
Chapter 1
Logics

Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Chapter 1
Learning Targets of Chapter “Logics”.

The chapter gives some basic information about
“standard” logics, namely propositional logics and
(classical) first-order logics.

Chapter 1
Outline of Chapter “Logics”.
Introduction
Propositional logic
Algebraic and first-order signatures
First-order logic

Syntax
Semantics
Proof theory

Modal logics
Introduction
Semantics
Proof theory and axiomatic systems
Exercises

Dynamic logics
Multi-modal logic
Dynamic logics
Semantics of PDL

Section
Introduction

Chapter 1 “Logics”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-5

Logics

What’s logic?

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-6

General aspects of logics

• truth vs. provability
• when does a formula hold, is true, is satisfied
• valid
• satisfiable

• syntax vs. semantics/models
• model theory vs. proof theory

Two separate worlds: model theory and proof theory?
proof theory
model theory
calculus

Section
Propositional logic

Chapter 1 “Logics”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-8

Syntax

ϕ ::= P | > | ⊥ atomic formula
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . formulas

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-9

Semantics

• truth values
• σ
• different “notations”

• σ |= ϕ
• evaluate ϕ, given σ [[ϕ]]σ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-10

Proof theory

• decidable, so a “trivial problem” in that sense
• truth tables (brute force)
• one can try to do better, different derivation strategies
(resolution, refutation, . . .)
• SAT is NP-complete

Section
Algebraic and first-order signatures

Chapter 1 “Logics”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-12

Signature

• fixes the “syntactic playground”
• selection of

• functional and
• relational

symbols, together with “arity” or sort-information

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-13

Sorts

• Sort
• name of a domain (like Nat)
• restricted form of type

• single-sorted vs. multi-sorted case
• single-sorted

• one sort only
• “degenerated”
• arity = number of arguments (also for relations)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-14

Terms

• given: signature Σ
• set of variables X (with typical elements x, y′, . . .)

t ::= x variable
| f(t1, . . . , tn) f of arity n

(1)

• TΣ(X)
• terms without variables (from TΣ(∅) or short TΣ):
ground terms

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-15

Substutition

• Substitution = replacement, namely of variables by
terms
• notation t[s/x]

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-16

First-order signature (with relations)

• add relational symbols to Σ
• typical elements P , Q
• relation symbols with fixed arity n-ary predicates or

relations)
• standard binary symbol: .= (equality)

Section
First-order logic

Syntax
Semantics
Proof theory

Chapter 1 “Logics”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-18

Syntax

• given: first order signature Σ

ϕ ::= P (t, . . . , t) | > | ⊥ atomic formula
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . formulas
| ∀x.ϕ | ∃x.ϕ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-19

First-order structures and models

• given Σ
• assume single-sorted case

first-order model
model M

M = (A, I)

• A some domain/set
• interpretation I, respecting arity

• [[f]]I : An → A
• [[P]]I : An

• cf. first-order structure

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-20

Giving meaning to variables

Variable assignment

• given Σ and model
σ : X → A

• other names: valuation, state

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-21

(E)valuation of terms

• σ “straightforwardly extended/lifted to terms”
• how would one define that (or write it down, or
implement)?

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-22

Free and bound occurrences of variables

• quantifiers bind variables
• scope
• other binding, scoping mechanisms
• variables can occur free or not (= bound) in a formula
• careful with substitution
• how could one define it?

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-23

Substitution

• basically:
• generalize substitution from terms to formulas
• careful about binders especially don’t let substitution

lead to variables being “captured” by binders

Example

ϕ = ∃x.x+ 1 .= y θ = [y/x]

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-24

Satisfaction

Definition (|=)

M,σ |= ϕ

• Σ fixed
• in model M and with variable assignment σ formula ϕ

is true (holds
• M and σ satisfy ϕ
• minority terminology: M,σ model of ϕ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-25

Exercises

• substitutions and variable assignments:
similar/different?
• there are infinitely many primes
• there is a person with at least 2 neighbors (or exactly)
• every even number can be written as the sum of 2
primes

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-26

Proof theory

• how to infer, derive, deduce formulas (from others)
• mechanical process
• soundness and completeness
• proof = deduction (sequence or tree of steps)
• theorem

• syntactic: derivable formula
• semantical a formula which holds (in a given model)

• (fo)-theory: set of formulas which are
• derivable
• true (in a given model)

• soundness and completeness

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-27

Deductions and proof systems

A proof system for a given logic consists of
• axioms (or axiom schemata), which are formulae
assumed to be true, and
• inference rules, of approx. the form

ϕ1 . . . ϕn

ψ

• ϕ1, . . . , ϕn are premises and ψ conclusion.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-28

A simple form of derivation

Derivation of ϕ
Sequence of formulae, where each formula is
• an axiom or
• can be obtained by applying an inference rule to
formulae earlier in the sequence.

• ` ϕ
• more general: set of formulas Γ

Γ ` ϕ

• proof = derivation
• theorem: derivable formula (= last formula in a proof)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-29

Proof systems and proofs: remarks

• “definitions” from the previous slides: not very formal
in general: a proof system: a “mechanical” (= formal and
constructive) way of conclusions from axioms (= “given”
formulas), and other already proven formulas
• Many different “representations” of how to draw
conclusions exists, the one sketched on the previous
slide
• works with “sequences”
• corresponds to the historically oldest “style” of proof

systems (“Hilbert-style”), some would say outdated . . .
• otherwise, in that naive form: impractical (but sound &

complete).
• nowadays, better ways and more suitable for computer

support of representation exists (especially using trees).
For instance natural deduction style system

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-30

A proof system for prop. logic

Observation
We can axiomatize a subset of propositional logic as follows.

ϕ→ (ψ → ϕ) (Ax1)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (Ax2)
((ϕ→ ⊥)→ ⊥)→ ϕ (DN)
ϕ ϕ→ ψ

ψ

(MP)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-31

A proof system

Example
p→ p is a theorem of PPL:

(p→ ((p→ p)→ p))→
((p→ (p→ p))→ (p→ p)) Ax2 (1)

p→ ((p→ p)→ p) Ax1 (2)
(p→ (p→ p))→ (p→ p) MP on (1) and (2) (3)
p→ (p→ p) Ax1 (4)
p→ p MP on (3) and (4) (5)

Section
Modal logics

Introduction
Semantics
Proof theory and axiomatic systems
Exercises

Chapter 1 “Logics”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-33

Introduction

• Modal logic: logic of “necessity” and “possibility”, in
that originally the intended meaning of the modal
operators � and ♦ was
• �ϕ: ϕ is necessarily true.
• ♦ϕ: ϕ is possibly true.

• Depending on what we intend to capture: we can
interpret �ϕ differently.

temporal ϕ will always hold.
doxastic I believe ϕ.

epistemic I know ϕ.
intuitionistic ϕ is provable.

deontic It ought to be the case that ϕ.
We will restrict here the modal operators to � and ♦ (and
mostly work with a temporal “mind-set”.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-34

Kripke structures

Definition (Kripke frame and Kripke model)

• A Kripke frame is a structure (W,R) where
• W is a non-empty set of worlds, and
• R ⊆W ×W is called the accessibility relation between

worlds.

• A Kripke model M is a structure (W,R, V) where
• (W,R) is a frame, and
• V a function of type V : W → (P → B) (called

valuation).

isomorphically: V : W → 2P

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-34

Kripke structures

Definition (Kripke frame and Kripke model)

• A Kripke frame is a structure (W,R) where
• W is a non-empty set of worlds, and
• R ⊆W ×W is called the accessibility relation between

worlds.
• A Kripke model M is a structure (W,R, V) where

• (W,R) is a frame, and
• V a function of type V : W → (P → B) (called

valuation).

isomorphically: V : W → 2P

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-35

Illustration

p p p

q

5
4 2

1

3

Example (Kripke model)

Let P = {p, q}. Then let M = (W,R, V) be the Kripke
model such that
• W = {w1, w2, w3, w4, w5}
• R = {(w1, w5), (w1, w4), (w4, w1), . . . }
• V = [w1 7→ ∅, w2 7→ {p}, w3 7→ {q}, . . .]

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-36

Satisfaction

Definition (Satisfaction)

A modal formula ϕ is true in the world w of a model V ,
written V,w |= ϕ, if:

V,w |= p iff V (w)(p) = >

V,w |= ¬ϕ iff V,w 6|= ϕ

V,w |= ϕ1 ∨ ϕ2 iff V,w |= ϕ1 or V,w |= ϕ2

V,w |= �ϕ iff V,w′ |= ϕ, for all w′ such that wRw′

V,w |= ♦ϕ iff V,w′ |= ϕ, for some w′ such that wRw′

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-37

“Box” and “diamond”

• modal operators � and ♦
• often pronounced “nessecarily” and “possibly”
• mental picture: depends on “kind” of logic (temporal,
epistemic, deontic . . .) and (related to that) the form
of accessibility relation R
• formal definition: see previous slide

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-38

Different kinds of relations

R a binary relation on a set, say W , i.e., R ⊆W
• reflexive
• transitive
• (right) Euclidian
• total
• order relation
•

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-39

Valid in frame/for a set of frames

If (W,R, V), s |= ϕ for all s and V , we write

(W,R) |= ϕ

Example (Samples)

• (W,R) |= �ϕ→ ϕ iff R is reflexive.
• (W,R) |= �ϕ→ ♦ϕ iff R is total.
• (W,R) |= �ϕ→ ��ϕ iff R is transitive.
• (W,R) |= ¬�ϕ→ �¬�ϕ iff R is Euclidean.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-40

Some exercises

Prove the double implications from the slide before!

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-41

Base line axiomatic system (“K”)

ϕ is a propositional tautology
PL

ϕ

K
�(ϕ1 → ϕ2)→ (�ϕ1 → �ϕ2)

ϕ→ ψ ϕ
MP

ψ

ϕ
G

�ϕ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-42

Sample axioms for different accessibility
relations

�(ϕ→ ψ)→ (�ϕ→ �ψ) (K)
�ϕ→ ♦ϕ (D)
�ϕ→ ϕ (T)
�ϕ→ ��ϕ (4)
¬�ϕ→ �¬�ϕ (5)
�(�ϕ→ ψ)→ �(�ψ → ϕ) (3)
�(�(ϕ→ �ϕ)→ ϕ)→ (♦�ϕ→ ϕ)) (Dum)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-43

Different “flavors” of modal logic

Logic Axioms Interpretation Properties of R
D K D deontic total
T K T reflexive
K45 K 4 5 doxastic transitive/euclidean
S4 K T 4 reflexive/transitive
S5 K T 5 epistemic reflexive/euclidean

reflexive/symmetric/transitive
equivalence relation

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-44

Some exercises

Consider the frame (W,R) with W = {1, 2, 3, 4, 5} and
(i, i+ 1) ∈ R

p p, q p, q q q

1 2 3 4 5

• M, 1 |= ♦�p
• M, 1 |= ♦�p→ p

• M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)
• M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))
• M |= �q

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-45

Exercises (2): bidirectional frames
Bidirectional frame
A frame (W,R) is bidirectional iff R = RF +RP s.t.
∀w,w′(wRFw′ ↔ w′RPw).

p p, q p, q q q

1 2 3 4 5

Consider M = (W,R, V) from before. Which of the
following statements are correct in M and why?
1. M, 1 |= ♦�p
2. M, 1 |= ♦�p→ p

3. M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)
4. M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))
5. M |= �q
6. M |= �q → ♦♦p

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-46

Exercises (3): validities

Which of the following are valid in modal logic. For those
that are not, argue why and find a class of frames on which
they become valid.
1. �⊥
2. ♦p→ �p
3. p→ �♦p
4. ♦�p→ �♦p

Section
Dynamic logics

Multi-modal logic
Dynamic logics
Semantics of PDL

Chapter 1 “Logics”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-48

Introduction

Problem
• FOL: “very” expressive but undecidable. Perhaps good
for mathematics but not ideal for computers.

!! FOL can talk about the state of the system. But how
to talk about change of state in a natural way?
• modal logic: gives us the power to talk about changing
of state. Modal logics is natural when one is interested
in systems that are essentially modeled as states and
transitions between states.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-49

Multi-modal logic

“Kripke frame” (W,Ra, Rb), where Ra and Rb are two
relations over W .

Syntax (2 relations)

Multi-modal logic has one modality for each relation:

ϕ ::= p | ⊥ | ϕ→ ϕ | ♦aϕ | ♦bϕ (6)

Semantics: “natural” generalization of the “mono”-case

M,w |= ♦aϕ iff ∃w′ : wRaw′ and M,w′ |= ϕ (7)

• analogously for modality ♦b and relation Rb

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-49

Multi-modal logic

“Kripke frame” (W,Ra, Rb), where Ra and Rb are two
relations over W .
Syntax (2 relations)

Multi-modal logic has one modality for each relation:

ϕ ::= p | ⊥ | ϕ→ ϕ | ♦aϕ | ♦bϕ (6)

Semantics: “natural” generalization of the “mono”-case

M,w |= ♦aϕ iff ∃w′ : wRaw′ and M,w′ |= ϕ (7)

• analogously for modality ♦b and relation Rb

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-50

Remarks

As multi-modal logic: obvious generalization of modal logic
from before
1. The relations can overlap; i.e., their intersection need

not be empty
2. of course: more than 2 relations possible, for each

relation one modality.
3. There may be infinitely many relations and infinitely

many modalities.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-51

Dynamic logics

• different variants
• can be seen as special case of multi-modal logics
• variant of Hoare-logics
• here: PDL on regular programs
• “P” stands for “propositional”

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-52

Regular programs

DL
Dynamic logic is a multi-modal logic to talk about programs.

here: dynamic logic talks about regular programs

Regular programs are formed syntactically from:
• atomic programs Π0 = {a, b, ...}, which are indivisible,
single-step, basic programming constructs
• sequential composition α · β, which means that program
α is executed/done first and then β.
• nondeterministic choice α+ β, which

nondeterministically chooses one of α and β and
executes it.
• iteration α∗, which executes α some

nondeterministically chosen finite number of times.
• the special skip and fail programs (denoted 1 resp. 0

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-52

Regular programs

DL
Dynamic logic is a multi-modal logic to talk about programs.

here: dynamic logic talks about regular programs
Regular programs are formed syntactically from:
• atomic programs Π0 = {a, b, ...}, which are indivisible,
single-step, basic programming constructs
• sequential composition α · β, which means that program
α is executed/done first and then β.
• nondeterministic choice α+ β, which
nondeterministically chooses one of α and β and
executes it.
• iteration α∗, which executes α some
nondeterministically chosen finite number of times.
• the special skip and fail programs (denoted 1 resp. 0

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-53

Regular programs and tests

Definition (Regular programs)

The syntax of regular programs α, β ∈ Π is given according
to the grammar:

α ::= a ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ? . (8)

The clause ϕ? is called test.

Tests can be seen as special atomic programs which may
have logical structure, but their execution terminates in the
same state iff the test succeeds (is true), otherwise fails if
the test is deemed false in the current state.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-54

Tests

• simple Boolean tests:
ϕ ::= > | ⊥ | ϕ→ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ
• complex tests: ϕ? where ϕ is a logical formula in
dynamic logic

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-55

Propositional Dynamic Logic: Syntax

Definition (DPL syntax)

The formulas ϕ of propositional dynamic logic (PDL) over
regular programs α are given as follows.

α ::= a ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ?
ϕ ::= p, q ∈ Φ0 | > | ⊥ | ϕ→ ϕ | [α]ϕ

(9)
where Φ0 is a set of atomic propositions.

1. programs, which we denote α... ∈ Π
2. formulas, which we denote ϕ... ∈ Φ

Propositional Dynamic Logic (PDL): because based on
propositional logic, only

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-56

PDL: remarks
• Programs α interpreted as a relation Rα
⇒ multi-modal logic.
• [α]ϕ defines many modalities, one modality for each
program, each interpreted over the relation defined by
the program α.
• The relations of the basic programs are just given.
• Operations on/composition of programs are interpreted
as operations on relations.
• ∞ many complex programs ⇒ ∞ many
relations/modalities
• But we think of a single modality [..]ϕ with programs
inside.
• [..]ϕ is the universal one, with 〈..〉ϕ defined as usual.

Intiutive meaning/semantics of [α]ϕ

“If program α is started in the current state, then, if it
terminates, then in its final state, ϕ holds.”

Exercises: “programs”

Define the following programming constructs in PDL:
skip ,

>?

fail ,

⊥?

if ϕ then α else β ,

(ϕ? · α) + (¬ϕ? · β)

if ϕ then α ,

(ϕ? · α) + (¬ϕ? · skip)

case ϕ1 then α1; . . . ,

(ϕ1? · α1) + . . .+ (ϕn? · αn)

case ϕn then αn
while ϕ do α ,

(ϕ? · α)∗ · ¬ϕ?

repeat α until ϕ ,

α · (¬ϕ? · α)∗ · ϕ?

(General while loop)
while ϕ1 then α1 | · · · | ϕn then αn od ,

(ϕ1? · α1 + . . .+ ϕn? · αn)∗·
·(¬ϕ1 ∧ . . .¬ ∧ ϕn)?

Exercises: “programs”

Define the following programming constructs in PDL:
skip , >?
fail , ⊥?

if ϕ then α else β , (ϕ? · α) + (¬ϕ? · β)
if ϕ then α , (ϕ? · α) + (¬ϕ? · skip)

case ϕ1 then α1; . . . , (ϕ1? · α1) + . . .+ (ϕn? · αn)
case ϕn then αn

while ϕ do α , (ϕ? · α)∗ · ¬ϕ?
repeat α until ϕ , α · (¬ϕ? · α)∗ · ϕ?

(General while loop)
while ϕ1 then α1 | · · · | ϕn then αn od , (ϕ1? · α1 + . . .+ ϕn? · αn)∗·

·(¬ϕ1 ∧ . . .¬ ∧ ϕn)?

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-58

Making Kripke structures
“multi-modal-prepared”
Definition (Labeled Kripke structures)

Assume a set of labels Σ. A labeled Kripke structure is a
tuple (W,R,Σ) where

R =
⋃
l∈Σ

Rl

is the disjoint union of the relations indexed by the labels of
Σ.

for us (at leat now): The labels of Σ can be thought as
programs
• Σ: aka alphabet,
• alternative: R ⊆W × Σ×W
• labels l, l1 . . . but also a, b, . . . or others
• often: a−→, like w1

a−→ w2 or s1
a−→ s2

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-59

Regular Kripke structures

• “labels” now have “strucuture”
• remember regular program syntax
• interpretation of certain programs/labels fixed,

• 0: failing program
• α1 · α2: sequential composition
• . . .

• thus, relations like 0, Rα1·α2 , . . . must obey
side-conditions

Basically
leaving open the interpretation of the “atoms” a, we fix the
interpretation/semantics of the constructs of regular
programs

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-60

Regular Kripke structures

Definition (Regular Kripke structures)

A regular Kripke structure is a Kripke structure labeled as
follows. For all basic programs a ∈ Π0, choose some relation
Ra. For the remaining syntactic constructs (except tests),
the corresponding relations are defined inductively as follows.

R1 = Id
R0 = ∅
Rα1·α2 = Rα1 ◦Rα2

Rα1+α2 = Rα1 ∪Rα2

Rα∗ =
⋃
n≥0R

n
α

Kripke models and interpreting PDL
formulas
Now: add valutions ⇒ Kripke model

Definition (Semantics)

A PDL formula ϕ is true in the world w of a regular Kripke
model M , i.e., we have attached a valuation V also, written
M,w |= ϕ, if:

M,w |= pi iff pi ∈ V (w) for all propositional constants
M,w 6|= ⊥ and M,w |= >
M,w |= ϕ1 → ϕ2 iff whenever M,w |= ϕ1 then also M,w |= ϕ2

M,w |= [α]ϕ iff M,w′ |= ϕ for all w′ such that wRαw′

M,w |= 〈α〉ϕ iff M,w′ |= ϕ for some w′ such that wRαw′

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-62

Semantics (cont’d)

• programs and formulas: mutually dependent
• omitted so far: what relationship corresponds to

ϕ?

• remember the intuitive meaning (semantics) of tests

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-63

Test programs

Intuition: tests interpreted as subsets of the identity relation.

Rϕ? = {(w,w) | w |= ϕ} ⊆ I (10)

More precisely:
• for >? the relation becomes R>? = Id

(testing > succeeds everywhere and is as the skip
program)
• for ⊥? the relation becomes R⊥? = ∅
(⊥ is nowhere true and is as the fail program)
• R(ϕ1∧ϕ2)? = {(w,w) | w |= ϕ1 and w |= ϕ2}
• Testing a complex formula involving [α]ϕ is like looking
into the future of the program and then deciding on the
action to take...

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-64

Axiomatic System of PDL

Take all tautologies of propositional logic (i.e., the axiom
system of PL from Lecture 2) and add
Axioms:

[α](φ1 → φ2)→ ([α]φ1 → [α]φ2) (1)
[α](φ1 ∧ φ2)↔ [α]φ1 ∧ [α]φ2 (2)
[α+ β]φ↔ [α]φ ∧ [β]φ (3)
[α · β]φ↔ [α][β]φ (4)
[φ?]ψ ↔ φ→ ψ (5)
φ ∧ [α][α∗]φ↔ [α∗]φ (6)
φ ∧ [α∗](φ→ [α]φ)→ [α∗]φ (IND)

Rules: take the (MP) modus ponens and (G) generalization
of Modal Logic.

Chapter 2
LTL model checking

Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Chapter 2
Learning Targets of Chapter “LTL model check-
ing”.

The chapter covers LTL and how to do model checking
for that logic, using Büchi-automata.

Chapter 2
Outline of Chapter “LTL model checking”.
Introduction
LTL

Syntax
Semantics
The Past
Examples
Nested waiting-for
Formalization
Duals
Classification

Properties
Safety and Liveness
Recurrence and Persistence
Reactivity
GCD Example

Exercises

Section
Introduction

Properties
Safety and Liveness
Recurrence and Persistence
Reactivity
GCD Example

Chapter 2 “LTL model checking”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-5

Temporal logic?

• Temporal logic: is the/a logic of “time”
• modal logic.
• different ways of modeling time.

• linear vs. branching time
• time instances vs. time intervals
• discrete time vs. continuous time
• past and future vs. future only
• . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-6

LTL

• linear time temporal logic
• one central temporal logic in CS
• supported by Spinand other model checkers
• many variations

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-7

FOL (repetition)

First Order Logic

• We have used FOL to express properties of states.

• 〈x : 21, y : 49〉 ||= x < y
• 〈x : 21, y : 7〉 6||= x < y

• A computation is a sequence of states.
• To express properties of computations, we need to
extend FOL.
• This we can do using temporal logic.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-7

FOL (repetition)

First Order Logic

• We have used FOL to express properties of states.
• 〈x : 21, y : 49〉 ||= x < y

• 〈x : 21, y : 7〉 6||= x < y

• A computation is a sequence of states.
• To express properties of computations, we need to
extend FOL.
• This we can do using temporal logic.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-7

FOL (repetition)

First Order Logic

• We have used FOL to express properties of states.
• 〈x : 21, y : 49〉 ||= x < y
• 〈x : 21, y : 7〉 6||= x < y

• A computation is a sequence of states.
• To express properties of computations, we need to
extend FOL.
• This we can do using temporal logic.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-7

FOL (repetition)

First Order Logic

• We have used FOL to express properties of states.
• 〈x : 21, y : 49〉 ||= x < y
• 〈x : 21, y : 7〉 6||= x < y

• A computation is a sequence of states.

• To express properties of computations, we need to
extend FOL.
• This we can do using temporal logic.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-7

FOL (repetition)

First Order Logic

• We have used FOL to express properties of states.
• 〈x : 21, y : 49〉 ||= x < y
• 〈x : 21, y : 7〉 6||= x < y

• A computation is a sequence of states.
• To express properties of computations, we need to
extend FOL.

• This we can do using temporal logic.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-7

FOL (repetition)

First Order Logic

• We have used FOL to express properties of states.
• 〈x : 21, y : 49〉 ||= x < y
• 〈x : 21, y : 7〉 6||= x < y

• A computation is a sequence of states.
• To express properties of computations, we need to
extend FOL.
• This we can do using temporal logic.

Section
LTL

Syntax
Semantics
The Past
Examples
Nested waiting-for
Formalization
Duals
Classification

Properties
Safety and Liveness
Recurrence and Persistence
Reactivity
GCD Example

Exercises
Chapter 2 “LTL model checking”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-9

LTL: speaking about “time”

In Linear Temporal Logic (LTL), also called linear-time
temporal logic, we can describe such properties as, for
instance, the following: assume time is a sequence of
discrete points i in time, then: if i is now,
• p holds in i and every following point (the future)
• p holds in i and every preceding point (the past)

. . . •pi−2 •pi−1 •pi •pi+1 •pi+2 . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-10

Syntax

ψ propositional/first-order formula
ϕ ::= ψ formulas of the “core” logics

| ¬ϕ | ϕ ∧ ϕ | ϕ→ ϕ | . . . boolean combinations
| ©ϕ next ϕ
| �ϕ always ϕ
| ♦ϕ eventually ϕ
| ϕ U ϕ “until”
| ϕ R ϕ “release”
| ϕ W ϕ “waiting for”, “weak until”

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-11

Paths and computations

Definition (Path)

• A path is an infinite sequence

σ = s0, s1, s2, . . .

of states.

• σk denotes the path sk, sk+1, sk+2, . . .

• σk denotes the state sk.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-11

Paths and computations

Definition (Path)

• A path is an infinite sequence

σ = s0, s1, s2, . . .

of states.
• σk denotes the path sk, sk+1, sk+2, . . .

• σk denotes the state sk.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-11

Paths and computations

Definition (Path)

• A path is an infinite sequence

σ = s0, s1, s2, . . .

of states.
• σk denotes the path sk, sk+1, sk+2, . . .

• σk denotes the state sk.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-12

Satisfaction (semantics)

Definition
An LTL formula ϕ is true relative to a path σ, written
σ |= ϕ, as follows.

σ |= ψ iff σ0 |=ul ϕ where ψ in underlying core language
σ |= ¬ϕ iff σ 6|= ϕ

σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2

σ |= �ϕ iff σk |= ϕ for all k ≥ 0
σ |= ♦ϕ iff σk |= ϕ for some k ≥ 0
σ |=©ϕ iff σ1 |= ϕ

(cont.)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-13

Satisfaction (semantics) (2)

Definition
(cont.)

σ |= ϕ1 U ϕ2 iff σk |= ϕ2 for some k ≥ 0, and
σi |= ϕ2 for every i such that 0 ≤ i < k

σ |= ϕ1 R ϕ2 iff for every j ≥ 0,
if σi 6|= ϕ1 for every i < j then σj |= ϕ2

σ |= ϕ1 W ϕ2 iff σ |= ϕ1 U ϕ2 or σ |= �ϕ1

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-14

Validity and semantic equivalence

Definition
• We say that ϕ is (temporally) valid, written |= ϕ, if

σ |= ϕ for all paths σ.

• We say that ϕ and ψ are equivalent, written ϕ ∼ ψ, if
|= ϕ↔ ψ (i.e. σ |= ϕ iff σ |= ψ, for all σ).

Example
� distributes over ∧, while ♦ distributes over ∨.

�(ϕ ∧ ψ) ∼ (�ϕ ∧�ψ)
♦(ϕ ∨ ψ) ∼ (♦ϕ ∨ ♦ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-14

Validity and semantic equivalence

Definition
• We say that ϕ is (temporally) valid, written |= ϕ, if

σ |= ϕ for all paths σ.
• We say that ϕ and ψ are equivalent, written ϕ ∼ ψ, if

|= ϕ↔ ψ (i.e. σ |= ϕ iff σ |= ψ, for all σ).

Example
� distributes over ∧, while ♦ distributes over ∨.

�(ϕ ∧ ψ) ∼ (�ϕ ∧�ψ)
♦(ϕ ∨ ψ) ∼ (♦ϕ ∨ ♦ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-14

Validity and semantic equivalence

Definition
• We say that ϕ is (temporally) valid, written |= ϕ, if

σ |= ϕ for all paths σ.
• We say that ϕ and ψ are equivalent, written ϕ ∼ ψ, if

|= ϕ↔ ψ (i.e. σ |= ϕ iff σ |= ψ, for all σ).

Example
� distributes over ∧, while ♦ distributes over ∨.

�(ϕ ∧ ψ) ∼ (�ϕ ∧�ψ)
♦(ϕ ∨ ψ) ∼ (♦ϕ ∨ ♦ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-15

Semantics

σ |= �p

•p0 •p1 •p2 •p3 •p4 . . .

σ |= ♦p

•0 •1 •2 •p3 •4 . . .

σ |=©p

•0 •p1 •2 •3 •4 . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-16

σ |= p U q (sequence of p’s is finite)

•p0 •p1 •p2 •q3 •4 . . .

σ |= p R q (The sequence of qs may be infinite)

•q0 •q1 •q2 •p,q3 •4 . . .

σ |= p W q. The sequence of ps may be infinite.
(p W q ∼ p U q ∨�p).

•p0 •p1 •p2 •p3 •p4 . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-17

The past

Observation
• [1] uses pairs (σ, j) of paths and positions instead of
just the path σ because they have past-formulae:
formulae without future operators (the ones we use) but
possibly with past operators, like �−1 and ♦−1.

(σ, j) |= �−1ϕ iff (σ, k) |= ϕ for all k, 0 ≤ k ≤ j
(σ, j) |= ♦−1ϕ iff (σ, k) |= ϕ for some k, 0 ≤ k ≤ j

• However, it can be shown that for any formula ϕ, there
is a future-formula (formulae without past operators) ψ
such that

(σ, 0) |= ϕ iff (σ, 0) |= ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-17

The past

Observation
• [1] uses pairs (σ, j) of paths and positions instead of
just the path σ because they have past-formulae:
formulae without future operators (the ones we use) but
possibly with past operators, like �−1 and ♦−1.

(σ, j) |= �−1ϕ iff (σ, k) |= ϕ for all k, 0 ≤ k ≤ j
(σ, j) |= ♦−1ϕ iff (σ, k) |= ϕ for some k, 0 ≤ k ≤ j

• However, it can be shown that for any formula ϕ, there
is a future-formula (formulae without past operators) ψ
such that

(σ, 0) |= ϕ iff (σ, 0) |= ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-18

The past: examples

Example
What is a future version of �(p→ ♦−1q)?
(σ, 0) |= �(p→ ♦−1q)

•p→♦−1q •p→♦−1q •p→♦−1q •p→♦−1q • . . .

(σ, 0) |= q R (p→ q)

•p→q •p→q •p→q,q • • . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-19

Examples

Example
ϕ→ ♦ψ: If ϕ holds initially, then ψ holds eventually.

•ϕ • • •ψ • . . .

This formula will also hold in every path where ϕ does not
hold initially.

•¬ϕ • • • • . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-20

Example: Response

Example (Response)

�(ϕ→ ♦ψ)
Every ϕ-position coincides with or is followed by a
ψ-position.

• •ϕ • •ψ • •ϕ,ψ . . .

This formula will also hold in every path where ϕ never
holds.

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-21

Examples

Example
�♦ψ
There are infinitely many ψ-positions.

•ψ • • •ψ • •ψ • . . .

This formula can be obtained from the previous one,
�(ϕ→ ♦ψ), by letting ϕ = >: �(> → ♦ψ).

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-22

Example: permanence

Example
♦�ϕ
Eventually ϕ will hold permanently.

• •ϕ • • •ϕ •ϕ •ϕ . . .

Equivalently: there are finitely many ¬ϕ-positions.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-23

LTL example

Example
(¬ϕ) W ψ
[WRONG SENTENCE] The first ϕ-position must coincide or
be preceded by a ψ-position.

•¬ϕ •¬ϕ •¬ϕ •ψ •ϕ • • . . .

ϕ may never hold

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-24

LTL Example

Example
�(ϕ→ ψ W χ)
Every ϕ-position initiates a sequence of ψ-positions, and if
terminated, by a χ-position.

• •ϕ,ψ •ψ •ψ •χ • •ϕ,ψ . . .

The sequence of ψ-positions need not terminate.

• •ϕ,ψ •ψ •ψ •ψ •ψ •ψ . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-25

Nested waiting-for
A nested waiting-for formula is of the form

�(ϕ→ (ψm W (ψm−1 W · · · (ψ1 W ψ0) · · ·))),

where ϕ,ψ0, . . . , ψm in the underlying logic. For
convenience, we write

�(ϕ→ ψmW ψm−1W · · · W ψ1W ψ0).

Every ϕ-position initiates a succession of intervals, beginning
with a ψm-interval, ending with a ψ1-interval and possibly
terminated by a ψ0-position. Each interval may be empty or
extend to infinity.

. . . •ϕ,ψm •ψm •ψm •ψm−1 •ψm−1 . . .

. . . •ψ2 •ψ2 •ψ1 •ψ1 •ψ0 . . .

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?

• ϕ→ ψ?

ϕ→ ψ holds in the initial state.

• �(ϕ→ ψ)?

ϕ→ ψ holds in every state.

• ϕ→ ♦ψ?

ϕ holds in the initial state, ψ will hold in
some state.

• �(ϕ→ ♦ψ)?

We saw this earlier.

• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?
• ϕ→ ψ?

ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)?

ϕ→ ψ holds in every state.

• ϕ→ ♦ψ?

ϕ holds in the initial state, ψ will hold in
some state.

• �(ϕ→ ♦ψ)?

We saw this earlier.

• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?
• ϕ→ ψ? ϕ→ ψ holds in the initial state.

• �(ϕ→ ψ)?

ϕ→ ψ holds in every state.

• ϕ→ ♦ψ?

ϕ holds in the initial state, ψ will hold in
some state.

• �(ϕ→ ♦ψ)?

We saw this earlier.

• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?
• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)?

ϕ→ ψ holds in every state.
• ϕ→ ♦ψ?

ϕ holds in the initial state, ψ will hold in
some state.

• �(ϕ→ ♦ψ)?

We saw this earlier.

• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?
• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)? ϕ→ ψ holds in every state.

• ϕ→ ♦ψ?

ϕ holds in the initial state, ψ will hold in
some state.

• �(ϕ→ ♦ψ)?

We saw this earlier.

• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?
• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)? ϕ→ ψ holds in every state.
• ϕ→ ♦ψ?

ϕ holds in the initial state, ψ will hold in
some state.
• �(ϕ→ ♦ψ)?

We saw this earlier.

• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?
• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)? ϕ→ ψ holds in every state.
• ϕ→ ♦ψ? ϕ holds in the initial state, ψ will hold in
some state.

• �(ϕ→ ♦ψ)?

We saw this earlier.

• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?
• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)? ϕ→ ψ holds in every state.
• ϕ→ ♦ψ? ϕ holds in the initial state, ψ will hold in
some state.
• �(ϕ→ ♦ψ)?

We saw this earlier.
• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?
• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)? ϕ→ ψ holds in every state.
• ϕ→ ♦ψ? ϕ holds in the initial state, ψ will hold in
some state.
• �(ϕ→ ♦ψ)? We saw this earlier.

• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-26

Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?
• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)? ϕ→ ψ holds in every state.
• ϕ→ ♦ψ? ϕ holds in the initial state, ψ will hold in
some state.
• �(ϕ→ ♦ψ)? We saw this earlier.
• None of these is necessarily what we intended

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-27

Duals

Definition (Duals)

For binary boolean connectives1 ◦ and •, we say that • is the
dual of ◦ if

¬(ϕ ◦ ψ) ∼ (¬ϕ • ¬ψ).

Similarly for unary connectives: • is the dual of ◦ if
¬ ◦ ϕ ∼ •¬ϕ.

Duality is symmetric:
• If • is the dual of ◦ then
• ◦ is the dual of •, thus
• we may refer to two connectives as dual (of each other).

1Those are not concrete connectives or operators, they are meant as
“placeholders”

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-28

Dual connectives

Which connectives are duals?

• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →?

It’s 6←:

¬(ϕ 6← ψ)

∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-28

Dual connectives

Which connectives are duals?
• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →?

It’s 6←:

¬(ϕ 6← ψ)

∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-28

Dual connectives

Which connectives are duals?
• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →?

It’s 6←:

¬(ϕ 6← ψ)

∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-28

Dual connectives

Which connectives are duals?
• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →?

It’s 6←:

¬(ϕ 6← ψ)

∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-28

Dual connectives

Which connectives are duals?
• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →? It’s 6←:

¬(ϕ 6← ψ)

∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-28

Dual connectives

Which connectives are duals?
• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →? It’s 6←:

¬(ϕ 6← ψ) ∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-28

Dual connectives

Which connectives are duals?
• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →? It’s 6←:

¬(ϕ 6← ψ) ∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-28

Dual connectives

Which connectives are duals?
• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →? It’s 6←:

¬(ϕ 6← ψ) ∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-29

Complete sets of connectives

• A set of connectives is complete (for boolean formulae)
if every other connective can be defined in terms of
them.

• Our set of connectives is complete (e.g., 6← can be
defined), but also subsets of it, so we don’t actually
need all the connectives.

Example
{∨,¬} is complete.

• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-29

Complete sets of connectives

• A set of connectives is complete (for boolean formulae)
if every other connective can be defined in terms of
them.
• Our set of connectives is complete (e.g., 6← can be
defined), but also subsets of it, so we don’t actually
need all the connectives.

Example
{∨,¬} is complete.

• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-29

Complete sets of connectives

• A set of connectives is complete (for boolean formulae)
if every other connective can be defined in terms of
them.
• Our set of connectives is complete (e.g., 6← can be
defined), but also subsets of it, so we don’t actually
need all the connectives.

Example
{∨,¬} is complete.

• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-29

Complete sets of connectives

• A set of connectives is complete (for boolean formulae)
if every other connective can be defined in terms of
them.
• Our set of connectives is complete (e.g., 6← can be
defined), but also subsets of it, so we don’t actually
need all the connectives.

Example
{∨,¬} is complete.
• ∧ is the dual of ∨.

• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-29

Complete sets of connectives

• A set of connectives is complete (for boolean formulae)
if every other connective can be defined in terms of
them.
• Our set of connectives is complete (e.g., 6← can be
defined), but also subsets of it, so we don’t actually
need all the connectives.

Example
{∨,¬} is complete.
• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.

• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-29

Complete sets of connectives

• A set of connectives is complete (for boolean formulae)
if every other connective can be defined in terms of
them.
• Our set of connectives is complete (e.g., 6← can be
defined), but also subsets of it, so we don’t actually
need all the connectives.

Example
{∨,¬} is complete.
• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).

• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-29

Complete sets of connectives

• A set of connectives is complete (for boolean formulae)
if every other connective can be defined in terms of
them.
• Our set of connectives is complete (e.g., 6← can be
defined), but also subsets of it, so we don’t actually
need all the connectives.

Example
{∨,¬} is complete.
• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p

• ⊥ is equivalent to p ∧ ¬p

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-29

Complete sets of connectives

• A set of connectives is complete (for boolean formulae)
if every other connective can be defined in terms of
them.
• Our set of connectives is complete (e.g., 6← can be
defined), but also subsets of it, so we don’t actually
need all the connectives.

Example
{∨,¬} is complete.
• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-30

Duals in LTL
We can extend the notions of duality and completeness to
temporal formulae.
Duals of temporal operators

• What is the dual of �?

And of ♦?

• � and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

• Any other?
• U and R are duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-30

Duals in LTL
We can extend the notions of duality and completeness to
temporal formulae.
Duals of temporal operators

• What is the dual of �?

And of ♦?
• � and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

• Any other?
• U and R are duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-30

Duals in LTL
We can extend the notions of duality and completeness to
temporal formulae.
Duals of temporal operators

• What is the dual of �? And of ♦?

• � and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

• Any other?
• U and R are duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-30

Duals in LTL
We can extend the notions of duality and completeness to
temporal formulae.
Duals of temporal operators

• What is the dual of �? And of ♦?
• � and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

• Any other?
• U and R are duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-30

Duals in LTL
We can extend the notions of duality and completeness to
temporal formulae.
Duals of temporal operators

• What is the dual of �? And of ♦?
• � and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

• Any other?

• U and R are duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-30

Duals in LTL
We can extend the notions of duality and completeness to
temporal formulae.
Duals of temporal operators

• What is the dual of �? And of ♦?
• � and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

• Any other?
• U and R are duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-31

Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-31

Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-31

Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.

Proof.
• ♦ϕ ∼ > U ϕ

• �ϕ ∼ ⊥ R ϕ

• ϕ R ψ ∼ ¬(¬ϕ U ¬ψ)
• ϕ W ψ ∼ �ϕ ∨ (ϕ U ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-31

Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.

Proof.
• ♦ϕ ∼ > U ϕ

• �ϕ ∼ ⊥ R ϕ

• ϕ R ψ ∼ ¬(¬ϕ U ¬ψ)
• ϕ W ψ ∼ �ϕ ∨ (ϕ U ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-31

Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.

Proof.
• ♦ϕ ∼ > U ϕ

• �ϕ ∼ ⊥ R ϕ

• ϕ R ψ ∼ ¬(¬ϕ U ¬ψ)

• ϕ W ψ ∼ �ϕ ∨ (ϕ U ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-31

Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.

Proof.
• ♦ϕ ∼ > U ϕ

• �ϕ ∼ ⊥ R ϕ

• ϕ R ψ ∼ ¬(¬ϕ U ¬ψ)
• ϕ W ψ ∼ �ϕ ∨ (ϕ U ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-32

Classification of properties

We can classify properties expressible in LTL.

Classification

safety �ϕ

liveness ♦ϕ

obligation �ϕ ∨ ♦ψ
recurrence �♦ϕ
persistence ♦�ϕ
reactivity �♦ϕ ∨ ♦�ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-33

Safety
• important basic class of properties
• relation to testing and run-time verification
• “nothing bad ever happens”

Definition (Safety)

• A safety formula is of the form

�ϕ

for some first-order/prop. formula ϕ.

• A conditional safety formula is of the form

ϕ→ �ψ

for (first-order) formulae ϕ and ψ.
• Safety formulae express invariance of some state
property ϕ: that ϕ holds in every state of the
computation.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-33

Safety
• important basic class of properties
• relation to testing and run-time verification
• “nothing bad ever happens”

Definition (Safety)

• A safety formula is of the form

�ϕ

for some first-order/prop. formula ϕ.
• A conditional safety formula is of the form

ϕ→ �ψ

for (first-order) formulae ϕ and ψ.

• Safety formulae express invariance of some state
property ϕ: that ϕ holds in every state of the
computation.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-33

Safety
• important basic class of properties
• relation to testing and run-time verification
• “nothing bad ever happens”

Definition (Safety)

• A safety formula is of the form

�ϕ

for some first-order/prop. formula ϕ.
• A conditional safety formula is of the form

ϕ→ �ψ

for (first-order) formulae ϕ and ψ.
• Safety formulae express invariance of some state
property ϕ: that ϕ holds in every state of the
computation.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-34

Safety property example
Example

• Mutual exclusion is a safety property. Let Ci denote
that process Pi is executing in the critical section. Then

�¬(C1 ∧ C2)

expresses that it should always be the case that not
both P1 and P2 are executing in the critical section.

• Observe that the negation of a safety formula is a
liveness formula; the negation of the formula above is
the liveness formula

♦(C1 ∧ C2)

which expresses that eventually it is the case that both
P1 and P2 are executing in the critical section.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-34

Safety property example
Example

• Mutual exclusion is a safety property. Let Ci denote
that process Pi is executing in the critical section. Then

�¬(C1 ∧ C2)

expresses that it should always be the case that not
both P1 and P2 are executing in the critical section.
• Observe that the negation of a safety formula is a
liveness formula; the negation of the formula above is
the liveness formula

♦(C1 ∧ C2)

which expresses that eventually it is the case that both
P1 and P2 are executing in the critical section.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-35

Liveness properties

Definition (Liveness)

• A liveness formula is of the form

♦ϕ

for some first-order formula ϕ.

• A conditional liveness formula is of the form

ϕ→ ♦ψ

for first-order formulae ϕ and ψ.
• Liveness formulae guarantee that some event ϕ
eventually happens: that ϕ holds in at least one state of
the computation.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-35

Liveness properties

Definition (Liveness)

• A liveness formula is of the form

♦ϕ

for some first-order formula ϕ.
• A conditional liveness formula is of the form

ϕ→ ♦ψ

for first-order formulae ϕ and ψ.

• Liveness formulae guarantee that some event ϕ
eventually happens: that ϕ holds in at least one state of
the computation.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-35

Liveness properties

Definition (Liveness)

• A liveness formula is of the form

♦ϕ

for some first-order formula ϕ.
• A conditional liveness formula is of the form

ϕ→ ♦ψ

for first-order formulae ϕ and ψ.
• Liveness formulae guarantee that some event ϕ
eventually happens: that ϕ holds in at least one state of
the computation.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-36

Connection to Hoare logic

Observation
• Partial correctness is a safety property. Let P be a
program and ψ the post condition.

�(terminated(P)→ ψ)

• In the case of full partial correctness, where there is a
precondition ϕ, we get a conditional safety formula,

ϕ→ �(terminated(P)→ ψ),

which we can express as { ϕ } P { ψ } in Hoare Logic.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-36

Connection to Hoare logic

Observation
• Partial correctness is a safety property. Let P be a
program and ψ the post condition.

�(terminated(P)→ ψ)

• In the case of full partial correctness, where there is a
precondition ϕ, we get a conditional safety formula,

ϕ→ �(terminated(P)→ ψ),

which we can express as { ϕ } P { ψ } in Hoare Logic.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-37

Total correctness and liveness

Observation
• Total correctness is a liveness property. Let P be a
program and ψ the post condition.

♦(terminated(P) ∧ ψ)

• In the case of full total correctness, where there is a
precondition ϕ, we get a conditional liveness formula,

ϕ→ ♦(terminated(P) ∧ ψ).

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-37

Total correctness and liveness

Observation
• Total correctness is a liveness property. Let P be a
program and ψ the post condition.

♦(terminated(P) ∧ ψ)

• In the case of full total correctness, where there is a
precondition ϕ, we get a conditional liveness formula,

ϕ→ ♦(terminated(P) ∧ ψ).

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-38

Duality of partial and total correctness

Observation
Partial and total correctness are dual.
Let

PC (ψ) , �(terminated → ψ)
TC (ψ) , ♦(terminated ∧ ψ)

Then

¬PC (ψ) ∼ PC (¬ψ)
¬TC (ψ) ∼ TC (¬ψ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-39

Obligation

Definition (Obligation)

• A simple obligation formula is of the form

�ϕ ∨ ♦ψ

for first-order formula ϕ and ψ.

• An equivalent form is

♦χ→ ♦ψ

which states that some state satisfies χ only if some
state satisfies ψ.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-39

Obligation

Definition (Obligation)

• A simple obligation formula is of the form

�ϕ ∨ ♦ψ

for first-order formula ϕ and ψ.
• An equivalent form is

♦χ→ ♦ψ

which states that some state satisfies χ only if some
state satisfies ψ.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-40

Obligation (2)

Proposition
Every safety and liveness formula is also an obligation
formula.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-40

Obligation (2)

Proposition
Every safety and liveness formula is also an obligation
formula.

Proof.
This is because of the following equivalences.

�ϕ ∼ �ϕ ∨ ♦⊥
♦ϕ ∼ �⊥ ∨ ♦ϕ

and the facts that |= ¬�⊥ and |= ¬♦⊥.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-41

Recurrence
Definition (Recurrence)

• A recurrence formula is of the form

�♦ϕ

for some first-order formula ϕ.

• It states that infinitely many positions in the
computation satisfies ϕ.

Observation
A response formula, of the form �(ϕ→ ♦ψ), is equivalent
to a recurrence formula, of the form �♦χ, if we allow χ to
be a past-formula.

�(ϕ→ ♦ψ) ∼ �♦(¬ϕ) W−1 ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-41

Recurrence
Definition (Recurrence)

• A recurrence formula is of the form

�♦ϕ

for some first-order formula ϕ.
• It states that infinitely many positions in the
computation satisfies ϕ.

Observation
A response formula, of the form �(ϕ→ ♦ψ), is equivalent
to a recurrence formula, of the form �♦χ, if we allow χ to
be a past-formula.

�(ϕ→ ♦ψ) ∼ �♦(¬ϕ) W−1 ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-41

Recurrence
Definition (Recurrence)

• A recurrence formula is of the form

�♦ϕ

for some first-order formula ϕ.
• It states that infinitely many positions in the
computation satisfies ϕ.

Observation
A response formula, of the form �(ϕ→ ♦ψ), is equivalent
to a recurrence formula, of the form �♦χ, if we allow χ to
be a past-formula.

�(ϕ→ ♦ψ) ∼ �♦(¬ϕ) W−1 ψ

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-42

Recurrence

Proposition
Weak fairness2 can be specified as the following recurrence
formula.

�♦(enabled(τ)→ taken(τ))

Observation
An equivalent form is

�(�enabled(τ)→ ♦taken(τ)),

which looks more like the first-order formula we saw last
time.

2weak and strong fairness will be “recurrent” (sorry for the pun)
themes. For instance they will show up again in the TLA presentation.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-42

Recurrence

Proposition
Weak fairness2 can be specified as the following recurrence
formula.

�♦(enabled(τ)→ taken(τ))

Observation
An equivalent form is

�(�enabled(τ)→ ♦taken(τ)),

which looks more like the first-order formula we saw last
time.

2weak and strong fairness will be “recurrent” (sorry for the pun)
themes. For instance they will show up again in the TLA presentation.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-43

Persistence

Definition (Persistence)

• A persistence formula is of the form

♦�ϕ

for some first-order formula ϕ.

• It states that all but finitely many positions satisfy ϕ3

• Persistence formulae are used to describe the eventual
stabilization of some state property.

3In other words: only finitely (“but”) many position satisfy ¬ϕ. So
at some point onwards, it’s always ϕ.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-43

Persistence

Definition (Persistence)

• A persistence formula is of the form

♦�ϕ

for some first-order formula ϕ.
• It states that all but finitely many positions satisfy ϕ3

• Persistence formulae are used to describe the eventual
stabilization of some state property.

3In other words: only finitely (“but”) many position satisfy ¬ϕ. So
at some point onwards, it’s always ϕ.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-43

Persistence

Definition (Persistence)

• A persistence formula is of the form

♦�ϕ

for some first-order formula ϕ.
• It states that all but finitely many positions satisfy ϕ3

• Persistence formulae are used to describe the eventual
stabilization of some state property.

3In other words: only finitely (“but”) many position satisfy ¬ϕ. So
at some point onwards, it’s always ϕ.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-44

Recurrence and Persistence

Observation
Recurrence and persistence are duals.

¬(�♦ϕ) ∼ (♦�¬ϕ)
¬(♦�ϕ) ∼ (�♦¬ϕ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-45

Reactivity

Definition (Reactivity)

• A simple reactivity formula is of the form

�♦ϕ ∨ ♦�ψ

for first-order formula ϕ and ψ.

• A very general class of formulae are conjunctions of
reactivity formulae.
• An equivalent form is

�♦χ→ �♦ψ,

which states that if the computation contains infinitely
many χ-positions, it must also contain infinitely many
ψ-positions.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-45

Reactivity

Definition (Reactivity)

• A simple reactivity formula is of the form

�♦ϕ ∨ ♦�ψ

for first-order formula ϕ and ψ.
• A very general class of formulae are conjunctions of
reactivity formulae.

• An equivalent form is

�♦χ→ �♦ψ,

which states that if the computation contains infinitely
many χ-positions, it must also contain infinitely many
ψ-positions.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-45

Reactivity

Definition (Reactivity)

• A simple reactivity formula is of the form

�♦ϕ ∨ ♦�ψ

for first-order formula ϕ and ψ.
• A very general class of formulae are conjunctions of
reactivity formulae.
• An equivalent form is

�♦χ→ �♦ψ,

which states that if the computation contains infinitely
many χ-positions, it must also contain infinitely many
ψ-positions.

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-46

Reactivity

Proposition
Strong fairness can be specified as the following reactivity
formula.

�♦enabled(τ)→ �♦taken(τ)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-47

GCD Example

Below is a computation σ of our recurring GCD program.

• a and b are fixed: σ |= �(a .= 21 ∧ b .= 49).
• at(l) denotes the formulae (π .= {l}).
• terminated denotes the formula at(l8).

P -computation
States are of the form 〈π, x, y, g〉.

σ : 〈l1, 21, 49, 0〉 → 〈lb2, 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2, 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-47

GCD Example

Below is a computation σ of our recurring GCD program.
• a and b are fixed: σ |= �(a .= 21 ∧ b .= 49).

• at(l) denotes the formulae (π .= {l}).
• terminated denotes the formula at(l8).

P -computation
States are of the form 〈π, x, y, g〉.

σ : 〈l1, 21, 49, 0〉 → 〈lb2, 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2, 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-47

GCD Example

Below is a computation σ of our recurring GCD program.
• a and b are fixed: σ |= �(a .= 21 ∧ b .= 49).
• at(l) denotes the formulae (π .= {l}).

• terminated denotes the formula at(l8).

P -computation
States are of the form 〈π, x, y, g〉.

σ : 〈l1, 21, 49, 0〉 → 〈lb2, 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2, 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-47

GCD Example

Below is a computation σ of our recurring GCD program.
• a and b are fixed: σ |= �(a .= 21 ∧ b .= 49).
• at(l) denotes the formulae (π .= {l}).
• terminated denotes the formula at(l8).

P -computation
States are of the form 〈π, x, y, g〉.

σ : 〈l1, 21, 49, 0〉 → 〈lb2, 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2, 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?

1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)

2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated

3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated

4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)

5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)

6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)

7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)

8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)

9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-48

GCD Example

Does the following properties hold for σ? And why?
1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-49

Exercises

Exercises
1. Show that the following formulae are (not) LTL-valid.

1.1 �ϕ↔ ��ϕ
1.2 ♦ϕ↔ ♦♦ϕ
1.3 ¬�ϕ→ �¬�ϕ
1.4 �(�ϕ→ ψ)→ �(�ψ → ϕ)
1.5 �(�ϕ→ ψ) ∨�(�ψ → ϕ)
1.6 �♦�ϕ→ ♦�ϕ
1.7 �♦ϕ↔ �♦�♦ϕ

2. A modality is a sequence of ¬, � and ♦, including the
empty sequence ε. Two modalities σ and τ are
equivalent if σϕ↔ τϕ is valid.
2.1 Which are the non-equivalent modalities in LTL, and
2.2 what are their relationship (ie. implication-wise)?

IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-50

References I

Bibliography

[1] Manna, Z. and Pnueli, A. (1992). The temporal logic of reactive and concurrent
systems—Specification. Springer Verlag, New York.

	Logics
	Targets & Outline
	Introduction
	Propositional logic
	Algebraic and first-order signatures
	First-order logic
	Syntax
	Semantics
	Proof theory

	Modal logics
	Introduction
	Semantics
	Proof theory and axiomatic systems
	Exercises

	Dynamic logics
	Multi-modal logic
	Dynamic logics
	Semantics of PDL

	LTL model checking
	Targets & Outline
	Introduction
	LTL
	Syntax
	Semantics
	The Past
	Examples
	Nested waiting-for
	Formalization
	Duals
	Classification
	Properties
	Safety and Liveness
	Recurrence and Persistence
	Reactivity
	GCD Example

	Exercises

