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1
LTL model checking
Chapter

What
is it

about?
Learning Targets of this Chapter

The chapter covers LTL and how to
do model checking for that logic,
using Büchi-automata.

Contents
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1.2 LTL . . . . . . . . . . . . . . 1

1.1 Introduction

In this chapter, we leave behind a but the “logical” treatment of logics (like asking for
validity etc, i.e., asking |= ϕ), but proceed to the question of model checking, i.e., when
does a concrete model satisfies a formula M |= ϕ. We do that for a specific modal logic,
more precisely temporal logic. It’s one of the most prominent and the first one that taken
up seriously in computer science (as opposed to mathematics or philosphy). We will also
cover one central way of doing model checking of temporal logics, namely automata-based
model checking.

Temporal logic?

LTL

1.2 LTL

LTL: speaking about “time”

In Linear Temporal Logic (LTL), also called linear-time temporal logic, we can describe
such properties as, for instance, the following: assume time is a sequence of discrete points
i in time, then: if i is now,

• p holds in i and every following point (the future)
• p holds in i and every preceding point (the past)

. . . •pi−2 •pi−1 •pi •pi+1 •pi+2 . . .
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Time here is linear and discrete. One consequently just uses ordinary natural numbers (or
integers) to index the points in time. We will mostly only be concerned with the future,
i.e., we won’t good much into past-time LTL resp. versions of LTL that allow to speak
about the future and the past. Branching time is an alternative to the linear modelling
of time, and instead of having discrete point in times, one could have dense time and/or
deal with intervals.

1.2.1 Syntax

Syntax

As before, we start with the syntax of the logic at hand, given by a grammar. We assume
some underlying “core” logic, like propositional logic or first-order logic. Focusing on the
temporal part of the logic, we don’t care much about that underlying core. Practically,
when it comes to automatically checking, the choice of the underlying logic of course has
an impact. But we treat the handling of the underlying logic as orthogonal. The first thing
to extend is the syntax: we have formulas ψ of said underlying core, and then we extend
it but the temporal operators of LTL, adding �, ♦, ©, U , R, and W . So the syntax of (a
version of) LTL is given by the following grammar.

ψ propositional/first-order formula
ϕ ::= ψ formulas of the “core” logics

| ¬ϕ | ϕ ∧ ϕ | ϕ→ ϕ | . . . boolean combinations
| ©ϕ next ϕ
| �ϕ always ϕ
| ♦ϕ eventually ϕ
| ϕ U ϕ “until”
| ϕ R ϕ “release”
| ϕ W ϕ “waiting for”, “weak until”

As in earlier logics, one can ponder, whether the syntax is minimal, i.e., do we need all
the operators, or can some be expressed as syntactic sugar by using others? The answer
is: the syntax is not minimal, some operators can be left out and we will see that later.
For a robust answer to the question of minimality, we need to wait until we have clarified
the meaning, i.e., until we have defined the semantics of the operators.

1.2.2 Semantics

Fixing the meaning of LTL formulas means, to define a semantical satisaction relation |=
between “models” and LTL formulas. In principle, we know how that could work, having
seen similar definitions when discussing modal logics in general (using Kripke frames,
valuations, and Kripke models). Now, that we are dealing with a linear temporal logic,
the Kripke frames should be also of linear structure. What kind of valuations we employ
would depend on the underlying logics. For example for propositional LTL, one needs
an interpretation of the propositional atoms per world, for first-order LTL, one needs a
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choice of the free variables in the terms and formulas (the signature and its interpretation
does not change when going from one world to another, only, potentially, the values of the
variables).

That’s also what we do next, except that we won’t use explicitly the terminology of Kripke
frame or Kripke model. We simply assume a sequence of discrete time points, indexed by
natural numbers. So the numbers i, i + 1 etc. denote the worlds, and the accessibility
relation simply connects a “world” i with its successor world i + 1. As was done with
Kripke models, we then need a valuation per world, i.e., per time point. In the case of
propositional LTL, it’s a mapping from propositional variables to the boolean values B.
To be consistent with common terminology, we call such a function P → B here not a
valuation, but a state (but see also the side remarks about terminology below). Let’s
use the symbol s to represent such a state or valuation. A model then provides a state
per world, i.e., a mapping N → (P → B). This is equivalently represented as an infinite
sequence of the form

s0s1s2 . . .

where s0 represents the state at the zero’th position in the infinite sequence, s1 at the
position or world one after that etc. Such an infitite sequence of states is called path, and
we use letters π, π′ etc. to refer to them them. It’s important to remember that paths are
infinite. As discussed in the lecture: if we allowed finite paths, we would loose the kind of
nice duality between the ♦ and � operator (that refers to the fact that that ¬�¬ is the
same as ♦, and the other way around).

In that connection: what’s ¬©¬?

Some remarks on terminology: paths, states, and valuations

The notions of states and paths . . . are slightly differring in the literature. It’s not a
big problem as the used terminology is not incompatible, just sometimes not in complete
agreement.

For example, there is a notion of path in connection with graphs. Typically, a path in a
graph from a node n1 to a node n2 is a sequence of nodes that follows the edges of the
given graph and that starts at n1 and ends in n2. The length of the path is the number of
edges (and with this definition, the empty paths from n to n contains one node, namely n).
There maybe alternative definitions of paths in “graph theory” (like sequences of edges).
In connection with our current notion of paths, there are 2 major differences. Our paths
are ininite, whereas when dealing with graphs, a path normally is understood as a finite
sequence. There is no fundamental reason for not considering (also) infinite paths there
(and some people surely do), it’s just that the standard case there is finite sequence, and
therefore the word path is reserved for those. LTL on the other hand deals with ininite
sequences, and consequently uses the word paths for that.

The other difference is that a path here is not defined as “a sequence of nodes connected
by edges”. It’s simply an infinite sequence of valuations (and the connection is just by the
position in the sequence), there is no question of “is there a transition from state at place
i to that of at place i + 1. Later, when we connect the current notion of paths to “path
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through a transition system”, then the more states in that infinite sequence need to arise
by connecting transistions or edges in the underlying transition system or graph.

Finally, of course, the conventional not of path in a graph does not speaks of valuations,
it’s just a sequence of nodes. If N is the set of nodes of a graph, and Nn the finite set
{i ∈ N | i < n}, then a traditional path (of length n) in graphs is a function Nn → N such
that it “follows the edges”.

There are other names as well, when it comes to linear sequences of “statuses” when run-
ning a program. Those include runs, executions (also traces, logs, histories etc). Some-
times they correspond to sequences of edges (for instance containing transition labels only.
Sometimes they corrspond to sequences of “nodes” (containing “status-related” informa-
tion like here), sometimes both.

Paths and computations

Definition 1.2.1 (Path).

• A path is an infinite sequence

π = s0, s1, s2, . . .

of states.
• πk denotes the path sk, sk+1, sk+2, . . .
• πk denotes the state sk.

It’s intended (later) that paths represent behavior of programs resp. “going” through a
Kripke-model or transition system. A transitions system is a graph-like structure (and
may contain cycles), and a paths can be generated following the graph structure. In that
sense it corresponds to the notion of paths as known from graphs (remember that the
mathematical notions of graph corresponds to Kripke frames). Note, however, that we
have defined path independent from an underlying program or transition system. It’s not
a “path through a transition system”, but it’s simply an infinite sequence of state (maybe
caused by a transition system or maybe also not).

Now, what’s a state then? It depends on what kind of LTL we are doing, basically propo-
sitional LTL or first-order LTL. A state basically is the interpretation of the underlying
logic in the given “world”, i.e., the given point in time (where time is the index inside
the linear path). In propositional logic, the state is the interpretation of the propositional
symbols (or the set of propositional symbols that are considered to be true at that point).
For first order logic, it’s a valuation of the free variables at that point. When one thinks
of modelling programs, then that’s corresponds to the standard view that the state of an
imperative program is the value of all its variables (= state of the memory).
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1.2.3 Semantics

The satisfaction relation π |= ϕ is defined inductively over the structure of the formula.
We assume that for the formulas of the “underlying” core logic, we have an adequate |=ul
available, that works on states. Note that in case of first-order logic, a signature and its
interpretation is assumed to be fixed.

Definition 1.2.2 (Satisfaction). An LTL formula ϕ is true relative to a path π, written
π |= ϕ, under the following conditions:

π |= ψ iff π0 |=ul ψ where ψ in underlying core language
π |= ¬ϕ iff π 6|= ϕ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |=©ϕ iff π1 |= ϕ

π |= ϕ1 U ϕ2 iff πk |= ϕ2 for some k ≥ 0, and
πi |= ϕ1 for every i such that 0 ≤ i < k

The definition of |= covered © and U as the only temporal operators. It will turn out
that these two operators are “complete” insofar that one can express remaining operators
from the syntax by them. Those other operators are �, ♦, R, and W , according to the
syntax we presented earlier. That’s a common selection of operators for LTL, but there
are sometimes even more added for the sake of convenience and to capture commonly
encountered properties a user may wish to express.

We could explain those missing operators as syntactic sugar, showing how they can be
macro-exanded into the core operators. What we (additionally) do first is giving a direct
semantic definition of their satisfaction. As mentioned already earlier, the two important
temporal operators “always” and “eventually” are written symbolically like the modal
operators necessity and possibility, namely as � and ♦, but their interpretation is slightly
different from them. Their semantic definition is straightforward, referring to all resp. for
some future point in time.

The release operator is the dual to the until operator, but is also a kind of “until” only
with the roles of the two formulas exchanged. Intuitively, in a formula ϕ1 R ϕ2, the ϕ1
“releases” ϕ2’s need to hold, i.e., ϕ2 has to hold up until and including the point where
ϕ1 first holds and if ϕ1 never holds (i.e., never “realeases ϕ2), then ϕ2 has to hold forever.
If there a point where ϕ1 is first true and thus releases ϕ2, then at that “release point”
both ϕ1 and ϕ2 have to hold. Furthermore, it’s a “weak” form of a “reverse until” insofar
that it’s not required that ϕ1 ever releases ϕ2.
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π |= �ϕ iff πk |= ϕ for all k ≥ 0
π |= ♦ϕ iff πk |= ϕ for some k ≥ 0

π |= ϕ1 R ϕ2 iff for every j ≥ 0,
if πi 6|= ϕ1 for every i < j then πj |= ϕ2

π |= ϕ1 W ϕ2 iff π |= ϕ1 U ϕ2 or π |= �ϕ1

Validity and semantic equivalence

Definition 1.2.3 (Validity and equivalent). • ϕ is (temporally) valid, written |= ϕ, if
π |= ϕ for all paths π.

• ϕ1 and ϕ2 are equivalent, written ϕ1 ∼ ϕ2, if
|= ϕ1 ↔ ϕ2 (i.e. π |= ϕ1 iff π |= ϕ2, for all π).

Example 1.2.4. � distributes over ∧, while ♦ distributes over ∨.

�(ϕ ∧ ψ) ∼ (�ϕ ∧�ψ)
♦(ϕ ∨ ψ) ∼ (♦ϕ ∨ ♦ψ)

Now that we know the semantics, we can transport other semantical notions to the setting
of LTL. Validity, as usual captures “unconditional truth-ness” of a formula. In this case,
it means thus, a formula that holds for all paths.

In a way, especially from the perspective of model checking, valid formulas are “boring”.
They express some universal truth, which may be interesting and gives insight to the
logics. But a valud formula is also trivial in the technical sense in that it does not express
any interesting properties. After all, it’s equivalent to the formula >. In other words, it’s
equallly useless as a specification as a contradictory formula (one that is equivalent to ⊥),
as it holds for all systems, no matter what.

Valid formulas may still be useful. If one knows that one property implies another (resp.
that ϕ1 → ϕ2 is valid), one could model-check using formula ϕ1 (which might be easier),
and use that to establish that also ϕ2 holds for a given model. But still, unlike in logic
and theorem proving, the focus in model checking is not so much on finding methods to
derive or infer valid formulas.

However, the two problems — M |= ϕ vs. |= ϕ1 → ϕ2 — are not

The next illustrations are for propositional LTL, where we use p, q and similar for propo-
sitional atoms. We also indicate the states by “labelling” the corresponding places in the
infinite sequence by mentioning the propositional atoms which are assume to hold at that
point (and not mentioning those which are not). However, those are illustrations. For
instance, when illustrating π |=©p
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1.2.4 Illustration

π |= �p

•p0 •p1 •p2 •p3 •p4 . . .

π |= ♦p

•0 •1 •2 •p3 •4 . . .

π |=©p

•0 •p1 •2 •3 •4 . . .

1.2.5 Some more illustrations

π |= p U q (sequence of p’s is finite)

•p0 •p1 •p2 •q3 •4 . . .

π |= p R q (sequence of qs may be infinite)

•q0 •q1 •q2 •p,q3 •4 . . .

π |= p W q

The sequence of ps may be infinite. (p W q ∼ p U q ∨�p).

•p0 •p1 •p2 •p3 •p4 . . .
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1.2.6 The Past

The past

Observation

• Manna and Pnueli [2] uses pairs (π, j) of paths and positions instead of just the path
π because they have past-formulae: formulae without future operators (the ones we
use) but possibly with past operators, like �−1 and ♦−1.

(π, j) |= �−1ϕ iff (π, k) |= ϕ for all k, 0 ≤ k ≤ j
(π, j) |= ♦−1ϕ iff (π, k) |= ϕ for some k, 0 ≤ k ≤ j

• However, it can be shown that for any formula ϕ, there is a future-formula (formulae
without past operators) ψ such that

(π, 0) |= ϕ iff (π, 0) |= ψ

The past: example

�(p→ ♦−1q)? (π, 0) |= �(p→ ♦−1q)

•p→♦−1q •p→♦−1q •p→♦−1q •p→♦−1q • . . .

(π, 0) |= q R (p→ q)

•p→q •p→q •p→q,q • • . . .

1.2.7 Examples

Some examples

Temporal properties

1. If ϕ holds initially, then ψ holds eventually.
2. Every ϕ-position is responded by a later ψ-position (response)
3. There are infinitely many ψ-positions.
4. Sooner or later, ϕ will hold permanently (permanence, stabilization).
5. The first ϕ-position must coincide or be preceded by a ψ-position.
6. Every ϕ-position initiates a sequence of ψ-positions, and if terminated, by a χ-

position.
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Formalization of “informal” properties

It can be difficult to correctly formalize informally stated requirements in temporal logic.

Informal statement: “ϕ implies ψ”

• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)? ϕ→ ψ holds in every state.
• ϕ→ ♦ψ? ϕ holds in the initial state, ψ will hold in some state.
• �(ϕ→ ♦ψ)? “response”

It is not obvious, which one of them (if any) is necessarily what was intended.

Example 1.2.5. ϕ→ ♦ψ: If ϕ holds initially, then ψ holds eventually.

•ϕ • • •ψ • . . .

This formula will also hold in every path where ϕ does not hold initially.

•¬ϕ • • • • . . .

Response

Example 1.2.6 (Response). �(ϕ→ ♦ψ)

Every ϕ-position coincides with or is followed by a ψ-position.

• •ϕ • •ψ • •ϕ,ψ . . .

This formula will also hold in every path where ϕ never holds.

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .
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Example: ∞

Example 1.2.7. �♦ψ

There are infinitely many ψ-positions.

•ψ • • •ψ • •ψ • . . .

• model-checking?
• run-time verification?

Note that this formula can be obtained from the previous one, �(ϕ → ♦ψ), by letting
ϕ = >: �(> → ♦ψ).

Permanence

♦�ϕ Eventually ϕ will hold permanently.

• •ϕ • • •ϕ •ϕ •ϕ . . .

Equivalently: there are finitely many ¬ϕ-positions.

And another one

Example 1.2.8. (¬ϕ) W ψ

The first ϕ-position must coincide or be preceded by a ψ-position.

•¬ϕ •¬ϕ •¬ϕ •ψ •ϕ • • . . .

ϕ may never hold

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .
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LTL example

Example 1.2.9. �(ϕ→ ψ W χ)

Every ϕ-position initiates a sequence of ψ-positions, and if terminated, by a χ-position.

• •ϕ,ψ •ψ •ψ •χ • •ϕ,ψ . . .

The sequence of ψ-positions need not terminate.

• •ϕ,ψ •ψ •ψ •ψ •ψ •ψ . . .

Nested waiting-for

A nested waiting-for formula is of the form

�(ϕ→ (ψm W (ψm−1 W · · · (ψ1 W ψ0) · · · ))),

where ϕ,ψ0, . . . , ψm in the underlying logic. For convenience, we write

�(ϕ→ ψmW ψm−1W · · · W ψ1W ψ0).

. . . •ϕ,ψm •ψm •ψm •ψm−1 •ψm−1 . . .

. . . •ψ2 •ψ2 •ψ1 •ψ1 •ψ0 . . .

Explanation Every ϕ-position initiates a succession of intervals, beginning with a ψm-
interval, ending with a ψ1-interval and possibly terminated by a ψ0-position. Each interval
may be empty or extend to infinity.
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Duality

Definition 1.2.10 (Duals). For binary boolean connectives ◦ and •, we say that • is the
dual of ◦ if

¬(ϕ ◦ ψ) ∼ (¬ϕ • ¬ψ).

Similarly for unary connectives: • is the dual of ◦ if ¬ ◦ ϕ ∼ •¬ϕ.

Duality is symmetric:

• If • is the dual of ◦ then
• ◦ is the dual of •, thus
• we may refer to two connectives as dual (of each other).

The ◦ and • operators are not concrete connectives or operators, they are meant as “place-
holders”. One can have a corresponding notion of duality for the unary operators ♦ and
�, and even for null-ary “operators”.

Dual connectives

• ∧ and ∨ are duals:
¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:
¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →? It’s 6←:

¬(ϕ 6← ψ) ∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

Complete sets of connectives

• A set of connectives is complete (for boolean formulae) if every other connective can
be defined in terms of them.

• Our set of connectives is complete (e.g., 6← can be defined), but also subsets of it, so
we don’t actually need all the connectives.

Example 1.2.11. <3-> {∨,¬} is complete.

• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p
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Duals in LTL

• What is the dual of �? And of ♦?
• � and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

• Any other?
• U and R are duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ)

Complete set of LTL operators

Proposition 1. The set of operators ∨,¬,U ,© is complete for LTL.

We don’t need all our temporal operators either.

Proof. • ♦ϕ ∼ > U ϕ
• �ϕ ∼ ⊥ R ϕ
• ϕ R ψ ∼ ¬(¬ϕ U ¬ψ)
• ϕ W ψ ∼ �ϕ ∨ (ϕ U ψ)

1.2.8 Classification of properties

We have seen a couple of examples of specific LTL formulas, i.e., specific properties.
Specific “shapes” of formulas are particularly usefule or common, and they sometimes
get specific names. If we take © and U as a complete core of LTL, then already the
shape > U ϕ is so useful that it does not only deserve a special name, it even has a
special syntax or symbol, namely ♦. We have encountered other examples before as well
(like permanence) and in the following we will list some more. Another very important
classification or characterization of LTL formulas is the distinction between safety and
liveness. Actually, one should see it not so much as a characterization of LTL formulas, but
of properties (of paths). LTL is a specific notation to describe properties of paths (where
a property corresponds to a set of paths). Of course not all sets of paths are expressible
in LTL (why not?). The situation is pretty analogous to that of regular expressions and
regular languages. Regular expressions play the rule of the syntax and they are interpreted
as sets of finite words, i.e., as properties of words. Of course not all properties of words,
i.e. languages, are in fact regular, there are non-regular languages (context-free languages
etc.).

Coming back to the LTL setting: it’s better to see the distinction between safety and
liveness as a qualification on path properties (= sets or languages of infinite sequences
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of states), but of course, we then see which kind of LTL formulas are capturing a safety
property or a liveness property.

Note (again) that “safety” or “liveness” is not property of a paths, it’s a property of path
properties, so to say. In other words, there will be no LTL formula expressing “safety”
(it makes no sense), there are LTL formulas which correspond to a safety property, i.e.,
expresse a property that belongs to the set of all safety properties.

There is a kind of “duality” between safety and liveness in that safety is kind of like the
“opposite” of liveness, but it’s not that properties fall exactly into these to categories.
There are properties (and thus LTL formulas) that are neither saferty properties nor
lifeness properties.

Classification of properties

We can classify properties expressible in LTL. Examples:

invariant �ϕ

“liveness” ♦ϕ

obligation �ϕ ∨ ♦ψ

recurrence �♦ϕ

persistence ♦�ϕ

reactivity �♦ϕ ∨ ♦�ψ

• ϕ, ψ: non-temporal formulas

The invariant is a prominent example of a safety property. Each invariant property is
also a safety property. Some people even use the words synonymously (earlier ediitions of
the lecture), but according to the consensus or majority opinion, one should distinction
the notions. See for instance the rather authoritative textbook Baier and Katoen [1].
It’s however true that invariants are perhaps the most typical, easiest, and important
form of safety properties and they also represent the essence of them. In particular, if one
informally stipulates that safety corresponds to “never something bad happens”, then that
translates well to an invariant (namely the complete absence of the bad thing: “always
not bad”). That characterization of safety is due to Lamport

Safety (slightly simplified)

• important basic class of properties
• relation to testing and run-time verification
• informally “nothing bad ever happens”

Definition 1.2.12 (Safety/invariant). • A invariant formula is of the form

�ϕ

for some first-order/prop. formula ϕ.
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• A conditional safety formula is of the form

ϕ→ �ψ

for (first-order) formulae ϕ and ψ.

Safety formulae express invariance of some state property ϕ: that ϕ holds in every state
of the computation.

Safety property example

Mutex Mutual exclusion is a safety property. Let Ci denote that process Pi is executing
in the critical section. Then

�¬(C1 ∧ C2)

expresses that it should always be the case that not both P1 and P2 are executing in the
critical section.

Observe: the negation of a safety formula is a liveness formula; the negation of the formula
above is the liveness formula

♦(C1 ∧ C2)

which expresses that eventually it is the case that both P1 and P2 are executing in the
critical section.

Liveness properties (simplified)

Definition 1.2.13 (Liveness). • A liveness formula is of the form

♦ϕ

for some first-order formula ϕ.
• A conditional liveness formula is of the form

ϕ→ ♦ψ

for first-order formulae ϕ and ψ.
•

Liveness formulae guarantee that some event ϕ eventually happens: that ϕ holds in at
least one state of the computation.
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Connection to Hoare logic

• Partial correctness is a safety property. Let P be a program and ψ the post condition.

�(terminated(P )→ ψ)

• In the case of full partial correctness, where there is a precondition ϕ, we get a
conditional safety formula,

ϕ→ �(terminated(P )→ ψ),

which we can express as { ϕ } P { ψ } in Hoare Logic.

Total correctness and liveness

• Total correctness is a liveness property. Let P be a program and ψ the post condition.

♦(terminated(P ) ∧ ψ)

• In the case of full total correctness, where there is a precondition ϕ, we get a condi-
tional liveness formula,

ϕ→ ♦(terminated(P ) ∧ ψ).

Duality of partial and total correctness

Partial and total correctness are dual.

Let

PC (ψ) , �(terminated → ψ)
TC (ψ) , ♦(terminated ∧ ψ)

Then

¬PC (ψ) ∼ PC (¬ψ)
¬TC (ψ) ∼ TC (¬ψ)

Obligation

Definition 1.2.14 (Obligation). • A simple obligation formula is of the form

�ϕ ∨ ♦ψ

for first-order formula ϕ and ψ.
• An equivalent form is

♦χ→ ♦ψ

which states that some state satisfies χ only if some state satisfies ψ.
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Obligation (2)

Proposition 2. Every safety and liveness formula is also an obligation formula.

Proof. This is because of the following equivalences.

�ϕ ∼ �ϕ ∨ ♦⊥
♦ϕ ∼ �⊥ ∨ ♦ϕ

and the facts that |= ¬�⊥ and |= ¬♦⊥.

Recurrence and Persistence

Recurrence

Definition 1.2.15 (Recurrence). • A recurrence formula is of the form

�♦ϕ

for some first-order formula ϕ.
• It states that infinitely many positions in the computation satisfies ϕ.

Observation

A response formula, of the form �(ϕ→ ♦ψ), is equivalent to a recurrence formula, of the
form �♦χ, if we allow χ to be a past-formula.

�(ϕ→ ♦ψ) ∼ �♦(¬ϕ) W−1 ψ

Recurrence

Proposition 3. Weak fairness1 can be specified as the following recurrence formula.

�♦(enabled(τ)→ taken(τ))

Observation

An equivalent form is

�(�enabled(τ)→ ♦taken(τ)),

which looks more like the first-order formula we saw last time.
1weak and strong fairness will be “recurrent” (sorry for the pun) themes. For instance they will show up
again in the TLA presentation.
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Persistence

Definition 1.2.16 (Persistence). • A persistence formula is of the form

♦�ϕ

for some first-order formula ϕ.
• It states that all but finitely many positions satisfy ϕ2

• Persistence formulae are used to describe the eventual stabilization of some state
property.

Recurrence and Persistence

Recurrence and persistence are duals.

¬(�♦ϕ) ∼ (♦�¬ϕ)
¬(♦�ϕ) ∼ (�♦¬ϕ)

Reactivity

Reactivity

Definition 1.2.17 (Reactivity). • A simple reactivity formula is of the form

�♦ϕ ∨ ♦�ψ

for first-order formula ϕ and ψ.
• A very general class of formulae are conjunctions of reactivity formulae.
• An equivalent form is

�♦χ→ �♦ψ,

which states that if the computation contains infinitely many χ-positions, it must
also contain infinitely many ψ-positions.

Reactivity

Proposition 4. Strong fairness can be specified as the following reactivity formula.

�♦enabled(τ)→ �♦taken(τ)
2In other words: only finitely (“but”) many position satisfy ¬ϕ. So at some point onwards, it’s always ϕ.
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GCD Example

GCD Example

Below is a computation π of our recurring GCD program.

• a and b are fixed: π |= �(a .= 21 ∧ b .= 49).
• at(l) denotes the formulae (π .= {l}).
• terminated denotes the formula at(l8).

States are of the form 〈π, x, y, g〉.

π : 〈l1, 21, 49, 0〉 → 〈lb2, 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2, 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·

GCD Example

Does the following properties hold for π? And why?

<+(1)-> �terminated (safety)
<+(2)-> at(l1)→ terminated
<+(3)-> at(l8)→ terminated
<+(4)-> at(l7)→ ♦terminated (conditional liveness)
<+(5)-> ♦at(l7)→ ♦terminated (obligation)
<+(6)-> �(gcd(x, y) .= gcd(a, b)) (safety)
<+(7)-> ♦terminated (liveness)
<+(8)-> ♦�(y .= gcd(a, b)) (persistence)
<+(9)-> �♦terminated (recurrence)

1.2.9 Exercises

Exercises

1. Show that the following formulae are (not) LTL-valid.
a) �ϕ↔ ��ϕ
b) ♦ϕ↔ ♦♦ϕ
c) ¬�ϕ→ �¬�ϕ
d) �(�ϕ→ ψ)→ �(�ψ → ϕ)
e) �(�ϕ→ ψ) ∨�(�ψ → ϕ)
f) �♦�ϕ→ ♦�ϕ
g) �♦ϕ↔ �♦�♦ϕ
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2. A modality is a sequence of ¬, � and ♦, including the empty sequence ε. Two
modalities π and τ are equivalent if πϕ↔ τϕ is valid.
a) Which are the non-equivalent modalities in LTL, and
b) what are their relationship (ie. implication-wise)?
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