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Chapter 1
Learning Targets of Chapter “Logics”.

The chapter gives some basic information about
“standard” logics, namely propositional logics and
(classical) first-order logics.



Chapter 1
Outline of Chapter “Logics”.
Introduction
Propositional logic
Algebraic and first-order signatures
First-order logic

Syntax
Semantics
Proof theory

Modal logics
Introduction
Semantics
Proof theory and axiomatic systems
Exercises

Dynamic logics
Multi-modal logic
Dynamic logics
Semantics of PDL



Section
Introduction

Chapter 1 “Logics”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-5

Logics

What’s logic?
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General aspects of logics

• truth vs. provability
• when does a formula hold, is true, is satisfied
• valid
• satisfiable

• syntax vs. semantics/models
• model theory vs. proof theory

Two separate worlds: model theory and proof theory?
proof theory
model theory
calculus
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Syntax

ϕ ::= P | > | ⊥ atomic formula
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . formulas
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Semantics

• truth values
• σ
• different “notations”

• σ |= ϕ
• evaluate ϕ, given σ [[ϕ]]σ
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Proof theory

• decidable, so a “trivial problem” in that sense
• truth tables (brute force)
• one can try to do better, different derivation strategies
(resolution, refutation, . . . )
• SAT is NP-complete
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Signature

• fixes the “syntactic playground”
• selection of

• functional and
• relational

symbols, together with “arity” or sort-information
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Sorts

• Sort
• name of a domain (like Nat)
• restricted form of type

• single-sorted vs. multi-sorted case
• single-sorted

• one sort only
• “degenerated”
• arity = number of arguments (also for relations)
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Terms

• given: signature Σ
• set of variables X (with typical elements x, y′, . . . )

t ::= x variable
| f(t1, . . . , tn) f of arity n

(1)

• TΣ(X)
• terms without variables (from TΣ(∅) or short TΣ):
ground terms
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Substutition

• Substitution = replacement, namely of variables by
terms
• notation t[s/x]
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First-order signature (with relations)

• add relational symbols to Σ
• typical elements P , Q
• relation symbols with fixed arity n-ary predicates or

relations)
• standard binary symbol: .= (equality)
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Syntax

• given: first order signature Σ

ϕ ::= P (t, . . . , t) | > | ⊥ atomic formula
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . formulas
| ∀x.ϕ | ∃x.ϕ
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First-order structures and models

• given Σ
• assume single-sorted case

first-order model
model M

M = (A, I)

• A some domain/set
• interpretation I, respecting arity

• [[f ]]I : An → A
• [[P ]]I : An

• cf. first-order structure
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Giving meaning to variables

Variable assignment

• given Σ and model
σ : X → A

• other names: valuation, state
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(E)valuation of terms

• σ “straightforwardly extended/lifted to terms”
• how would one define that (or write it down, or
implement)?
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Free and bound occurrences of variables

• quantifiers bind variables
• scope
• other binding, scoping mechanisms
• variables can occur free or not (= bound) in a formula
• careful with substitution
• how could one define it?
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Substitution

• basically:
• generalize substitution from terms to formulas
• careful about binders especially don’t let substitution

lead to variables being “captured” by binders

Example

ϕ = ∃x.x+ 1 .= y θ = [y/x]
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Satisfaction

Definition (|=)

M,σ |= ϕ

• Σ fixed
• in model M and with variable assignment σ formula ϕ

is true (holds
• M and σ satisfy ϕ
• minority terminology: M,σ model of ϕ
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Exercises

• substitutions and variable assignments:
similar/different?
• there are infinitely many primes
• there is a person with at least 2 neighbors (or exactly)
• every even number can be written as the sum of 2
primes
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Proof theory

• how to infer, derive, deduce formulas (from others)
• mechanical process
• soundness and completeness
• proof = deduction (sequence or tree of steps)
• theorem

• syntactic: derivable formula
• semantical a formula which holds (in a given model)

• (fo)-theory: set of formulas which are
• derivable
• true (in a given model)

• soundness and completeness
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Deductions and proof systems

A proof system for a given logic consists of
• axioms (or axiom schemata), which are formulae
assumed to be true, and
• inference rules, of approx. the form

ϕ1 . . . ϕn

ψ

• ϕ1, . . . , ϕn are premises and ψ conclusion.
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A simple form of derivation

Derivation of ϕ
Sequence of formulae, where each formula is
• an axiom or
• can be obtained by applying an inference rule to
formulae earlier in the sequence.

• ` ϕ
• more general: set of formulas Γ

Γ ` ϕ

• proof = derivation
• theorem: derivable formula (= last formula in a proof)
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Proof systems and proofs: remarks

• “definitions” from the previous slides: not very formal
in general: a proof system: a “mechanical” (= formal and
constructive) way of conclusions from axioms (= “given”
formulas), and other already proven formulas
• Many different “representations” of how to draw
conclusions exists, the one sketched on the previous
slide
• works with “sequences”
• corresponds to the historically oldest “style” of proof

systems (“Hilbert-style”), some would say outdated . . .
• otherwise, in that naive form: impractical (but sound &

complete).
• nowadays, better ways and more suitable for computer

support of representation exists (especially using trees).
For instance natural deduction style system
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A proof system for prop. logic

Observation
We can axiomatize a subset of propositional logic as follows.

ϕ→ (ψ → ϕ) (Ax1)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (Ax2)
((ϕ→ ⊥)→ ⊥)→ ϕ (DN)
ϕ ϕ→ ψ

ψ

(MP)
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A proof system

Example
p→ p is a theorem of PPL:

(p→ ((p→ p)→ p))→
((p→ (p→ p))→ (p→ p)) Ax2 (1)

p→ ((p→ p)→ p) Ax1 (2)
(p→ (p→ p))→ (p→ p) MP on (1) and (2) (3)
p→ (p→ p) Ax1 (4)
p→ p MP on (3) and (4) (5)
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Introduction

• Modal logic: logic of “necessity” and “possibility”, in
that originally the intended meaning of the modal
operators � and ♦ was
• �ϕ: ϕ is necessarily true.
• ♦ϕ: ϕ is possibly true.

• Depending on what we intend to capture: we can
interpret �ϕ differently.

temporal ϕ will always hold.
doxastic I believe ϕ.

epistemic I know ϕ.
intuitionistic ϕ is provable.

deontic It ought to be the case that ϕ.
We will restrict here the modal operators to � and ♦ (and
mostly work with a temporal “mind-set”.
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Kripke structures

Definition (Kripke frame and Kripke model)

• A Kripke frame is a structure (W,R) where
• W is a non-empty set of worlds, and
• R ⊆W ×W is called the accessibility relation between

worlds.

• A Kripke model M is a structure (W,R, V ) where
• (W,R) is a frame, and
• V a function of type V : W → (P → B) (called

valuation).

isomorphically: V : W → 2P
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Kripke structures

Definition (Kripke frame and Kripke model)

• A Kripke frame is a structure (W,R) where
• W is a non-empty set of worlds, and
• R ⊆W ×W is called the accessibility relation between

worlds.
• A Kripke model M is a structure (W,R, V ) where

• (W,R) is a frame, and
• V a function of type V : W → (P → B) (called

valuation).

isomorphically: V : W → 2P
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Illustration

p p p

q

5
4 2

1

3

Example (Kripke model)

Let P = {p, q}. Then let M = (W,R, V ) be the Kripke
model such that
• W = {w1, w2, w3, w4, w5}
• R = {(w1, w5), (w1, w4), (w4, w1), . . . }
• V = [w1 7→ ∅, w2 7→ {p}, w3 7→ {q}, . . . ]
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Satisfaction

Definition (Satisfaction)

A modal formula ϕ is true in the world w of a model V ,
written V,w |= ϕ, if:

V,w |= p iff V (w)(p) = >

V,w |= ¬ϕ iff V,w 6|= ϕ

V,w |= ϕ1 ∨ ϕ2 iff V,w |= ϕ1 or V,w |= ϕ2

V,w |= �ϕ iff V,w′ |= ϕ, for all w′ such that wRw′

V,w |= ♦ϕ iff V,w′ |= ϕ, for some w′ such that wRw′
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“Box” and “diamond”

• modal operators � and ♦
• often pronounced “nessecarily” and “possibly”
• mental picture: depends on “kind” of logic (temporal,
epistemic, deontic . . . ) and (related to that) the form
of accessibility relation R
• formal definition: see previous slide
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Different kinds of relations

R a binary relation on a set, say W , i.e., R ⊆W
• reflexive
• transitive
• (right) Euclidian
• total
• order relation
• . . . .
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Valid in frame/for a set of frames

If (W,R, V ), s |= ϕ for all s and V , we write

(W,R) |= ϕ

Example (Samples)

• (W,R) |= �ϕ→ ϕ iff R is reflexive.
• (W,R) |= �ϕ→ ♦ϕ iff R is total.
• (W,R) |= �ϕ→ ��ϕ iff R is transitive.
• (W,R) |= ¬�ϕ→ �¬�ϕ iff R is Euclidean.
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Some exercises

Prove the double implications from the slide before!
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Base line axiomatic system (“K”)

ϕ is a propositional tautology
PL

ϕ

K
�(ϕ1 → ϕ2)→ (�ϕ1 → �ϕ2)

ϕ→ ψ ϕ
MP

ψ

ϕ
G

�ϕ
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Sample axioms for different accessibility
relations

�(ϕ→ ψ)→ (�ϕ→ �ψ) (K)
�ϕ→ ♦ϕ (D)
�ϕ→ ϕ (T)
�ϕ→ ��ϕ (4)
¬�ϕ→ �¬�ϕ (5)
�(�ϕ→ ψ)→ �(�ψ → ϕ) (3)
�(�(ϕ→ �ϕ)→ ϕ)→ (♦�ϕ→ ϕ)) (Dum)
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Different “flavors” of modal logic

Logic Axioms Interpretation Properties of R
D K D deontic total
T K T reflexive
K45 K 4 5 doxastic transitive/euclidean
S4 K T 4 reflexive/transitive
S5 K T 5 epistemic reflexive/euclidean

reflexive/symmetric/transitive
equivalence relation
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Some exercises

Consider the frame (W,R) with W = {1, 2, 3, 4, 5} and
(i, i+ 1) ∈ R

p p, q p, q q q

1 2 3 4 5

• M, 1 |= ♦�p
• M, 1 |= ♦�p→ p

• M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)
• M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))
• M |= �q



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional logic

Algebraic and
first-order
signatures

First-order logic
Syntax

Semantics

Proof theory

Modal logics
Introduction

Semantics

Proof theory and axiomatic
systems

Exercises

Dynamic logics
Multi-modal logic

Dynamic logics

Semantics of PDL

1-45

Exercises (2): bidirectional frames
Bidirectional frame
A frame (W,R) is bidirectional iff R = RF +RP s.t.
∀w,w′(wRFw′ ↔ w′RPw).

p p, q p, q q q

1 2 3 4 5

Consider M = (W,R, V ) from before. Which of the
following statements are correct in M and why?
1. M, 1 |= ♦�p
2. M, 1 |= ♦�p→ p

3. M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)
4. M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))
5. M |= �q
6. M |= �q → ♦♦p
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Exercises (3): validities

Which of the following are valid in modal logic. For those
that are not, argue why and find a class of frames on which
they become valid.
1. �⊥
2. ♦p→ �p
3. p→ �♦p
4. ♦�p→ �♦p
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Introduction

Problem
• FOL: “very” expressive but undecidable. Perhaps good
for mathematics but not ideal for computers.

!! FOL can talk about the state of the system. But how
to talk about change of state in a natural way?
• modal logic: gives us the power to talk about changing
of state. Modal logics is natural when one is interested
in systems that are essentially modeled as states and
transitions between states.
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Multi-modal logic

“Kripke frame” (W,Ra, Rb), where Ra and Rb are two
relations over W .

Syntax (2 relations)

Multi-modal logic has one modality for each relation:

ϕ ::= p | ⊥ | ϕ→ ϕ | ♦aϕ | ♦bϕ (6)

Semantics: “natural” generalization of the “mono”-case

M,w |= ♦aϕ iff ∃w′ : wRaw′ and M,w′ |= ϕ (7)

• analogously for modality ♦b and relation Rb
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Remarks

As multi-modal logic: obvious generalization of modal logic
from before
1. The relations can overlap; i.e., their intersection need

not be empty
2. of course: more than 2 relations possible, for each

relation one modality.
3. There may be infinitely many relations and infinitely

many modalities.
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Dynamic logics

• different variants
• can be seen as special case of multi-modal logics
• variant of Hoare-logics
• here: PDL on regular programs
• “P” stands for “propositional”
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Regular programs

DL
Dynamic logic is a multi-modal logic to talk about programs.

here: dynamic logic talks about regular programs

Regular programs are formed syntactically from:
• atomic programs Π0 = {a, b, ...}, which are indivisible,
single-step, basic programming constructs
• sequential composition α · β, which means that program
α is executed/done first and then β.
• nondeterministic choice α+ β, which

nondeterministically chooses one of α and β and
executes it.
• iteration α∗, which executes α some

nondeterministically chosen finite number of times.
• the special skip and fail programs (denoted 1 resp. 0
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Regular programs and tests

Definition (Regular programs)

The syntax of regular programs α, β ∈ Π is given according
to the grammar:

α ::= a ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ? . (8)

The clause ϕ? is called test.

Tests can be seen as special atomic programs which may
have logical structure, but their execution terminates in the
same state iff the test succeeds (is true), otherwise fails if
the test is deemed false in the current state.
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Tests

• simple Boolean tests:
ϕ ::= > | ⊥ | ϕ→ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ
• complex tests: ϕ? where ϕ is a logical formula in
dynamic logic
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Propositional Dynamic Logic: Syntax

Definition (DPL syntax)

The formulas ϕ of propositional dynamic logic (PDL) over
regular programs α are given as follows.

α ::= a ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ?
ϕ ::= p, q ∈ Φ0 | > | ⊥ | ϕ→ ϕ | [α]ϕ

(9)
where Φ0 is a set of atomic propositions.

1. programs, which we denote α... ∈ Π
2. formulas, which we denote ϕ... ∈ Φ

Propositional Dynamic Logic (PDL): because based on
propositional logic, only
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PDL: remarks
• Programs α interpreted as a relation Rα
⇒ multi-modal logic.
• [α]ϕ defines many modalities, one modality for each
program, each interpreted over the relation defined by
the program α.
• The relations of the basic programs are just given.
• Operations on/composition of programs are interpreted
as operations on relations.
• ∞ many complex programs ⇒ ∞ many
relations/modalities
• But we think of a single modality [..]ϕ with programs
inside.
• [..]ϕ is the universal one, with 〈..〉ϕ defined as usual.

Intiutive meaning/semantics of [α]ϕ

“If program α is started in the current state, then, if it
terminates, then in its final state, ϕ holds.”



Exercises: “programs”

Define the following programming constructs in PDL:
skip ,

>?

fail ,

⊥?

if ϕ then α else β ,

(ϕ? · α) + (¬ϕ? · β)

if ϕ then α ,

(ϕ? · α) + (¬ϕ? · skip)

case ϕ1 then α1; . . . ,

(ϕ1? · α1) + . . .+ (ϕn? · αn)

case ϕn then αn
while ϕ do α ,

(ϕ? · α)∗ · ¬ϕ?

repeat α until ϕ ,

α · (¬ϕ? · α)∗ · ϕ?

(General while loop)
while ϕ1 then α1 | · · · | ϕn then αn od ,

(ϕ1? · α1 + . . .+ ϕn? · αn)∗·
·(¬ϕ1 ∧ . . .¬ ∧ ϕn)?



Exercises: “programs”

Define the following programming constructs in PDL:
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case ϕ1 then α1; . . . , (ϕ1? · α1) + . . .+ (ϕn? · αn)
case ϕn then αn

while ϕ do α , (ϕ? · α)∗ · ¬ϕ?
repeat α until ϕ , α · (¬ϕ? · α)∗ · ϕ?

(General while loop)
while ϕ1 then α1 | · · · | ϕn then αn od , (ϕ1? · α1 + . . .+ ϕn? · αn)∗·

·(¬ϕ1 ∧ . . .¬ ∧ ϕn)?
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Making Kripke structures
“multi-modal-prepared”
Definition (Labeled Kripke structures)

Assume a set of labels Σ. A labeled Kripke structure is a
tuple (W,R,Σ) where

R =
⋃
l∈Σ

Rl

is the disjoint union of the relations indexed by the labels of
Σ.

for us (at leat now): The labels of Σ can be thought as
programs
• Σ: aka alphabet,
• alternative: R ⊆W × Σ×W
• labels l, l1 . . . but also a, b, . . . or others
• often: a−→, like w1

a−→ w2 or s1
a−→ s2
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Regular Kripke structures

• “labels” now have “strucuture”
• remember regular program syntax
• interpretation of certain programs/labels fixed,

• 0: failing program
• α1 · α2: sequential composition
• . . .

• thus, relations like 0, Rα1·α2 , . . . must obey
side-conditions

Basically
leaving open the interpretation of the “atoms” a, we fix the
interpretation/semantics of the constructs of regular
programs
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Regular Kripke structures

Definition (Regular Kripke structures)

A regular Kripke structure is a Kripke structure labeled as
follows. For all basic programs a ∈ Π0, choose some relation
Ra. For the remaining syntactic constructs (except tests),
the corresponding relations are defined inductively as follows.

R1 = Id
R0 = ∅
Rα1·α2 = Rα1 ◦Rα2

Rα1+α2 = Rα1 ∪Rα2

Rα∗ =
⋃
n≥0R

n
α



Kripke models and interpreting PDL
formulas
Now: add valutions ⇒ Kripke model

Definition (Semantics)

A PDL formula ϕ is true in the world w of a regular Kripke
model M , i.e., we have attached a valuation V also, written
M,w |= ϕ, if:

M,w |= pi iff pi ∈ V (w) for all propositional constants
M,w 6|= ⊥ and M,w |= >
M,w |= ϕ1 → ϕ2 iff whenever M,w |= ϕ1 then also M,w |= ϕ2

M,w |= [α]ϕ iff M,w′ |= ϕ for all w′ such that wRαw′

M,w |= 〈α〉ϕ iff M,w′ |= ϕ for some w′ such that wRαw′
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Semantics (cont’d)

• programs and formulas: mutually dependent
• omitted so far: what relationship corresponds to

ϕ?

• remember the intuitive meaning (semantics) of tests
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Test programs

Intuition: tests interpreted as subsets of the identity relation.

Rϕ? = {(w,w) | w |= ϕ} ⊆ I (10)

More precisely:
• for >? the relation becomes R>? = Id

(testing > succeeds everywhere and is as the skip
program)
• for ⊥? the relation becomes R⊥? = ∅
(⊥ is nowhere true and is as the fail program)
• R(ϕ1∧ϕ2)? = {(w,w) | w |= ϕ1 and w |= ϕ2}
• Testing a complex formula involving [α]ϕ is like looking
into the future of the program and then deciding on the
action to take...
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Axiomatic System of PDL

Take all tautologies of propositional logic (i.e., the axiom
system of PL from Lecture 2) and add
Axioms:

[α](φ1 → φ2)→ ([α]φ1 → [α]φ2) (1)
[α](φ1 ∧ φ2)↔ [α]φ1 ∧ [α]φ2 (2)
[α+ β]φ↔ [α]φ ∧ [β]φ (3)
[α · β]φ↔ [α][β]φ (4)
[φ?]ψ ↔ φ→ ψ (5)
φ ∧ [α][α∗]φ↔ [α∗]φ (6)
φ ∧ [α∗](φ→ [α]φ)→ [α∗]φ (IND)

Rules: take the (MP) modus ponens and (G) generalization
of Modal Logic.
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Chapter 2
Learning Targets of Chapter “LTL model check-
ing”.

The chapter covers LTL and how to do model checking
for that logic, using Büchi-automata.
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Temporal logic?

• Temporal logic: is the/a logic of “time”
• modal logic.
• different ways of modeling time.

• linear vs. branching time
• time instances vs. time intervals
• discrete time vs. continuous time
• past and future vs. future only
• . . .
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LTL

• linear time temporal logic
• one central temporal logic in CS
• supported by Spinand other model checkers
• many variations
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FOL (repetition)

First Order Logic

• We have used FOL to express properties of states.

• 〈x : 21, y : 49〉 ||= x < y
• 〈x : 21, y : 7〉 6||= x < y

• A computation is a sequence of states.
• To express properties of computations, we need to
extend FOL.
• This we can do using temporal logic.
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LTL: speaking about “time”

In Linear Temporal Logic (LTL), also called linear-time
temporal logic, we can describe such properties as, for
instance, the following: assume time is a sequence of
discrete points i in time, then: if i is now,
• p holds in i and every following point (the future)
• p holds in i and every preceding point (the past)

. . . •pi−2 •pi−1 •pi •pi+1 •pi+2 . . .
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Syntax

ψ propositional/first-order formula
ϕ ::= ψ formulas of the “core” logics

| ¬ϕ | ϕ ∧ ϕ | ϕ→ ϕ | . . . boolean combinations
| ©ϕ next ϕ
| �ϕ always ϕ
| ♦ϕ eventually ϕ
| ϕ U ϕ “until”
| ϕ R ϕ “release”
| ϕ W ϕ “waiting for”, “weak until”
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Paths and computations

Definition (Path)

• A path is an infinite sequence

σ = s0, s1, s2, . . .

of states.

• σk denotes the path sk, sk+1, sk+2, . . .

• σk denotes the state sk.
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Satisfaction (semantics)

Definition
An LTL formula ϕ is true relative to a path σ, written
σ |= ϕ, as follows.

σ |= ψ iff σ0 |=ul ϕ where ψ in underlying core language
σ |= ¬ϕ iff σ 6|= ϕ

σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2

σ |= �ϕ iff σk |= ϕ for all k ≥ 0
σ |= ♦ϕ iff σk |= ϕ for some k ≥ 0
σ |=©ϕ iff σ1 |= ϕ

(cont.)
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Satisfaction (semantics) (2)

Definition
(cont.)

σ |= ϕ1 U ϕ2 iff σk |= ϕ2 for some k ≥ 0, and
σi |= ϕ2 for every i such that 0 ≤ i < k

σ |= ϕ1 R ϕ2 iff for every j ≥ 0,
if σi 6|= ϕ1 for every i < j then σj |= ϕ2

σ |= ϕ1 W ϕ2 iff σ |= ϕ1 U ϕ2 or σ |= �ϕ1
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Validity and semantic equivalence

Definition
• We say that ϕ is (temporally) valid, written |= ϕ, if

σ |= ϕ for all paths σ.

• We say that ϕ and ψ are equivalent, written ϕ ∼ ψ, if
|= ϕ↔ ψ (i.e. σ |= ϕ iff σ |= ψ, for all σ).

Example
� distributes over ∧, while ♦ distributes over ∨.

�(ϕ ∧ ψ) ∼ (�ϕ ∧�ψ)
♦(ϕ ∨ ψ) ∼ (♦ϕ ∨ ♦ψ)
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Semantics

σ |= �p

•p0 •p1 •p2 •p3 •p4 . . .

σ |= ♦p

•0 •1 •2 •p3 •4 . . .

σ |=©p

•0 •p1 •2 •3 •4 . . .
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σ |= p U q (sequence of p’s is finite)

•p0 •p1 •p2 •q3 •4 . . .

σ |= p R q ( The sequence of qs may be infinite)

•q0 •q1 •q2 •p,q3 •4 . . .

σ |= p W q. The sequence of ps may be infinite.
(p W q ∼ p U q ∨�p).

•p0 •p1 •p2 •p3 •p4 . . .
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The past

Observation
• [1] uses pairs (σ, j) of paths and positions instead of
just the path σ because they have past-formulae:
formulae without future operators (the ones we use) but
possibly with past operators, like �−1 and ♦−1.

(σ, j) |= �−1ϕ iff (σ, k) |= ϕ for all k, 0 ≤ k ≤ j
(σ, j) |= ♦−1ϕ iff (σ, k) |= ϕ for some k, 0 ≤ k ≤ j

• However, it can be shown that for any formula ϕ, there
is a future-formula (formulae without past operators) ψ
such that

(σ, 0) |= ϕ iff (σ, 0) |= ψ
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The past

Observation
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(σ, j) |= �−1ϕ iff (σ, k) |= ϕ for all k, 0 ≤ k ≤ j
(σ, j) |= ♦−1ϕ iff (σ, k) |= ϕ for some k, 0 ≤ k ≤ j

• However, it can be shown that for any formula ϕ, there
is a future-formula (formulae without past operators) ψ
such that

(σ, 0) |= ϕ iff (σ, 0) |= ψ



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-18

The past: examples

Example
What is a future version of �(p→ ♦−1q)?
(σ, 0) |= �(p→ ♦−1q)

•p→♦−1q •p→♦−1q •p→♦−1q •p→♦−1q • . . .

(σ, 0) |= q R (p→ q)

•p→q •p→q •p→q,q • • . . .
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Examples

Example
ϕ→ ♦ψ: If ϕ holds initially, then ψ holds eventually.

•ϕ • • •ψ • . . .

This formula will also hold in every path where ϕ does not
hold initially.

•¬ϕ • • • • . . .



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-20

Example: Response

Example (Response)

�(ϕ→ ♦ψ)
Every ϕ-position coincides with or is followed by a
ψ-position.

• •ϕ • •ψ • •ϕ,ψ . . .

This formula will also hold in every path where ϕ never
holds.

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .
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Examples

Example
�♦ψ
There are infinitely many ψ-positions.

•ψ • • •ψ • •ψ • . . .

This formula can be obtained from the previous one,
�(ϕ→ ♦ψ), by letting ϕ = >: �(> → ♦ψ).
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Example: permanence

Example
♦�ϕ
Eventually ϕ will hold permanently.

• •ϕ • • •ϕ •ϕ •ϕ . . .

Equivalently: there are finitely many ¬ϕ-positions.
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LTL example

Example
(¬ϕ) W ψ
[WRONG SENTENCE] The first ϕ-position must coincide or
be preceded by a ψ-position.

•¬ϕ •¬ϕ •¬ϕ •ψ •ϕ • • . . .

ϕ may never hold

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .
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LTL Example

Example
�(ϕ→ ψ W χ)
Every ϕ-position initiates a sequence of ψ-positions, and if
terminated, by a χ-position.

• •ϕ,ψ •ψ •ψ •χ • •ϕ,ψ . . .

The sequence of ψ-positions need not terminate.

• •ϕ,ψ •ψ •ψ •ψ •ψ •ψ . . .
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Nested waiting-for
A nested waiting-for formula is of the form

�(ϕ→ (ψm W (ψm−1 W · · · (ψ1 W ψ0) · · · ))),

where ϕ,ψ0, . . . , ψm in the underlying logic. For
convenience, we write

�(ϕ→ ψmW ψm−1W · · · W ψ1W ψ0).

Every ϕ-position initiates a succession of intervals, beginning
with a ψm-interval, ending with a ψ1-interval and possibly
terminated by a ψ0-position. Each interval may be empty or
extend to infinity.

. . . •ϕ,ψm •ψm •ψm •ψm−1 •ψm−1 . . .

. . . •ψ2 •ψ2 •ψ1 •ψ1 •ψ0 . . .
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Capturing informally understood temporal
specifications formally

It can be difficult to correctly formalize informally stated
requirements in temporal logic.

Example
How does one formalize the informal requirement “ϕ implies
ψ”?

• ϕ→ ψ?

ϕ→ ψ holds in the initial state.

• �(ϕ→ ψ)?

ϕ→ ψ holds in every state.

• ϕ→ ♦ψ?

ϕ holds in the initial state, ψ will hold in
some state.

• �(ϕ→ ♦ψ)?

We saw this earlier.

• None of these is necessarily what we intended
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requirements in temporal logic.
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How does one formalize the informal requirement “ϕ implies
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• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)? ϕ→ ψ holds in every state.
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some state.
• �(ϕ→ ♦ψ)?
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• None of these is necessarily what we intended
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specifications formally
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requirements in temporal logic.
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How does one formalize the informal requirement “ϕ implies
ψ”?
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Duals

Definition (Duals)

For binary boolean connectives1 ◦ and •, we say that • is the
dual of ◦ if

¬(ϕ ◦ ψ) ∼ (¬ϕ • ¬ψ).

Similarly for unary connectives: • is the dual of ◦ if
¬ ◦ ϕ ∼ •¬ϕ.

Duality is symmetric:
• If • is the dual of ◦ then
• ◦ is the dual of •, thus
• we may refer to two connectives as dual (of each other).

1Those are not concrete connectives or operators, they are meant as
“placeholders”
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Dual connectives

Which connectives are duals?

• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →?

It’s 6←:

¬(ϕ 6← ψ)

∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ
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Dual connectives
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Dual connectives
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• ∧ and ∨ are duals:
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• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.
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Dual connectives

Which connectives are duals?
• ∧ and ∨ are duals:

¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:

¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →? It’s 6←:

¬(ϕ 6← ψ) ∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ
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Dual connectives

Which connectives are duals?
• ∧ and ∨ are duals:
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• ¬ is its own dual:
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Complete sets of connectives

• A set of connectives is complete (for boolean formulae)
if every other connective can be defined in terms of
them.

• Our set of connectives is complete (e.g., 6← can be
defined), but also subsets of it, so we don’t actually
need all the connectives.

Example
{∨,¬} is complete.

• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p
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need all the connectives.

Example
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if every other connective can be defined in terms of
them.
• Our set of connectives is complete (e.g., 6← can be
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Duals in LTL
We can extend the notions of duality and completeness to
temporal formulae.
Duals of temporal operators

• What is the dual of �?

And of ♦?

• � and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

• Any other?
• U and R are duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ)
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Duals in LTL
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Duals of temporal operators

• What is the dual of �? And of ♦?
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• Any other?
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Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.
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Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-31

Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.

Proof.
• ♦ϕ ∼ > U ϕ

• �ϕ ∼ ⊥ R ϕ

• ϕ R ψ ∼ ¬(¬ϕ U ¬ψ)
• ϕ W ψ ∼ �ϕ ∨ (ϕ U ψ)
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Complete set of LTL operators

We don’t need all our temporal operators either.

Proposition
{∨,¬,U ,©} is complete for LTL.

Proof.
• ♦ϕ ∼ > U ϕ

• �ϕ ∼ ⊥ R ϕ
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Classification of properties

We can classify properties expressible in LTL.

Classification

safety �ϕ

liveness ♦ϕ

obligation �ϕ ∨ ♦ψ
recurrence �♦ϕ
persistence ♦�ϕ
reactivity �♦ϕ ∨ ♦�ψ
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Safety
• important basic class of properties
• relation to testing and run-time verification
• “nothing bad ever happens”

Definition (Safety)

• A safety formula is of the form

�ϕ

for some first-order/prop. formula ϕ.

• A conditional safety formula is of the form

ϕ→ �ψ

for (first-order) formulae ϕ and ψ.
• Safety formulae express invariance of some state
property ϕ: that ϕ holds in every state of the
computation.
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• “nothing bad ever happens”

Definition (Safety)

• A safety formula is of the form
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for some first-order/prop. formula ϕ.
• A conditional safety formula is of the form
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for (first-order) formulae ϕ and ψ.
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Safety property example
Example

• Mutual exclusion is a safety property. Let Ci denote
that process Pi is executing in the critical section. Then

�¬(C1 ∧ C2)

expresses that it should always be the case that not
both P1 and P2 are executing in the critical section.

• Observe that the negation of a safety formula is a
liveness formula; the negation of the formula above is
the liveness formula

♦(C1 ∧ C2)

which expresses that eventually it is the case that both
P1 and P2 are executing in the critical section.
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Safety property example
Example

• Mutual exclusion is a safety property. Let Ci denote
that process Pi is executing in the critical section. Then

�¬(C1 ∧ C2)

expresses that it should always be the case that not
both P1 and P2 are executing in the critical section.
• Observe that the negation of a safety formula is a
liveness formula; the negation of the formula above is
the liveness formula

♦(C1 ∧ C2)

which expresses that eventually it is the case that both
P1 and P2 are executing in the critical section.
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Liveness properties

Definition (Liveness)

• A liveness formula is of the form

♦ϕ

for some first-order formula ϕ.

• A conditional liveness formula is of the form

ϕ→ ♦ψ

for first-order formulae ϕ and ψ.
• Liveness formulae guarantee that some event ϕ
eventually happens: that ϕ holds in at least one state of
the computation.
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Connection to Hoare logic

Observation
• Partial correctness is a safety property. Let P be a
program and ψ the post condition.

�(terminated(P )→ ψ)

• In the case of full partial correctness, where there is a
precondition ϕ, we get a conditional safety formula,

ϕ→ �(terminated(P )→ ψ),

which we can express as { ϕ } P { ψ } in Hoare Logic.
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Total correctness and liveness

Observation
• Total correctness is a liveness property. Let P be a
program and ψ the post condition.

♦(terminated(P ) ∧ ψ)

• In the case of full total correctness, where there is a
precondition ϕ, we get a conditional liveness formula,

ϕ→ ♦(terminated(P ) ∧ ψ).
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Total correctness and liveness

Observation
• Total correctness is a liveness property. Let P be a
program and ψ the post condition.

♦(terminated(P ) ∧ ψ)

• In the case of full total correctness, where there is a
precondition ϕ, we get a conditional liveness formula,

ϕ→ ♦(terminated(P ) ∧ ψ).
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Duality of partial and total correctness

Observation
Partial and total correctness are dual.
Let

PC (ψ) , �(terminated → ψ)
TC (ψ) , ♦(terminated ∧ ψ)

Then

¬PC (ψ) ∼ PC (¬ψ)
¬TC (ψ) ∼ TC (¬ψ)
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Obligation

Definition (Obligation)

• A simple obligation formula is of the form

�ϕ ∨ ♦ψ

for first-order formula ϕ and ψ.

• An equivalent form is

♦χ→ ♦ψ

which states that some state satisfies χ only if some
state satisfies ψ.
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Obligation (2)

Proposition
Every safety and liveness formula is also an obligation
formula.



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

LTL
Syntax

Semantics

The Past

Examples

Nested waiting-for

Formalization

Duals

Classification

Properties

Safety and Liveness

Recurrence and
Persistence

Reactivity

GCD Example

Exercises

2-40

Obligation (2)

Proposition
Every safety and liveness formula is also an obligation
formula.

Proof.
This is because of the following equivalences.

�ϕ ∼ �ϕ ∨ ♦⊥
♦ϕ ∼ �⊥ ∨ ♦ϕ

and the facts that |= ¬�⊥ and |= ¬♦⊥.
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Recurrence
Definition (Recurrence)

• A recurrence formula is of the form

�♦ϕ

for some first-order formula ϕ.

• It states that infinitely many positions in the
computation satisfies ϕ.

Observation
A response formula, of the form �(ϕ→ ♦ψ), is equivalent
to a recurrence formula, of the form �♦χ, if we allow χ to
be a past-formula.

�(ϕ→ ♦ψ) ∼ �♦(¬ϕ) W−1 ψ
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Recurrence
Definition (Recurrence)

• A recurrence formula is of the form

�♦ϕ
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• It states that infinitely many positions in the
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Recurrence

Proposition
Weak fairness2 can be specified as the following recurrence
formula.

�♦(enabled(τ)→ taken(τ))

Observation
An equivalent form is

�(�enabled(τ)→ ♦taken(τ)),

which looks more like the first-order formula we saw last
time.

2weak and strong fairness will be “recurrent” (sorry for the pun)
themes. For instance they will show up again in the TLA presentation.
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Persistence

Definition (Persistence)

• A persistence formula is of the form

♦�ϕ

for some first-order formula ϕ.

• It states that all but finitely many positions satisfy ϕ3

• Persistence formulae are used to describe the eventual
stabilization of some state property.

3In other words: only finitely (“but”) many position satisfy ¬ϕ. So
at some point onwards, it’s always ϕ.
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• It states that all but finitely many positions satisfy ϕ3
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Recurrence and Persistence

Observation
Recurrence and persistence are duals.

¬(�♦ϕ) ∼ (♦�¬ϕ)
¬(♦�ϕ) ∼ (�♦¬ϕ)
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Reactivity

Definition (Reactivity)

• A simple reactivity formula is of the form

�♦ϕ ∨ ♦�ψ

for first-order formula ϕ and ψ.

• A very general class of formulae are conjunctions of
reactivity formulae.
• An equivalent form is

�♦χ→ �♦ψ,

which states that if the computation contains infinitely
many χ-positions, it must also contain infinitely many
ψ-positions.
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Reactivity

Proposition
Strong fairness can be specified as the following reactivity
formula.

�♦enabled(τ)→ �♦taken(τ)
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GCD Example

Below is a computation σ of our recurring GCD program.

• a and b are fixed: σ |= �(a .= 21 ∧ b .= 49).
• at(l) denotes the formulae (π .= {l}).
• terminated denotes the formula at(l8).

P -computation
States are of the form 〈π, x, y, g〉.

σ : 〈l1, 21, 49, 0〉 → 〈lb2, 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2, 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·
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GCD Example
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GCD Example

Does the following properties hold for σ? And why?

1. �terminated (safety)
2. at(l1)→ terminated
3. at(l8)→ terminated
4. at(l7)→ ♦terminated (conditional liveness)
5. ♦at(l7)→ ♦terminated (obligation)
6. �(gcd(x, y) .= gcd(a, b)) (safety)
7. ♦terminated (liveness)
8. ♦�(y .= gcd(a, b)) (persistence)
9. �♦terminated (recurrence)
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Exercises

Exercises
1. Show that the following formulae are (not) LTL-valid.

1.1 �ϕ↔ ��ϕ
1.2 ♦ϕ↔ ♦♦ϕ
1.3 ¬�ϕ→ �¬�ϕ
1.4 �(�ϕ→ ψ)→ �(�ψ → ϕ)
1.5 �(�ϕ→ ψ) ∨�(�ψ → ϕ)
1.6 �♦�ϕ→ ♦�ϕ
1.7 �♦ϕ↔ �♦�♦ϕ

2. A modality is a sequence of ¬, � and ♦, including the
empty sequence ε. Two modalities σ and τ are
equivalent if σϕ↔ τϕ is valid.
2.1 Which are the non-equivalent modalities in LTL, and
2.2 what are their relationship (ie. implication-wise)?
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