AdvConst)
• It has compromised some of the private keys of agents
• 𝑀 ⊢ 𝑡, The adversary can infer 𝑡, from 𝑀 (a set of terms)

Execution model[6]

• The semantics of a protocol 𝑃𝜖 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 is defined by rewrite rules
• The rewrite rules define a transition system
• Each rule describes how each event causes a state transition
• State configuration: < 𝑡𝑟𝑎𝑐𝑒, 𝐴𝑑𝑒𝑟𝑠𝑎𝑟𝑦 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒, 𝑒𝑣𝑒𝑛𝑡 >

Security properties [6]

HT: honest agents which are not compromised by the attacker

Model checking of security protocols [6]

The set of reachable states is infinite,
limiting the number of threads or sessions that can be created to make it finite

Tamarin [2]

• ℛ = Σ, 𝐸, 𝐿, 𝑅
• 𝐸 defining cryptographic operators
• 𝑅 defining a protocol
• a formula ϕ defining a trace property
• Tamarin can either check the validity or the satisfiability of ϕ for the

traces of executions

Tamarin [2]

• The Tamarin multiset rewriting rules define a labeled transition
system.
• Each rule defines how the system state evolves to a new state
• If the current state of a system has a subterm, where its pattern

maches the left-hand-side of a rule, then this rule can be applied
• This subterm is replaced by an instance of the right-hand-side
• A term is reduced and rewritten by rules until it is not reducable

Tamarin [2]

References

• [1] https://cheapsslsecurity.com/blog/what-is-asymmetric-encryption-understand-with-simple-examples/

• [2] https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

• [3] https://www.virusbulletin.com/blog/2015/05/weak-keys-and- prime-reuse-make-diffie-hellman-
implementations-vulnerable

• [4] Designing Reliable Distributed Systems: A Formal Methods Approach Based on Executable Modeling in
Maude, Peter Csaba Olveczky, 2018, Springer.

• [5] A logical theory of concurrent objects and its realization in the Maude language, Jose Meseguer,
Research Directions in Concurrent Object-oriented Programming, 1993, MIT Press.

• [6] Model checking security protocols, David Basin, Cas Cremers, and Catherine Meadows, Handbook of
Model Checking, 2011, Citeseer.

• [7] https://cheapsslsecurity.com/blog/what-is-asymmetric-encryption-understand-with-simple-examples/

https://cheapsslsecurity.com/blog/what-is-asymmetric-encryption-understand-with-simple-examples/
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://www.virusbulletin.com/blog/2015/05/weak-keys-and-

