Tamarin prover

Farzane Karami
November 2019

Tamarin

* A tool for modeling and analysis of security protocols
* Core team:

* David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, Benedikt
Schmidt

* https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

Tamarin

Research Papers and Theses

Papers on Tamarin and its theory

CSF 2018 paper [PDF]: the paper presented at CSF, about adding support for Exclusive-Or: "Automated Unbounded Verification of Stateful
Cryptographic Protocols with Exclusive OR", by Jannik Dreier, Lucca Hirschi, SaSa Radomirovic¢, Ralf Sasse.

SIGLOG Newsletter 2017 paper [PDF]: the paper published in the SIGLOG Newsletter October 2017, presenting an overview of Tamarin and its
features: "Symbolically Analyzing Security Protocols using TAMARIN", by David Basin, Cas Cremers, Jannik Dreier, Ralf Sasse.

POST 2017 paper [PDF]: the paper presented at POST, about allowing user-defined equational theories to be non-subterm-convergent: "Beyond
Subterm-Convergent Equational Theories in Automated Verification of Stateful Protocols", by Jannik Dreier, Charles Duménil, Steve Kremer, Ralf
Sasse.

CCS 2015 paper [PDF]: the paper presented at CCS, also available as Extended Version with proofs; about observational equivalence for Tamarin:
"Automated Symbolic Proofs of Observational Equivalence", by David Basin, Jannik Dreier, Ralf Sasse.

S&P 2014 paper [PDF]: the paper presented at S&P, about group protocols and bilinear pairing extensions: "Automated Verification of Group Key
Agreement Protocols", by Benedikt Schmidt, Ralf Sasse, Cas Cremers, David Basin.

CAV 2013 paper [PDF]: the paper presented at CAV, presenting the tool in more detail: "The TAMARIN Prover for the Symbolic Analysis of Security
Protocols", by Simon Meier, Benedikt Schmidt, Cas Cremers, David Basin.

CSF 2012 paper [PDF]: the paper presented at CSF, also available as extended version [PDF]: extended version that contains the full proofs and
additional examples; original paper introducing Tamarin Prover: "Automated Analysis of Diffie-Hellman Protocols and Advanced Security Properties",
by Benedikt Schmidt, Simon Meier, Cas Cremers, David Basin.

Meier's PhD thesis [PDF]: provides a detailed explanation of the theory and implementation of Tamarin including inductive invariants and type
assertions.

Schmidt's PhD thesis [PDF]: provides a detailed explanation of the theory and application of Tamarin including the reasoning about Diffie-Hellman
exponentiation and bilinear pairing.

Staub's bachelor thesis [PDF]: about the implementation of the original version of Tamarin's GUI.

Tamarin Extensions

"Distance-Bounding Protocols: Verification without Time and Location" [PDF], by Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, Rolando Trujillo-
Rasua, presented at S&P 2018.

"A Novel Approach for Reasoning about Liveness in Cryptographic Protocols and its Application to Fair Exchange" [PDF], by Michael Backes, Jannik
Dreier, Steve Kremer, Robert Klinnemann, presented at EuroS&P 2017.

"Modeling Human Errors in Security Protocols" [PDF], by David Basin, Sasa Radomirovié¢, Lara Schmid, presented at CSF 2016.

"Alice and Bob Meet Equational Theories" [PDF], by David Basin, Michel Keller, SaSa Radomirovi¢, Ralf Sasse, paper presented at Logic, Rewriting,

Tamarin

Papers using Tamarin

» "A Formal Analysis of 5G Authentication" [PDF], by David Basin, Jannik Dreier, Lucca Hirschi, Sa§a Radomirovi¢, Ralf Sasse, Vincent Stettler,
presented at CCS 2018.

e "Alethea: A Provably Secure Random Sample Voting Protocol" [PDF], by David Basin, Sasa Radomirovi¢, Lara Schmid, presented at CSF 2018.

e "A Comprehensive Symbolic Analysis of TLS 1.3" [PDF], by Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, Thyla van der Merwe,

 Security protocols are specified as rewriting logic systems

e Security protocols
* Rewriting logic systems

Security protocols

e Securing communication between agents
* Transport Layer Security (TLS) to secure communication over the Internet
e Authentication
* Money transfer (HTTPS)
* \Voting

* Cryptography

A bit of cryptography

* Asymmetric encrvption: (public key and private key) [1]

Encryption

* Symmetric encryption:

Asymmetric Key
Cryptography

P> == P

Encryption Key
Public key

Decryption Key
Private Key

Decryption

* The agents in a communication agree on a shared secret key

* Diffie Hellman (DH) key exchange algorithm

A bit of cryptography (DH)

— pa -) A
A=g"modp ® g.p B =g’modp

K = A’ mod p

K = g* modp

Man-in-the-middle attack

Z=g”modp
K, = A*mod p

Kz = B?mod p

9.0,z

v

A

B =g’modp

Kz = Z° mod p

Replay attack

* The attacker sends to the victim the same previous message which
was used before in the victim’s communication

* The victim thinks that it is a valid message and reacts to this message
accordingly

Security protocols

* Security protocols must be robust and work in hostile environments
where an attacker can:
— eavesdrop messages
— intercept messages
— impersonate any agent
— encrypt or decrypts massages with the keys he has got
— repeat fake messages

* A model checker is required to check the correctness of protocols

Tamarin [2]

* A method based on operational semantics
* Protocols and adversaries are specified in multiset rewriting rules

e Security properties are defined as trace properties, checked against
the traces of the transition system

* Rewrite rules specify:
* the protocol initiator, responder, and trusted key server
* the attacker’s knowledge
* the messages on the network
* the state of a protocol changes by interacting messages

Rewriting Logic

* Modelling behavior of a dynamic system, which defines how the
system state evolves

* What is a dynamic system?
* For example, modelling how a person ages [4]

/ Person(“Peter”, 50, divorced)
Person(‘Peter’, 50, married) \

" Person(“Peter”, 50, dead)

Person(“Peter”, 51, married)

* One step of execution:

Rewriting logic

e Equations define the deterministic features and rewrite rules define
the non-deterministic features

* Rules are labeled:

 birthday: Person(X,N,S) — Person(X,N + 1,5)

e divorce: Person(X,N,S) — Person(X,N,divorced)
it N>40 A S == married
* marriage :

Rewriting logic

* A rewriting logic specification is a tuple R = (X, E, L, R), where X is a
signature, E is a set of equations, L is a set of labels, and R is a set of
unconditional and conditional labeled rewrite rules [5].

e l: t >t

* Rules are non-deterministically applied

* Rules are applied to the subterms of term t (or t itself), until it is not
reducible anymore

Modelling security protocols [6]

* Rewriting logic model for formalizing and reasoning about security
protocols

* Rewrite logic for specification of a protocol:
* Protocol roles
* Messages are represented as terms communicated between agents
* Protocol agents states evolve by getting messages
* Based on different roles each agent reacts to a message and generates events

Formalizing a protocol[6]

* Basic terms: Agent, Role, Fresh, Var, Func, TID, AdvConst, ...
 agent names {Alice, Bob} € Agent

Protocol roles {Init, Recp} € Role

Freshly generated terms like nonce, session keys

Variables

Function names

* Thread identifiers (the protocol role instance) tid € TID

* The set of fresh values generated by the adversary.

* Atermtis local to a thread: t#tid

Terms and events|6]

* Term ::= BasicTerm | (Term,Term)| pk(Term) | sk(Term) | k(Term,Term)
| {| Term |}aTerm | {| Term |}sTerm | Func(Termx)
* sk(Alice) : private key of agent Alice
* pk(Alice) : public key
* k(Alice, Bob) : shared symmetric key
. {|t1|}f}2 : asymmetric encryption of the term t1 with the key t2

e Event ::= create(Role, Sub) | send(Term) | recv(Term)

A protocol Exm. [6]

* A protocol (P) is a mapping from roles to event sequences

* Role — event”
pk(Recp), sk(Init) pk(Init), sk(Recp)

Init Recp

generate key

Init, Recp, { { Recp, ey [3uimir) [oi(recs)

Fig. 24.3. Simple protocol
P(Inlt) — <Send(1nit> Reop) {] {] R@Cp, key l}zk(lnit) I};k(Recp)»
P(Recp) = (recv(Init, Recp, {| { Recp, « I}zk(lnit) Pr;k(Recp))>

Adversary power

* Dolev-Yao model:

* all communicated messages between agents are intercepted by the adversary
* all received messages are sent by the adversary

* The adversary knows agent names and their public key

* It can generate constants (AdvConst)

* It has compromised some of the private keys of agents

e M I t, The adversary can infer t, from M (a set of terms)

Execution model[6]

* The semantics of a protocol Pe Protocol is defined by rewrite rules
* The rewrite rules define a transition system
* Each rule describes how each event causes a state transition

* State configuration: < trace, Adersary knowledge, event >

thitid) = {send(m)}"
(br, TK,th) — (tr"{(tid,send(m))}, JK U {m}, thfiid — I])

[send]

Security properties |6]

Definition 9 {Secrecy). Let ¢ € Fresh. We say that a state s = (¢r, IK ,th)
satisfies secrecy of ¢ if and only if

vtid, o . HT(s, tid, o) = —~(IK | (tftid)) .

We say that a protocol P ensures secrecy of ¢ if and only all reachable states
of F satisfy secrecy of ¢,

HT: honest agents which are not compromised by the attacker

Model checking of security protocols [6]

Let § = State\ § be the property’s complement, representing possible attacks.
For example, for the secrecy of a term ¢ as in Definition 9, & is defined as:

{s € State | Ftid, o . HT(s, tid, o) A IK + (tftid) }.

Reochable(PYN S =1,
Sinit, & U Pre?(5).
r2=0

The set of reachable states is infinite,
limiting the number of threads or sessions that can be created to make it finite

Tamarin [2]

*R=C,E,L,R)

 E defining cryptographic operators
* R defining a protocol

* aformula ¢ defining a trace property

 Tamarin can either check the validity or the satisfiability of ¢ for the
traces of executions

Tamarin [2]

 The Tamarin multiset rewriting rules define a labeled transition
system.

* Each rule defines how the system state evolves to a new state

* If the current state of a system has a subterm, where its pattern
maches the left-hand-side of a rule, then this rule can be applied

* This subterm is replaced by an instance of the right-hand-side
* Aterm is reduced and rewritten by rules until it is not reducable

Tamarin [2]

The syntax for specifying security properties is defined as follows:

All for universal quantification, temporal variables are prefixed with #

» Ex for existential quantification, temporal variables are prefixed with #

o ==> for implication

e & for conjunction

o | for digjunction

e not for negation

e f @ i for action constraints, the sort prefix for the temporal variable ‘i’ is optional

e i < jfor temporal ordering, the sort prefix for the temporal variables ‘i’ and ‘j’ is optional

e #i = #j for an equality between temporal variables ‘i’ and ‘j’

x = y for an equality between message variables ‘x’ and ‘y’

References

* [1] https://cheapsslsecurity.com/blog/what-is-asymmetric-encryption-understand-with-simple-examples/

e [2] https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

e [3] https://www.virusbulletin.com/blog/2015/05/weak-keys-and- prime-reuse-make-diffie-hellman-
implementations-vulnerable

* [4] Designing Reliable Distributed Systems: A Formal Methods Approach Based on Executable Modeling in
Maude, Peter Csaba Olveczky, 2018, Springer.

* [5] A logical theory of concurrent objects and its realization in the Maude language, Jose Meseguer,
Research Directions in Concurrent Object-oriented Programming, 1993, MIT Press.

* [6] Model checking security protocols, David Basin, Cas Cremers, and Catherine Meadows, Handbook of
Model Checking, 2011, Citeseer.

* [7] https://cheapsslsecurity.com/blog/what-is-asymmetric-encryption-understand-with-simple-examples/

https://cheapsslsecurity.com/blog/what-is-asymmetric-encryption-understand-with-simple-examples/
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://www.virusbulletin.com/blog/2015/05/weak-keys-and-

