
Chapter 1
Formal methods

Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Chapter 1
Learning Targets of Chapter “Formal methods”.

The introductory chapter give some motivational insight
into the field of “formal methods” (one cannot even call
it an overview).

Chapter 1
Outline of Chapter “Formal methods”.
Motivating example

How to guarantee correctness

Software bugs

On formal methods

Formalisms for specification and verification

Summary

References

Section
Motivating example

Chapter 1 “Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-5

A simple computational problem

a0 = 11
2

a1 = 61
11

an+2 = 111− 1130− 3000
an

an+1

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-6

A straightforward implementation

1 pub l i c c l a s s Mya {
2

3 s t a t i c double a (i n t n) {
4 i f (n==0)
5 re tu rn 1 1 / 2 . 0 ;
6 i f (n==1)
7 re tu rn 6 1 / 1 1 . 0 ;
8 re tu rn 111 − (1130 − 3000/ a (n−2))/a (n −1);
9 }

10

11 pub l i c s t a t i c vo id main (S t r i n g [] a rgv) {
12 f o r (i n t i =0; i <=20; i ++)
13 System . out . p r i n t l n (" a ("+i+") = "+a (i)) ;
14 }
15 }

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-7

The solution (?)

$ java mya
a(0) = 5.5
a(2) = 5.5901639344262435
a(4) = 5.674648620514802
a(6) = 5.74912092113604
a(8) = 5.81131466923334
a(10) = 5.861078484508624
a(12) = 5.935956716634138
a(14) = 15.413043180845833
a(16) = 97.13715118465481
a(18) = 99.98953968869486
a(20) = 99.99996275956511

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-8

Should we trust software?

an for any n ≥ 0 may be computed by using the following
expression:

an = 6n+1 + 5n+1

6n + 5n

Where
lim

n→∞
an = 6

We get then

a20 ≈ 6 (1)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-8

Should we trust software?

an for any n ≥ 0 may be computed by using the following
expression:

an = 6n+1 + 5n+1

6n + 5n

Where
lim

n→∞
an = 6

We get then

a20 ≈ 6 (1)

Section
How to guarantee correctness

Chapter 1 “Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-10

Correctness

• A system is correct if it meets its “requirements” (or
specification)

Examples:
• System: The previous program computing an

Requirement: For any n ≥ 0, the program should be
conform with the previous equation

(incl. limn→∞ an = 6)
• System: A telephone system
• Requirement: If user A wants to call user B (and has
credit), then eventually A will manage to establish a
connection
• System: An operating system
Requirement: A deadly embrace (nowaday’s aka
deadlock) will never happen

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-11

How to guarantee correctness?

• not enough to show that it can meet its requirements
• show that a system cannot fail to meet its requirements

Dijkstra’s dictum
“Program testing can be used to show the presence of bugs,
but never to show their absence”

A lesser known dictum from Dijktra (1965)

On proving programs correct: “One can never guarantee
that a proof is correct, the best one can say is: ’I have not
discovered any mistakes’. ”

• automatic proofs? (Halting problem, Rice’s theorem)
• any hope?

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-12

Validation & verification

• In general, validation is the process of checking if
something satisfies a certain criterion
• Do not confuse validation with verification

Validation
"Are we building the right
product?", i.e., does the
product do what the user
really requires

Verification:
"Are we building the product
right?", i.e., does the product
conform to the specification

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-13

Approaches for validation

testing • check the actual system rather than a
model
• Focused on sampling executions according
to some coverage criteria
• not exhaustive (“coverage”)
• often informal, formal approaches exist
(MBT)

simulation • A model of the system is written in a PL,
which is run with different inputs
• not exhaustive

verification “[T]he process of applying a manual or
automatic technique for establishing whether a
given system satisfies a given property or
behaves in accordance to some abstract
description (specification) of the system”

Section
Software bugs

Chapter 1 “Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-15

Sources of errors

• specification errors (incomplete or wrong specification)
• transcription from the informal to the formal
specification
• modeling errors (abstraction, incompleteness, etc.)
• translation from the specification to the actual code
• handwritten proof errors
• programming errors
• errors in the implementation of (semi-)automatic
tools/compilers
• wrong use of tools/programs
• . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-16

Errors in the SE process

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-17

Costs of fixing defects

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-18

Hall of shame

• July 28, 1962: Mariner I space probe
• 1985–1987: Therac-25 medical accelerator
• 1988: Buffer overflow in Berkeley Unix finger daemon
• 1993: Intel Pentium floating point divide
• June 4, 1996: Ariane 5 Flight 501
• November 2000: National Cancer Institute, Panama
City
• 2016: Schiaparelli crash on Mars

Section
On formal methods

Chapter 1 “Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-20

What are formal methods?

FM
“Formal methods are a collection of notations and
techniques for describing and analyzing systems” [2]

• Formal: based on “math” (logic, automata, graphs,
type theory, set theory . . .)
• formal specification techniques: to unambiguously
describe the system itself and/or its properties
• formal analysis/verification: techniques serve to verify
that a system satisfies its specification (or to help
finding out why it is not the case)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-21

Terminology: Verification
The term verification: used in different ways
• Sometimes used only to refer the process of obtaining
the formal correctness proof of a system (deductive
verification)
• In other cases, used to describe any action taken for
finding errors in a program (including model checking
and maybe testing)

Formal verification (reminder)

Formal verification is the process of applying a manual or
automatic formal technique for establishing whether a given
system satisfies a given property or behaves in accordance to
some abstract description (formal specification) of the
system

Saying ’a program is correct’ is only meaningful w.r.t. a
given spec.!

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-22

Limitations

• Software verification methods do not guarantee, in
general, the correctness of the code itself but rather of
an abstract model of it
• It cannot identify fabrication faults (e.g. in digital
circuits)
• If the specification is incomplete or wrong, the
verification result will also be wrong
• The implementation of verification tools may be faulty
• The bigger the system (number of possible states) more
difficult is to analyze it (state space explosion problem)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-23

Any advantage?

be modest
Formal methods are not intended to guarantee absolute
reliability but to increase the confidence on system reliability.
They help minimizing the number of errors and in many
cases allow to find errors impossible to find manually.

• remember the VIPER chip

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-24

Another netfind: “bitcoin” and formal
methods :-)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-25

Using formal methods

Used in different stages of the development process, giving a
classification of formal methods
1. We describe the system giving a formal specification
2. We can then prove some properties about the

specification
3. We can proceed by:

• Deriving a program from its specification (formal
synthesis)

• Verifying the specification wrt. implementation

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-26

Formal specification

• A specification formalism must be unambiguous: it
should have a precise syntax and semantics
• Natural languages are not suitable

• A trade-off must be found between expressiveness and
analysis feasibility
• More expressive the specification formalism more

difficult its analysis
Do not confuse the specification of the system itself with the
specification of some of its properties
• Both kinds of specifications may use the same
formalism but not necessarily. For example:
• the system specification can be given as a program or as

a state machine
• system properties can be formalized using some logic

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-27

Proving properties about the specification

To gain confidence about the correctness of a specification it
is useful to:
• Prove some properties of the specification to check that
it really means what it is supposed to
• Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then
oscillate.

• some attempt attempt:

a(0) ∧ a(1) ∧ ∀t. a(t+ 1) = ¬a(t)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-28

Formal synthesis
• It would be helpful to automatically obtain an
implementation from the specification of a system
• Difficult since most specifications are declarative and
not constructive
• They usually describe what the system should do; not

how it can be achieved

Example: program extraction

• specify the operational semantics of a programming
language in a constructive logic (calculus of
constructions)
• prove the correctness of a given property wrt. the
operational semantics (e.g. in Coq)
• extract (ocaml) code from the correctness proof (using

Coq’s extraction mechanism)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-29

Verifying specifications w.r.t.
implementations

Mainly two approaches:
• Deductive approach ((automated) theorem proving)

• Describe the specification ϕspec in a formal model
(logic)

• Describe the system’s model ϕimp in the same formal
model

• Prove that ϕimp =⇒ ϕspec

• Algorithmic approach
• Describe the specification ϕspec as a formula of a logic
• Describe the system as an interpretation Mimp of the

given logic (e.g. as a finite automaton)
• Prove that Mimp is a “model” (in the logical sense) of
ϕspec

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-30

A few success stories

• Esterel Technologies (synchronous languages – Airbus,
Avionics, Semiconductor & Telecom, . . .)
• Scade/Lustre
• Esterel

• Astrée (Abstract interpretation – used in Airbus)
• Java PathFinder (model checking – find deadlocks on
multi-threaded Java programs)
• verification of circuits design (model checking)
• verification of different protocols (model checking and
verification of infinite-state systems)

. . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-31

Classification of systems

Before discussing how to choose an appropriate formal
method we need a classification of systems
• Different kind of systems and not all
methodologies/techniques may be applied to all kind of
systems
• Systems may be classified depending on

• architecture
• type of interaction

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-32

Classification of systems: architecture

• Asynchronous vs. synchronous hardware
• Analog vs. digital hardware
• Mono- vs. multi-processor systems
• Imperative vs. functional vs. logical vs. object-oriented
software
• Concurrent vs. sequential software
• Conventional vs. real-time operating systems
• Embedded vs. local vs. distributed systems

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-33

Classification of systems: type of
interaction

• Transformational systems: Read inputs and produce
outputs – These systems should always terminate
• Interactive systems: Idem previous, but they are not
assumed to terminate (unless explicitly required) –
Environment has to wait till the system is ready
• Reactive systems: Non-terminating systems. The
environment decides when to interact with the system –
These systems must be fast enough to react to an
environment action (real-time systems)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-34

Taxonomy of properties
Functional correctness The program for computing the

square root really computes it
Temporal behavior The answer arrives in less than 40

seconds
Safety properties (“something bad never happens”):

Traffic lights of crossing streets are never green
simultaneously

Liveness properties (“something good eventually
happens”): process A will eventually be
executed

Persistence properties (stabilization): For all
computations there is a point where process A
is always enabled

Fairness properties (some property will hold infinitely
often): No process is ignored infinitely often by
an OS/scheduler

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-35

When and which formal method to use?

Examples:
• Digital circuits . . . (BDDs, model checking)
• Communication protocol with unbounded number of
processes. . . . (verification of infinite-state systems)
• Overflow in programs (static analysis and abstract
interpretation)
• . . .

Open distributed, concurrent systems ⇒ Very difficult!!
Need the combination of different techniques

Section
Formalisms for specification and ver-
ification

Chapter 1 “Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-37

Some formalisms for specification

• Logic-based formalisms
• Modal and temporal logics (E.g. LTL, CTL)
• Real-time temporal logics (E.g. Duration calculus,

TCTL)
• Rewriting logic

• Automata-based formalisms
• Finite-state automata
• Timed and hybrid automata

• Process algebra/process calculi
• CCS (LOTOS, CSP, ..)
• π-calculus . . .

• Visual formalisms
• MSC (Message Sequence Chart)
• Statecharts (e.g. in UML)
• Petri nets

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-38

Some techniques and methodologies for
verification

• algorithmic verification
• Finite-state systems (model checking)
• Infinite-state systems
• Hybrid systems
• Real-time systems

• deductive verification (theorem proving)
• abstract interpretation
• formal testing (black box, white box, structural, . . .)
• static analysis
• constraint solving

Section
Summary

Chapter 1 “Formal methods”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-40

Summary

• Formal methods are useful and needed
• which FM to use depends on the problem, the
underlying system and the property we want to prove
• un real complex systems, only part of the system may
be formally proved and no single FM can make the task
• our course will concentrate on

• temporal logic as a specification formalism
• safety, liveness and (maybe) fairness properties
• SPIN (LTL Model Checking)
• few other techniques from student presentation (e.g.,

abstract interpretation, CTL model checking, timed
automata)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-41

Ten Commandments of formal methods

From “Ten commandments revisited” [1]
1. Choose an appropriate notation
2. Formalize but not over-formalize
3. Estimate costs
4. Have a formal method guru on call
5. Do not abandon your traditional methods
6. Document sufficiently
7. Do not compromise your quality standards
8. Do not be dogmatic
9. Test, test, and test again
10. Do reuse

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Motivating
example

How to guarantee
correctness

Software bugs

On formal
methods

Formalisms for
specification and
verification

Summary

References

1-42

References I

Bibliography

[1] Bowen, J. P. and Hinchey, M. G. (2005). Ten commandments revisited: a ten-year perspective on
the industrial application of formal methods. In FMICS ’05: Proceedings of the 10th international
workshop on Formal methods for industrial critical systems, pages 8–16, New York, NY, USA. ACM
Press.

[2] Peled, D. (2001). Software Reliability Methods. Springer Verlag.

	Formal methods
	Targets & Outline
	Motivating example
	How to guarantee correctness
	Software bugs
	On formal methods
	Formalisms for specification and verification
	Summary
	References

