

Chapter 1 Logics

Course "Model checking" Volker Stolz, Martin Steffen Autumn 2019

Section

Algebraic and first-order signatures

Chapter 1 "Logics" Course "Model checking" Volker Stolz, Martin Steffen Autumn 2019

Intro

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Signature

- fixes the "syntactic playground"
- selection of se
 - functional and
 - relational

symbols, together with "arity" or sort-information

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Sorts

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

References

• Sort

- name of a domain (like Nat)
- restricted form of type
- single-sorted vs. multi-sorted case
- single-sorted
 - one sort only
 - "degenerated"
 - *arity* = number of arguments (also for relations)

- given: signature Σ
- set of variables X (with typical elements x, y', \ldots)

 $\begin{array}{rrrr}t & ::= & x & & \mathsf{variable} \\ & \mid & f(t_1,\ldots,t_n) & f \text{ of arity } n \end{array}$

- $T_{\Sigma}(X)$
- terms without variables (from T_Σ(Ø) or short T_Σ): ground terms

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax Semantics Proof theory

(1)

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

- Substitution = replacement, namely of variables by terms
- notation t[s/x]

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

First-order signature (with relations)

- add relational symbols to Σ
- typical elements P, Q
- relation symbols with fixed arity *n*-ary predicates or relations)
- standard binary symbol: ≐ (equality)

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Section

First-order logic

Syntax Semantics Proof theory

Chapter 1 "Logics" Course "Model checking" Volker Stolz, Martin Steffen Autumn 2019

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

References

• given: first order signature Σ

First-order structures and models

- given Σ
- assume single-sorted case

first-order model

 $\mathsf{model}\ M$

$$M = (A, I)$$

- A some domain/set
- interpretation *I*, respecting arity
 - $\bullet \ \llbracket f \rrbracket^I : A^n \to A$
 - $\llbracket P \rrbracket^I : A^n$
- cf. first-order structure

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantic

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Giving meaning to variables

Variable assignment

• given Σ and model

$$\sigma:X\to A$$

• other names: valuation, state

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

(E)valuation of terms

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

- σ "straightforwardly extended/lifted to terms"
 - how would one define that (or write it down, or implement)?

Free and bound occurrences of variables

- quantifiers bind variables
- scope
- other binding, scoping mechanisms
- variables can *occur* free or not (= *bound*) in a formula
- careful with substitution
- how could one define it?

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Substitution

basically:

- generalize substitution from terms to formulas
- careful about binders especially don't let substitution lead to variables being "captured" by binders

Example

$$\varphi = \exists x.x + 1 \doteq y \qquad \theta = [y/x]$$

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Satisfaction

Definition (\models)

 $M,\sigma\models\varphi$

- Σ fixed
- in model M and with variable assignment σ formula φ is true (holds
- M and σ satisfy φ
- minority terminology: M, σ model φ

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Semantic

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

- substitutions and variable assignments: similar/different?
- there are infinitely many primes
- there is a person with at least 2 neighbors (or exactly)
- every even number can be written as the sum of 2 primes

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Proof theory

- how to infer, derive, deduce formulas (from others)
- mechanical process
- soundness and completeness
- proof = deduction (sequence or tree of steps)
- theorem
 - syntactic: derivable formula
 - semantical a formula which holds (in a given model)
- (fo)-theory: set of formulas which are
 - derivable
 - true (in a given model)
- soundness and completeness

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Semantics Proof theory and axiomatic systems

Exercises

Deductions and proof systems

A proof system for a given logic consists of

- axioms (or axiom schemata), which are formulae assumed to be true, and
- inference rules, of approx. the form

$$\varphi_1 \quad \cdots \quad \varphi_n$$
 ψ

• $\varphi_1, \ldots, \varphi_n$ are premises and ψ conclusion.

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems

Exercises

A simple form of derivation

Derivation of φ

Sequence of formulae, where each formula is

- an axiom or
- can be obtained by applying an inference rule to formulae earlier in the sequence.

• $\vdash \varphi$

• more general: set of formulas Γ

- proof = derivation
- theorem: derivable formula (= last formula in a proof)

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Semantics Proof theory and axiomatic

systems Exercises

Proof systems and proofs: remarks

• "definitions" from the previous slides: not very formal in general: a proof system: a "mechanical" (= formal and constructive) way of conclusions from axioms (= "given" formulas), and other already proven formulas

- Many different "representations" of how to draw conclusions exists, the one sketched on the previous slide
 - works with "sequences"
 - corresponds to the historically oldest "style" of proof systems ("Hilbert-style"), some would say outdated ...
 - otherwise, in that naive form: impractical (but sound & complete).
 - nowadays, better ways and more suitable for computer support of representation exists (especially using trees).
 For instance natural deduction style system

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory Modal logics

Introduction Semantics Proof theory and axiomatic systems Exercises

A proof system for prop. logic

Observation

We can axiomatize a subset of propositional logic as follows.

$$\begin{array}{ll} \varphi \to (\psi \to \varphi) & (Ax1) \\ (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) & (Ax2) \\ ((\varphi \to \bot) \to \bot) \to \varphi & (DN) \\ \varphi \quad \varphi \to \psi & (MP) \end{array}$$

 ψ

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics Introduction Semantics Proof theory and axiomatic systems Exercises

A proof system

Example

 $p \rightarrow p$ is a theorem of PPL:

$$\begin{array}{ll} (p \rightarrow ((p \rightarrow p) \rightarrow p)) \rightarrow \\ ((p \rightarrow (p \rightarrow p)) \rightarrow (p \rightarrow p)) & \mathsf{Ax}_2 \\ p \rightarrow ((p \rightarrow p) \rightarrow p) & \mathsf{Ax}_1 \\ (p \rightarrow (p \rightarrow p)) \rightarrow (p \rightarrow p) & \mathsf{MP} \\ p \rightarrow (p \rightarrow p) & \mathsf{Ax}_1 \\ p \rightarrow p & \mathsf{MP} \end{array}$$

$$Ax_2$$
 (1)

 Ax_1
 (2)

 MP on (1) and (2)
 (3)

 Ax_1
 (4)

 MP on (3) and (4)
 (5)

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory Modal logics

Introduction Semantics Proof theory and axiomatic systems Exercises

Section

Modal logics

Introduction Semantics Proof theory and axiomatic systems Exercises

Chapter 1 "Logics" Course "Model checking" Volker Stolz, Martin Steffen Autumn 2019

Introduction

- Modal logic: logic of "necessity" and "possibility", in that originally the intended meaning of the modal operators □ and ◊ was
 - $\Box \varphi$: φ is necessarily true.
 - $\Diamond \varphi$: φ is possibly true.
- Depending on what we intend to capture: we can interpret □φ differently.

temporal φ will always hold.

- **doxastic** I believe φ .
- epistemic | know φ .

intuitionistic φ is provable.

deontic It ought to be the case that φ .

We will restrict here the modal operators to \Box and \Diamond (and mostly work with a temporal "mind-set".

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Kripke structures

Definition (Kripke frame and Kripke model)

- A Kripke frame is a structure (W, R) where
 - W is a non-empty set of worlds, and
 - *R* ⊆ *W* × *W* is called the *accessibility relation* between worlds.

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Kripke structures

Definition (Kripke frame and Kripke model)

- A Kripke frame is a structure (W, R) where
 - W is a non-empty set of worlds, and
 - R ⊆ W × W is called the *accessibility relation* between worlds.
- A Kripke model M is a structure (W, R, V) where
 - (W, R) is a frame, and
 - V a function of type $V: W \to (P \to \mathbb{B})$ (called valuation).

isomorphically: $V: W \to 2^P$

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Illustration

Example (Kripke model)

Let $P=\{p,q\}.$ Then let M=(W,R,V) be the Kripke model such that

•
$$W = \{w_1, w_2, w_3, w_4, w_5\}$$

• $R = \{(w_1, w_5), (w_1, w_4), (w_4, w_1), \dots$
• $V = [w_1 \mapsto \emptyset, w_2 \mapsto \{p\}, w_3 \mapsto \{q\}, \dots$

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Satisfaction

Definition (Satisfaction)

A modal formula φ is true in the world w of a model V, written $V, w \models \varphi$, if:

$$V, w \models p$$
 iff $V(w)(p) = \exists$

$$V, w \models \neg \varphi \qquad \text{iff} \quad V, w \not\models \varphi$$
$$V, w \models \varphi_1 \lor \varphi_2 \qquad \text{iff} \quad V, w \models \varphi_1 \text{ or } V, w \models \varphi_2$$

$$V, w \models \Box \varphi$$
 iff $V, w' \models \varphi$, for all w' such that wRw'
 $V, w \models \Diamond \varphi$ iff $V, w' \models \varphi$, for some w' such that wRw'

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

"Box" and "diamond"

- modal operators \Box and \Diamond
- often pronounced "nessecarily" and "possibly"
- mental picture: depends on "kind" of logic (temporal, epistemic, deontic ...) and (related to that) the form of accessibility relation R:
- formal definition: see previous slide

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Different kinds of relations

- R a binary relation on a set, say W, i.e., $R\subseteq W$
 - reflexive
 - transitive
 - (right) Euclidian
 - total
 - order relation

•

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Valid in frame/for a set of frames

If $(W, R, V), s \models \varphi$ for all s and V, we write

$$(W, R) \models \varphi$$

Example (Samples)

- $(W, R) \models \Box \varphi \rightarrow \varphi$ iff R is reflexive.
- $(W, R) \models \Box \varphi \rightarrow \Diamond \varphi$ iff R is total.
- $(W,R) \models \Box \varphi \rightarrow \Box \Box \varphi$ iff R is transitive.
- $(W,R) \models \neg \Box \varphi \rightarrow \Box \neg \Box \varphi$ iff R is Euclidean.

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

Exercises

Some Exercises

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems Exercises

References

Prove the double implications from the slide before!

Base line axiomatic system ("K")

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Sample axioms for different accessibility relations

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$
$$\Box \varphi \to \Diamond \varphi$$
$$\Box \varphi \to \varphi$$
$$\Box \varphi \to \Box \Box \varphi$$
$$\neg \Box \varphi \to \Box \neg \Box \varphi$$
$$\Box(\Box \varphi \to \psi) \to \Box(\Box \psi \to \varphi)$$
$$\Box(\Box (\varphi \to \Box \varphi) \to \varphi) \to (\Diamond \Box \varphi \to \varphi))$$

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures First-order logic Syntax Semantics Proof theory Modal logics Introduction Semantics

Proof theory and axiomatic systems

Exercises

(K)

(D)

(T)

(4)

(5)

(3)

(Dum)

Different "flavors" of modal logic

IN5110 – Verification and specification of parallel systems

Logic	Axioms	Interpretation	Properties of R	
D	ΚD	deontic	total	
Т	КΤ		reflexive	first-order
K45	K 4 5	doxastic	transitive/euclidean	signatures
S4	K T 4		reflexive/transitive	First-order logic
S5	K T 5	epistemic	reflexive/euclidean	Semantics Proof theory
			reflexive/symmetric/transitiv	/eModal logics
			equivalence relation	Introduction Semantics

Proof theory and axiomatic systems

Exercises

Some exercises

Consider the frame (W,R) with $W=\{1,2,3,4,5\}$ and $(i,i+1)\in R$

- $M, 1 \models \Diamond \Box p$
- $M, 1 \models \Diamond \Box p \rightarrow p$
- $M, 3 \models \Diamond (q \land \neg p) \land \Box (q \land \neg p)$
- $\bullet \ M,1\models q\wedge \Diamond(q\wedge \Diamond(q\wedge \Diamond(q\wedge \Diamond q)))$
- $M \models \Box q$

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Exercises (2): bidirectional frames

Bidirectional frame

A frame (W, R) is bidirectional iff $R = R_F + R_P$ s.t. $\forall w, w'(wR_Fw' \leftrightarrow w'R_Pw).$

Consider M = (W, R, V) from before. Which of the following statements are correct in M and why?

1. $M, 1 \models \Diamond \Box p$ 2. $M, 1 \models \Diamond \Box p \rightarrow p$ 3. $M, 3 \models \Diamond (q \land \neg p) \land \Box (q \land \neg p)$ 4. $M, 1 \models q \land \Diamond (q \land \Diamond (q \land \Diamond (q \land \Diamond q)))$ 5. $M \models \Box q$ 6. $M \models \Box q \rightarrow \Diamond \Diamond p$

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Exercises (3): validities

Which of the following are *valid* in modal logic. For those that are not, argue why and find a class of frames on which they become valid.

- 1. □⊥
- **2.** $\Diamond p \rightarrow \Box p$

3.
$$p \rightarrow \Box \Diamond p$$

4. $\Diamond \Box p \rightarrow \Box \Diamond p$

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic

Syntax

Semantics

Proof theory

Modal logics

Introduction

Semantics

Proof theory and axiomatic systems

Exercises

Section

References

Chapter 1 "Logics" Course "Model checking" Volker Stolz, Martin Steffen Autumn 2019

References I

IN5110 – Verification and specification of parallel systems

Algebraic and first-order signatures

First-order logic Syntax Semantics Proof theory

Modal logics

Introduction Semantics Proof theory and axiomatic systems Exercises

References

Bibliography

- Bowen, J. P. and Hinchey, M. G. (2005). Ten commandments revisited: a ten-year perspective on the industrial application of formal methods. In *FMICS '05: Proceedings of the 10th international* workshop on Formal methods for industrial critical systems, pages 8–16, New York, NY, USA. ACM Press.
- [2] Peled, D. (2001). Software Reliability Methods. Springer Verlag.