Chapter 1

Formal methods

Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Chapter 1
Learning Targets of Chapter “Formal methods".

The introductory chapter give some motivational insight
into the field of “formal methods” (one cannot even call
it an overview).

IAS G
§9 «X‘(

@
e

Chapter 1
Outline of Chapter “Formal methods".

Motivating example

&

SNIVE
STnAS

How to guarantee correctness

Software bugs

On formal methods

Formalisms for specification and verification
Summary

References

Section

Motivating example

Chapter 1 "Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

A simple computational problem

IN5110 -
Verification and
specification of
parallel systems

ayg = % Targets & Outline
Motivating
61 example
a = 37
1 1 How to guarantee
correctness
1130— 3000
ap42 = 111 — Tl“n Software bugs
On formal
methods

Formalisms for
specification and
verification
Summary

References

1-5

g A W N RF O © 0N W N

A straightforward implementation

public class Mya {

static double a(int n) {

if (n==0)
return 11/2.0;
if (n==1)

return 61/11.0;
return 111 — (1130 — 3000/a(n—2))/a(n—-1);
}

public static void main(String[] argv) {
for (int i=0;i<=20;i++)
System.out. println("a("+i+") = "+a(i));

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-6

The solution (?)

, o,
T e e srcicaion o
a = .
a(2) = 5.5901639344262435 _
a(4) = 5.674648620514802 ;jiif“m
a(6) = 5.74912092113604 bt
a(8) = 5.81131466923334 How to guaante
a(l0) = 5.861078484508624 e o
a(l2) = 5.935956716634138 on o
a(l4) = 15.413043180845833 methods
a(l6) = 97.13715118465481 IO
a(18) = 99.98953968869486 verification
a(20) = 99.99996275956511 Summary

References

1-7

Should we trust software?

ay, for any n > 0 may be computed by using the following

expression:

Ap =

6" + 5n

6n+1 4 5n+1

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-8

Should we trust software?

ay, for any n > 0 may be computed by using the following
expression:

6"t 4 5t
S T T
Where
Jim o=
We get then
az ~ 6 (1)

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-8

Section

How to guarantee correctness

Chapter 1 "Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Correctness

* A system is correct if it meets its “requirements” (or

specification)
Examples:

e System: The previous program computing a,
Requirement: For any n > 0, the program should be
conform with the previous equation

(incl. limy, 500 an = 6)

e System: A telephone system

* Requirement: If user A wants to call user B (and has
credit), then eventually A will manage to establish a
connection

e System: An operating system
Requirement: A deadly embrace (nowaday's aka
deadlock) will never happen

IN5110 —
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-10

How to guarantee correctness?

® not enough to show that it can meet its requirements

® show that a system cannot fail to meet its requirements
Dijkstra’s dictum
“Program testing can be used to show the presence of bugs,
but never to show their absence”
A lesser known dictum from Dijktra (1965)

On proving programs correct: “One can never guarantee
that a proof is correct, the best one can say is: 'l have not
discovered any mistakes’. "

® automatic proofs? (Halting problem, Rice's theorem)

® any hope?

IN5110 —
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-11

Validation & verification

® |n general, validation is the process of checking if
something satisfies a certain criterion

® Do not confuse validation with verification

Validation

"Are we building the right
product?", i.e., does the
product do what the user
really requires

Verification:

"Are we building the product
right?", i.e., does the product
conform to the specification

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-12

Approaches for validation

testing

simulation

verification

check the actual system rather than a
model

Focused on sampling executions according
to some coverage criteria

not exhaustive (“coverage”)

often informal, formal approaches exist
(MBT)

A model of the system is written in a PL,
which is run with different inputs
not exhaustive

“[T]he process of applying a manual or
automatic technique for establishing whether a
given system satisfies a given property or
behaves in accordance to some abstract
description (specification) of the system”

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-13

Section
Software bugs

Chapter 1 "Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Sources of errors

* specification errors (incomplete or wrong specification)

® transcription from the informal to the formal
specification

* modeling errors (abstraction, incompleteness, etc.)

® translation from the specification to the actual code

® handwritten proof errors

® programming errors

* errors in the implementation of (semi-)automatic
tools/compilers

* wrong use of tools/programs

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-15

Errors in the SE process

the basic idea

requirements
system enginee phase where design decisians
are made

N

\ gh level design
< system architecture

phase where design errors
are found

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-16

Costs of fixing defects

B Requ.irements Phase
B Archltecture detected
[l Construction
B System Test
Relative cost . Post-Release

30

75

Phase introduced: Requirements Architecture Construction
Source: McConnell,"“Code Complete”, Microsoft Press, 2004

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-17

Hall of shame

e July 28, 1962: Mariner | space probe

® 1985-1987: Therac-25 medical accelerator

© 1988: Buffer overflow in Berkeley Unix finger daemon

® 1993: Intel Pentium floating point divide

® June 4, 1996: Ariane 5 Flight 501

® November 2000: National Cancer Institute, Panama
City

® 2016: Schiaparelli crash on Mars

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-18

Section

On formal methods

Chapter 1 "Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

What are formal methods?

FM

“Formal methods are a collection of notations and
techniques for describing and analyzing systems” [2]

® Formal: based on “math” (logic, automata, graphs,
type theory, set theory ...)

e formal specification techniques: to unambiguously
describe the system itself and/or its properties

e formal analysis/verification: techniques serve to verify

that a system satisfies its specification (or to help
finding out why it is not the case)

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-20

Terminology: Verification

The term verification: used in different ways

® Sometimes used only to refer the process of obtaining
the formal correctness proof of a system (deductive
verification)

® In other cases, used to describe any action taken for
finding errors in a program (including model checking
and maybe testing)

Formal verification (reminder)

Formal verification is the process of applying a manual or
automatic formal technique for establishing whether a given
system satisfies a given property or behaves in accordance to
some abstract description (formal specification) of the
system

Saying 'a program is correct’ is only meaningful w.r.t. a
given spec.!

IN5110 —
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-21

Limitations

e Software verification methods do not guarantee, in
general, the correctness of the code itself but rather of
an abstract model of it

* It cannot identify fabrication faults (e.g. in digital
circuits)

e If the specification is incomplete or wrong, the
verification result will also be wrong

® The implementation of verification tools may be faulty

® The bigger the system (number of possible states) more
difficult is to analyze it (state space explosion problem)

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-22

Any advantage?

be modest

Formal methods are not intended to guarantee absolute

reliability but to increase the confidence on system reliability.

They help minimizing the number of errors and in many
cases allow to find errors impossible to find manually.

® remember the VIPER chip

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-23

Another netfind: “bitcoin” and formal

methods :-

Science ana Enaineering

FormalSpecifcation and ver

Intercperabiy

FORMAL SPECIFICATION AND VERIFICATION

Asg thof Imit of
‘aaversailal power. One i given @ contract that aslong as the protocol s followed and the proofs are corect, he acersary.
‘cannot violate the securty properties clalmed

Desper refiection makes the pri and capable. To say
And. of course, s not entiely frue.
P e utopia of pure sex ect benaviorfiom existing.
might be
Insuficent and nof conform 10 redl e uso.
Aludgement o r oxample.

‘endeavors ke fhe Seld Microkemel project are a prime example of an al out assaut on amblgulty requiing cimost 200,000 lnes
of sabelle coge 10 verty ess than 10,0001Ines of C code. Yet an operating syslem kernel s cilfica Infastructure That coud be
serious secuty vulneraily I not propery Implementec.

that procuces
‘squivaient outcomes? Also does f matter If the piotocol s perfectly implemented if the envronment I runs n s noforiousy
inerable such s on WInGows XP?

For Cardano, e Fist, due 1o he domans of
astibouted computing, proots fend 1o be very subtle, long. technical. This
Therefore, we belleve that roof presented n white paper
writen 1o cover core Infasitucture needs fo be machine checked.
cond paper betwoon
Inferfacing with SV provers via LiuidHaskelland using sabelie /HOL
swr he problem o
inequation, or that e Moua and Bjomer, se cases of SMT
e various. but the key point & ermor
Isabelle/HOL. on fne ofher han, o0l 10
theorem solver copoble
sabelle selt prover fo work

such consraints

Sustainabiey

Canciusion

docided 10 embrace e both In sfages. Human wifen proofs wil be.

encoded i isabelle fo check ther

Uguia Haskell Throughout 2017 and 2016
Asanal point, fiom and e one orthe
pr] " theory.
white papes Iooks a ot two o
lenguage.
There issil

o o . this reaiy does not overall value. If
one & going 10 frouble of bullang a was actualy

proposed on papet

TRANSPARENCY
A

of
not comingto They

IN5110 -

ification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-24

Using formal methods

Used in different stages of the development process, giving a
classification of formal methods

1. We describe the system giving a formal specification

2. We can then prove some properties about the
specification

3. We can proceed by:

® Deriving a program from its specification (formal
synthesis)
® Verifying the specification wrt. implementation

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-25

Formal specification

e A specification formalism must be unambiguous: it
should have a precise syntax and semantics

® Natural languages are not suitable

® A trade-off must be found between expressiveness and
analysis feasibility
® More expressive the specification formalism more
difficult its analysis
Do not confuse the specification of the system itself with the
specification of some of its properties
® Both kinds of specifications may use the same
formalism but not necessarily. For example:

® the system specification can be given as a program or as
a state machine
® system properties can be formalized using some logic

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-26

Proving properties about the specification

To gain confidence about the correctness of a specification it
is useful to:

® Prove some properties of the specification to check that
it really means what it is supposed to

® Prove the equivalence of different specifications

Example

a should be true for the first two points of time, and then
oscillate.

® some attempt attempt:

a(0) Aa(l) AVt a(t+ 1) = —a(t)

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-27

It would be helpful to automatically obtain an
implementation from the specification of a system
Difficult since most specifications are declarative and
not constructive

They usually describe what the system should do; not
how it can be achieved

Example: program extraction

® specify the operational semantics of a programming
language in a constructive logic (calculus of
constructions)

® prove the correctness of a given property wrt. the
operational semantics (e.g. in Coq)

® extract (ocaml) code from the correctness proof (using
Coq's extraction mechanism)

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

Formalisms for
specification and
verification

Summary

References

1-28

Verifying specifications w.r.t.
implementations

Mainly two approaches:
® Deductive approach ((automated) theorem proving)
® Describe the specification @gpe. in a formal model
(logic)
® Describe the system's model @;p,;, in the same formal
model
® Prove that imp = Pspec
¢ Algorithmic approach
® Describe the specification ¢gpe. as a formula of a logic
® Describe the system as an interpretation M, of the
given logic (e.g. as a finite automaton)
® Prove that My, is a “model” (in the logical sense) of

Pspec

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-29

A few success stories

Esterel Technologies (synchronous languages — Airbus,
Avionics, Semiconductor & Telecom, ...)

® Scade/Lustre
® Esterel

Astrée (Abstract interpretation — used in Airbus)

Java PathFinder (model checking — find deadlocks on
multi-threaded Java programs)

verification of circuits design (model checking)

verification of different protocols (model checking and
verification of infinite-state systems)

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

Classification of systems

Before discussing how to choose an appropriate formal
method we need a classification of systems

e Different kind of systems and not all
methodologies/techniques may be applied to all kind of
systems

® Systems may be classified depending on

® architecture
® type of interaction

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-31

Classification of systems: architecture

® Asynchronous vs. synchronous hardware
® Analog vs. digital hardware
® Mono- vs. multi-processor systems

® Imperative vs. functional vs. logical vs. object-oriented
software

e Concurrent vs. sequential software
® Conventional vs. real-time operating systems

® Embedded vs. local vs. distributed systems

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-32

Classification of systems: type of
interaction

® Transformational systems: Read inputs and produce
outputs — These systems should always terminate

® |nteractive systems: ldem previous, but they are not
assumed to terminate (unless explicitly required) —
Environment has to wait till the system is ready

® Reactive systems: Non-terminating systems. The
environment decides when to interact with the system —
These systems must be fast enough to react to an
environment action (real-time systems)

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

Taxonomy of properties

Functional correctness The program for computing the
square root really computes it

Temporal behavior The answer arrives in less than 40
seconds

Safety properties (“something bad never happens”):
Traffic lights of crossing streets are never green
simultaneously

Liveness properties (“something good eventually
happens”): process A will eventually be
executed

Persistence properties (stabilization): For all
computations there is a point where process A
is always enabled

Fairness properties (some property will hold infinitely

often): No process is ignored infinitely often by
an OS/scheduler

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-34

When and which formal method to use?

Examples:
* Digital circuits ... (BDDs, model checking)

® Communication protocol with unbounded number of
processes. . .. (verification of infinite-state systems)

¢ Overflow in programs (static analysis and abstract
interpretation)

Open distributed, concurrent systems = Very difficult!!
Need the combination of different techniques

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

Section

Formalisms for specification and ver-
ification

Chapter 1 "Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Some formalisms for specification

Logic-based formalisms

® Modal and temporal logics (E.g. LTL, CTL)

¢ Real-time temporal logics (E.g. Duration calculus,
TCTL)

® Rewriting logic

Automata-based formalisms

® Finite-state automata
® Timed and hybrid automata

® Process algebra/process calculi
* CCS (LOTOS, CSP, .))
¢ m-calculus . ..

® Visual formalisms

® MSC (Message Sequence Chart)
® Statecharts (e.g. in UML)
® Petri nets

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

Some techniques and methodologies for
verification

® algorithmic verification

® Finite-state systems (model checking)
® |nfinite-state systems

® Hybrid systems

® Real-time systems

 deductive verification (theorem proving)

® abstract interpretation

e formal testing (black box, white box, structural, . ..
® static analysis

® constraint solving

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

Section

Summary

Chapter 1 "Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Summary

® Formal methods are useful and needed

¢ which FM to use depends on the problem, the
underlying system and the property we want to prove

® un real complex systems, only part of the system may
be formally proved and no single FM can make the task
® our course will concentrate on

® temporal logic as a specification formalism

¢ safety, liveness and (maybe) fairness properties

® SPIN (LTL Model Checking)

® few other techniques from student presentation (e.g.,
abstract interpretation, CTL model checking, timed
automata)

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-40

Ten Commandments of formal methods

From “Ten commandments revisited” [1] ome110 -
erification and
. . ificati f
1. Choose an appropriate notation serallel systems
2. Formalize but not over-formalize
3. Estimate costs Targets & Outline
Motivating
4. Have a formal method guru on call example
iy H
5. Do not abandon your traditional methods Chow Lo guarantee
6. Document sufficiently Software bugs
. . On fi |
7. Do not compromise your quality standards methods.
8. Do not be dogmatic Formalisms for
specification and
) hca
9. Test, test, and test again verfieation
Summary
10. Do reuse

References

1-41

References |

Bibliography

(1

[2]

Bowen, J. P. and Hinchey, M. G. (2005). Ten commandments revisited: a ten-year perspective on
the industrial application of formal methods. In FMICS '05: Proceedings of the 10th international
workshop on Formal methods for industrial critical systems, pages 8-16, New York, NY, USA. ACM
Press.

Peled, D. (2001). Software Reliability Methods. Springer Verlag.

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-42

	Formal methods
	Targets & Outline
	Motivating example
	How to guarantee correctness
	Software bugs
	On formal methods
	Formalisms for specification and verification
	Summary
	References

