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® given X
® assume single-sorted case

first-order model
model M

M= (A1)

¢ A some domain/set

® interpretation I, respecting arity
o [f]f:A"— A
* [P]f: A"

e cf. first-order structure

IN5110 -
Verification and
specification of
parallel systems

Algebraic and
first-order
signatures

First-order logic
Syntax
Semantics

Proof theory

Modal logics
Introduction
Semantics

Proof theory and axiomatic
systems
Exercises

References

1-11



Giving meaning to variables

IN5110 -
Verification and
specification of
parallel systems

Variable assignment

Algebraic and

first-order
® given Y and model signatures

First-order logic
c: X > A

Syntax
Semantics

Proof theory

® other names: valuation, state Modbljicgics

Introduction
Semantics

Proof theory and axiomatic
systems
Exercises

References

1-12



(E)valuation of terms

IN5110 -
Verification and
specification of
parallel systems

Algebraic and
® o “straightforwardly extended/lifted to terms” ey
signatures
* how would one define that (or write it down, or First-order logic
implement)? B

Proof theory

Modal logics
Introduction
Semantics

Proof theory and axiomatic
systems
Exercises

References

1-13



Free and bound occurrences of variables

IN5110 -
Verification and
specification of
parallel systems

® quantifiers bind variables

® scope Algebraic and

first-order
signatures

® other binding, scoping mechanisms

First-order logic

® variables can occur free or not (= bound) in a formula N
. . . Proof theor
e careful with substitution "
Modal logics
® how could one define it? Introducton

Semantics

Proof theory and axiomatic
systems
Exercises

References

1-14



Substitution

IN5110 -
Verification and
specification of

. parallel systems
® basically:
® generalize substitution from terms to formulas
. . fl B . Algebrai d
e careful about binders especially don't let substitution s
lead to variables being “captured” by binders signatures
First-order logic
Syntax
Example -

Proof theory

Modal logics
p=drx+1=y 0 = [y/x] —

Proof theory and axiomatic
systems
Exercises

References

1-15



Satisfaction

IN5110 -
Verification and
specification of

o oge parallel systems

Definition (=)

]\47 g ): "2 Algebraic and
first-order
signatures

© 2 fIXed First-order logic
. . . . Syntax
® in model M and with variable assignment ¢ formula ¢ p—
. Proof theory
is true (holds
Modal logics
o 1 Introduction
M and o satisfy ¢ et
® minority terminology: M, o model $¢ i
Exercises
References

1-16



Exercises

IN5110 -
Verification and
specification of
parallel systems

® substitutions and variable assignments:

similar/different? frecordor
. .. . signatures
® there are infinitely many primes First-order loi
Irst-order logic
® there is a person with at least 2 neighbors (or exactly) s
® every even number can be written as the sum of 2 e
i Modal logics
primes

Introduction
Semantics

Proof theory and axiomatic
systems
Exercises

References

1-17



Proof theory

IN5110 -
* how to infer, derive, deduce formulas (from others) vereation and
. arallel
® mechanical process paraliel systems
[

soundness and completeness )
Algebraic and

® proof = deduction (sequence or tree of steps) e
® theorem First-order logic
® syntactic: derivable formula i
® semantical a formula which holds (in a given model) AL
. Modal logics
* (fo)-theory: set of formulas which are e
® derivable S
® true (in a given model) e
Refi
® soundness and completeness clorences

1-18



Deductions and proof systems

IN5110 —

Verification and
A proof system for a given logic consists of specification of

parallel systems

® axioms (or axiom schemata), which are formulae

assumed to be true, and Algebraic and

first-order
. i t
® inference rules, of approx. the form e
First-order logic
Syntax
Semantics
©1 e @n Proof theory
Modal logics
w Introduction

Semantics

Proof theory and axiomatic
systems

® 1,...,pn are premises and v conclusion.

Exercises

References

1-19



A simple form of derivation

Derivation of ¢

IN5110 -

Verification and

Sequence of formulae, where each formula is specification of

parallel systems

® an axiom or

o 1 1 1 Algebraic and
can be obtalr?ed.by applying an inference rule to Algebraic
formulae earlier in the sequence. signatures

First-order logic
Syntax
) Semantics
l_ 80 Proof theory
® more general: set of formulas I' Modal logics
Introduction
F '— (p Semantics
Proof theory and axiomatic
systems
Exercises
. . References
® proof = derivation
[ J

theorem: derivable formula (= last formula in a proof)

1-20



Proof systems and proofs: remarks
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A proof system for prop. logic
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® Modal logic: logic of “necessity” and “possibility”, in
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® [y: ¢ is necessarily true.
® Qw: ¢ is possibly true.
® Depending on what we intend to capture: we can
interpret Uy differently.
temporal ¢ will always hold.
doxastic | believe ¢.
epistemic | know .
intuitionistic ¢ is provable.
deontic It ought to be the case that ¢.

We will restrict here the modal operators to (J and ¢ (and

mostly work with a temporal “mind-set”.
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Kripke structures

Definition (Kripke frame and Kripke model)

® A Kripke frame is a structure (W, R) where
® TV is a non-empty set of worlds, and

® RCW x W is called the accessibility relation between
worlds.
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Kripke structures

Definition (Kripke frame and Kripke model)

® A Kripke frame is a structure (W, R) where
® TV is a non-empty set of worlds, and
® RCW x W is called the accessibility relation between
worlds.
® A Kripke model M is a structure (W, R, V') where
* (W,R) is a frame, and

® ¥ a function of type V : W — (P — B) (called
valuation).

isomorphically: V : W — 2F
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Viw i ¢
Viw =1 or V,w = o

V,w' = ¢, for all w' such that wRw'
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Valid in frame/for a set of frames
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Base line axiomatic system (“K”)

@ is a propositional tautology

PL
2

K
O(p1 = p2) — (Op1 — Do)

o= ®
MP
P

@
—G
U
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Sample axioms for different accessibility

relations

O(e = ¢) = (Op — Oy)

Op — O

Ue — ¢

e — OO

—J:]go — DﬂDgD

D@ — ) = D0y — ¢)

D@ — Op) = ¢) = (00p — ¢))

IN5110 -
Verification and
specification of
parallel systems

Algebraic and
first-order
signatures

First-order logic
Syntax
Semantics

Proof theory

Modal logics
Introduction

Semantics

References

1-34



Different “flavors” of modal logic
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Some exercises

Consider the frame (W, R) with W = {1,2,3,4,5} and ostto -
(3,3 + 1) specification of
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Exercises (2): bidirectional frames

Bidirectional frame

A frame (W, R) is bidirectional iff R = Rp + Rp s.t. IN5110 -
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Exercises (3): validities
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