
Chapter 1
LTL model checking

Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

Section
Logic model checking: What is it
about?

The basic method
General remarks
Motivating examples

Chapter 1 “LTL model checking”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-3

Logic model checking (1)

• a technique for verifying finite-state (concurrent)
systems

Often involves steps as follows

1. Modeling the system
• It may require the use of abstraction
• Often using some kind of automaton

2. Specifying the properties the design must satisfy
• It is impossible to determine all the properties the

systems should satisfy
• Often using some kind of temporal logic

3. Verifying that the system satisfies its specification
• In case of a negative result: error trace
• An error trace may be product of a specification error

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-4

Logic model checking (2)
The application of model checking at the design stage of a
system typically consists of the following steps:
1. Choose the properties (correctness requirements)

critical to the sytem you want to build (software,
hardware, protocols)

2. Build a model of the system (will use for verification)
guided by the above correctness requirements
• The model should be as small as possible (for efficiency)
• It should, however, capture everything which is relevant

to the properties to be verified
3. Select the appropriate verification method based on the

model and the properties (LTL-, CTL∗-based,
probabilistic, timed, weighted . . .)

4. Refine the verification model and correctness
requirements until all correctness concerns are
adequately satisfied

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-5

State-space explosion

Main causes of combinatorial complexity in SPIN/Promela
(and in other model checkers.)
• The number of and size of buffered channels
• The number of asynchronous processes

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-6

The basic method

• System: L(S) (set of possible behaviors/traces/words
of S)
• Property: L(P) (the set of valid/desirable behaviors)
• Prove that L(S) ⊆ L(P) (everything possible is valid)

• Proving language inclusion is complicated

• Method
• Let L(P) be the language Σω \ L(P) of words not

accepted by P
• Prove L(S) ∩ L(P) = ∅

• there is no accepted word by S disallowed by P

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-6

The basic method

• System: L(S) (set of possible behaviors/traces/words
of S)
• Property: L(P) (the set of valid/desirable behaviors)
• Prove that L(S) ⊆ L(P) (everything possible is valid)

• Proving language inclusion is complicated
• Method

• Let L(P) be the language Σω \ L(P) of words not
accepted by P

• Prove L(S) ∩ L(P) = ∅
• there is no accepted word by S disallowed by P

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-7

The basic method

if I is empty then S satisfies p

if I is non-empty then S can violate p

and I will contain a counter-example that proves it

S

¬p

all possible

executions

all invalid

executions

I
executions that are

possible and invalid

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-8

Scope of the method
Logic model checkers (LMC) are suitable for concurrent and
multi-threading finite-state systems.
Some of the errors LMC may catch:
• Deadlocks {(two or more competing processes are waiting for

the other to finish, and thus neither ever does)}
• Livelocks {(two or more processes continually change their state

in response to changes in the other processes)}
• Starvation {(a process is perpetually denied access to necessary

resources)}
• Priority and locking problems
• Race conditions {(attempting to perform two or more operations

at the same time, which must be done in the proper sequence in
order to be done correctly)}

• Resource allocation problems
• Incompleteness of specification
• Dead code {(unreachable code)}
• Violation of certain system bounds
• Logic problems: e.g, temporal relations
• . . .

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-9

A bit of history

1950 200419751968 19891980 1995 20001936

C C++

1976-1979: first experiments

with reachability analyzers

(e.g., Jan Hajek: ‘Approver’)

1981: Ed Clarke and

Allen Emerson

introduce the term

‘model checking’

and the logic CTL*

1980: earliest predecessor

of Spin: ‘pan’ (Bell Labs)

1993: BDDs and the

SMV model checker

(Ken McMillan, CMU)

1989: Spin version 0

verification of class of

-regular properties

1995: partial order

reduction in Spin.

LTL conversion in Spin.

(Doron Peled)

Spin
SMV

the two most popular logic model checking systems today:

Spin: an explicit state LTL model checker

based on automata theoretic verification method

targeting software verification (asynchronous systems)

SMV: a symbolic CTL model checker

targeting hardware circuit verification (synchronous systems)

(there are hundreds of other model checkers – there are also

several variants of Spin)

1986: Pierre Wolper

and Moshe Vardi

define the automata

theoretic framework

for LTL model checking

1986: Mazurkiewicz

paper on trace theory

1977: Amir Pnueli introduces

linear temporal logic for system

verification

LTL CTL

2001: support for

embedded C code in

Spin version 4.0

Spin 4.0

1968: two terms introduced:

software crisis

software engineering

1960: early work on

-automata theory,

e.g., by J.R. Buchi

2003: breadth-first

search mode added

in Spin version 4.1

Fortran

Algol

1975: Edsger Dijkstra’s paper

on Guarded Command Languages

1978: Tony Hoare’s paper on

Communicating Sequential Processes

1940-50: the first

computers are built

1955: early work on tense

logics (predecessors of LTL)

1936: first theory on

computability, e.g.,

Turing machines

key theoretical

developments

underlying Spin

pan
C

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-10

On correctness (reminder)

• A system is correct if it meets its design requirements.
• There is no notion of “absolute” correctness: It is
always wrt. a given specification
• Getting the properties (requirements) right is as
important as getting the model of the system right

Examples of correctness requirements
• A system should not deadlock
• No process should starve another
• Fairness assumptions

• E.g., an infinite often enabled process should be
executed infinitely often

• Causal relations
• E.g., each time a request is send, and acknowledgment

must be received (response property)

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-11

On models and abstraction

• The use of abstraction is needed for building models
(systems may be extremely big)
• A model is always an abstraction of the reality

• The choice of the model/abstractions depends on the
requirements to be checked
• A good model keeps only relevant information

• A trade-off must be found: too much detail may
complicate the model; too much abstraction may
oversimplify the reality

• Time and probability are usually abstracted away in
LMC

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-12

Building verification models

• Statements about system design and system
requirement must be separated
• One formalism for specifying behavior (system design)
• Another formalism for specifying system requirements

(correctness properties)
• The two types of statements define a verification model
• A model checker can now

• Check that the behavior specification (the design) is
logically consistent with the requirement specification
(the desired properties)

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-13

Distributed algorithms

Two asynchronous processes may easily get blocked when
competing for a shared resource

in real-life conflicts ultimately get resolved by human judgment.

computers, though, must be able to resolve it with fixed algorithms

after-you, no

after-you blocking

me-first, no

me-first blocking

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-14

A Small multi-threaded program

int x, y, r;
int *p, *q, *z;
int **a;

thread_1(void) /* initialize p, q, and r */
{

p = &x;
q = &y;
z = &r;

}
thread_2(void) /* swap contents of x and y */
{

r = *p;
*p = *q;
*q = r;

}
thread_3(void) /* access z via a and p */
{

a = &p;
*a = z;
**a = 12;

}

3 asynchronous threads

accessing shared data

3 statements each

how many test runs are needed to

check that no data corruption can occur?

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-15

Thread interleaving

• the number of possible thread

interleavings is...

9! 6! 3!
----- · ----- · ---- = 1,680
6!.3! 3!.3! 3!

placing 3 sets of 3 tokens in 9 slots

• are all these executions okay?

• can we check them all? should we

check them all?

• in classic system testing, how many

would normally be checked?

start

1

3

2

1,680 possible executions

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-16

A simpler example

• consider two 2-state automata

– representing two asynchronous processes

• one can print an arbitrary number of ‘0’ digits, or stop

• the other can print an arbitrary number of ‘1’ digits, or stop

how many different combined executions are there?

i.e., how many different binary numbers can be printed?

how would one test that this system does what we think it does?

print ‘0’ print ‘1’

stop stop
Q: how could a model

checker deal with possibly

infinite executions?

Section
Automata and logic

Finite state automata
Büchi Automata
Something on logic and automata
Implications for model checking

Chapter 1 “LTL model checking”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-18

FSA

Definition (Finite-state automaton)

A finite-state automaton is a tuple (Q, q0, ,Σ, F,→), where
• Q is finite set of states
• q0 ∈ Q is a distinguished initial state
• the “alphabet” Σ is a finite set of labels (symbols)
• F ⊆ Q is the (possibly empty) set of final states
• → ⊆ Q× Σ×Q is the transition relation, connecting

states in Q.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-19

Example FSA

q0 q1

q2 q4

q3

a0

a1 a2

a5

a3 a4

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-20

Example: An interpretation
The above automaton may be interpreted as a process
scheduler:

idle ready

executing end

waiting

start

run preempt

stop

block unblock

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-21

Determinism vs. non-determinism

Definition (Determinism)

A finite state automaton A = (Q, q0,Σ, F,−→) is
deterministic iff

q0
a→ q1 ∧ q0

a→ q2 =⇒ q1 = q2

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-22

Runs

Definition (Run)

A run of a finite state automaton A = (Q, q0,Σ, F,→) is a
(possibly infinite) sequence

σ = q0
a0→ q1

a1→ . . .

• q a→ q′ is meant as (q, a, q′) ∈ →
• each run corresponds to a state sequence (a word) over
Q and a word over Σ

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-23

Example run
idle ready

executing end

waiting

start

run preempt

stop

block unblock

• state sequences from runs: idle ready (execute waiting)∗
• corresponding words in Σ: start run(block, unblock)∗
• A single state sequence may correspond to more than
one word
• non-determinism: the same Σ-word may correspond to
different state sequence

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-24

“Traditional” acceptance

Definition (Acceptance)

An accepting run of a finite state automaton
A = (Q, q0,Σ, F,→) is a finite run
σ = q0

a0→ q1
a1→ . . .

an−1→ qn, with qn ∈ F

state sequence of an accepting run:
{ idle, ready, execute, waiting, execute, end }

the corresponding word in L:
{start, run, block, unblock, stop }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-25

Accepted language

Definition (Language)

The language L(A) of automaton A = (Q, q0,Σ, F,→) is
the set of words over Σ that correspond to the set of all the
accepting runs of A.

• generally: infinitely many words in a language
• remember: regular expressions etc.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-26

Reasoning about runs

Sample correctness claim (positive formulation)

If first p becomes true and afterwards q becomes true, then
afterwards, r can no longer become true

Seen negatively
It’s an error if in a run, one sees first p, then q, and then r.

¬p
p

¬q
q

¬r
r

• reaching accepting state ⇒ correctness property
violation
• accepting state represents error

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-27

Comparison to FSA in “standard” language
theory

• remember classical FSA (and regular expressions)
• for instance: scanner or lexer
• (typically infinite) languages of finite words
• remember: accepting runs are finite
• in “classical” language theory: infinite words completely
out of the picture

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-28

Reasoning about infinite runs

Some liveness property
“if p then eventually q.”

Seen negatively
It’s an error if one sees p and afterwards never q (i.e., forever
¬q)

¬p
p

¬q
q

• violation: only possible in an infinite run
• not expressible by conventional notion of acceptance

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-29

Büchi acceptance

• infinite run: often called ω-run (“omega run”)
• corresponding acceptance properties: ω-acceptance
• different versions

• The so-called Büchi, Muller, Rabin, Streett, etc.,
acceptance conditions

• Here, for now: Büchi acceptance condition [3] [2]

Definition (Büchi acceptance)

An accepting ω-run of finite state automaton
A = (Q, q0,Σ, F,→) is an infinite run σ such that some
qi ∈ F occurs infinitely often in σ

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-30

Example: “process scheduler”

idlestart ready

executing end

waiting

start

run preempt

stop

block unblock

• accepting ω-runs
• ω-language

infinite state sequence
idle (ready executing)ω

ω-word
start (run preempt)ω

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-31

Generalized Büchi automata

Definition (Generalized Büchi automaton)

A generalized Büchi automaton is an automaton
A = (Q, q0,Σ, F,→), where F ⊆ 2Q.
Let F = {f1, . . . , fn} and fi ⊆ Q. A run σ of A is accepting
if

for each fi ∈ F, inf (σ) ∩ fi 6= ∅.

• inf (σ): states visited infinitely often in σ
• generalized Büchi automaton: multiple accepting sets
instead of only one (6= “original” Büchi Automata)
• generalized Büchi automata: equally expressive

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-32

Stuttering

• treat finite and infinite acceptance uniformely
• finite runs as inifite ones, where, at some point,
infinitely often “nothing” happens (stuttering)
• Let ε be a predefined nil symbol
• alphabet/label set extended to Σ + {ε}
• extend a finite run to an equivalent infinite run: keep on

stuttering after the end of run. The run must end in a
final state.

Definition (Stutter extension)

The stutter extension of a finite run σ with final state sn, is
the ω-run

σ (sn, ε, sn)ω (1)

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-33

Stuttering example

idlestart ready

executing end

waiting

start

run preempt

stop
ε

block unblock

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-34

From Kripke structures to Büchi automata

• LTL formulas can be interpreted on sets of infinite runs
of Kripke structures
• Kripke structure/model:

• “automaton” or “transition system”
• transitions unlabelled (typically)
• states (or worlds): “labelled”, in the most basic

situation: sets of propositional variables
One can think of a path as an infinite branch in a tree
corresponding to the unrolling of the Kripke structure.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-35

Kripke structure (reminder)

Definition (Kripke structure)

A Kripke structure M is a four-tuple (S,R, S0, V) where
• S is a finite non-empty set of states (also “worlds”)
• R ⊆ S × S is a total relation between states (transition

relation, aka accessibility relation)
• S0 ⊆ S is the set of starting states
• V : S → 2AP is a map labeling each state with a set of

propositional variables

Notation: −→ for accessibility relation
A path in M is an infinite sequence σ = s0, s1, s2, . . . of
states such that si −→ si+1 (for all i ≥ 0).

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-36

BAs vs. KSs

• “subtle” differences
• labelled transitions vs. labelled states
• easy to transform one representation into the other
• here: from KS to BA.

• states: basically the same
• initial state: just make a unique initial one
• transition labels: all possible combinations of atomic

props
• states and transitions: transitions in A allowed if

• covered by accesssibility in the KS (+ initial transition
added)

• transition labelled by the “post-state-labelling” from
KS

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-37

KS to BA

Given M = (W,R,W0, V). An automaton
A = (Q, q0,Σ, F,→) can be obtained from a Kripke
structure as follows
transition labels: Σ = 2AP

states:
• Q = W + {i}
• q0 = i
• F = W + {i}

transitions:
• s a→ s′ iff s→M s′ and a = V (s′)
s, s′ ∈W
• i a→ s ∈ T iff s ∈W0 and a = V (s)

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-38

Example: KS to BA

A Kripke structure (whose only infinite run satisfies (for
instance) �q and �♦p):

{p, q} {q}

The corresponding Büchi automaton:

i s0 s1
{p, q}

{q}

{p, q}

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-38

Example: KS to BA

A Kripke structure (whose only infinite run satisfies (for
instance) �q and �♦p):

{p, q} {q}

The corresponding Büchi automaton:

i s0 s1
{p, q}

{q}

{p, q}

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-39

From logic to automata

• cf. regular expressions and FSAs
• for any LTL formula ϕ, there exists a Büchi automaton
that accepts precisely those runs for which the formula
ϕ is satisfied

Example (stabilization: “eventually always p”, ♦�p:)

s0 s1

>

p

p

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-40

(Lack of?) expressiveness of LTL

• note: analogy with regular expressions and FSAs: not
100 percent
• in the finite situation: “logical” specification language
(regexp) correspond fully to machine model (FSA)
• here: LTL is weaker! than BAs
• ω-regular expressions + ω-regular languages
• generalization of regular languages
• allowed to use rω (not just r∗)

Generalization of RE / FSA to infinite words

ω-regular language correspond to NBAs

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-41

ω-regular properties strictly more expressive
than LTL
Temporal property
p is always false after an odd number of steps

p ∧�(p→©¬p) ∧�(¬p→©p)

start

p

¬p

∃t. t ∧�(t→©¬t) ∧�(¬t→©t) ∧�(¬t→ p)

start

true

¬p

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-41

ω-regular properties strictly more expressive
than LTL
Temporal property
p is always false after an odd number of steps

p ∧�(p→©¬p) ∧�(¬p→©p)

start

p

¬p

∃t. t ∧�(t→©¬t) ∧�(¬t→©t) ∧�(¬t→ p)

start

true

¬p

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-41

ω-regular properties strictly more expressive
than LTL
Temporal property
p is always false after an odd number of steps

p ∧�(p→©¬p) ∧�(¬p→©p)

start

p

¬p

∃t. t ∧�(t→©¬t) ∧�(¬t→©t) ∧�(¬t→ p)

start

true

¬p

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-42

Expressiveness

modal µ-calculus
ω-tree automata

CTL∗

CTL

ω-word automata
Büchi automata
(never claims)
∃LTL

LTL

LTL without ©

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-43

Core part of automata-based MC

• remember: MC checks “system against formula” S |= ϕ

Linear time approach

• ω-language of the behavior of S is contained in the
language allowed by ϕ

• core idea then: instead of

L(S) ⊆ L(Pϕ)

do

L(S) ∩ L(Pϕ) = ∅

where S is a model of the system Pϕ represents the property
ϕ

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-44

What’s needed for automatic MC?

L(S) ∩ L(Pϕ) = ∅

Algorithms needed for

1. translation LTLto Büchi
2. language emptiness: are there any accepting runs?
3. language intersection: are there any runs accepted by

two or more automata?
4. language complementation

• thankfully: all that is decidable

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-45

How could one do it, then?

• system represented as Büchi automaton A
• The automaton corresponds to the asynchronous

product of automata A1, . . . , An (representing the
asynchronous processes)

A =
n∏
i=1

Ai

• property originally given as an LTL formula ϕ
• translate ϕ into a Büchi automaton Bϕ
• check

L(A) ∩ L(B) = ∅

One can do better though. . .

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-45

How could one do it, then?

• system represented as Büchi automaton A
• The automaton corresponds to the asynchronous

product of automata A1, . . . , An (representing the
asynchronous processes)

A =
n∏
i=1

Ai

• property originally given as an LTL formula ϕ
• translate ϕ into a Büchi automaton Bϕ
• check

L(A) ∩ L(B) = ∅

One can do better though. . .

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-46

One can do better
In practice (e.g., in SPIN): avoid automata
complementation:
• Assume A as before
• The negation of the property ϕ is automatically
translated into a Büchi automaton B (since
L(B) ≡ L(B))
• By making the synchronous product of A and B
(B ⊗A) we can check:

L(A) ∩ L(B) = ∅

• If intersection is empty: A |= ϕ, i.e., “property ϕ holds
for A” or “A satisfies property ϕ”
• else:

• A 6|= ϕ
• bonus: accepted word in the intersection counter

example

Section
Automata products

Chapter 1 “LTL model checking”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-48

Two kinds of product

• conceptually standard (but see terminating condition =
definition of final states)

asynchronous

• prog’s running in parallel
• interleaving
• no synchronization!
• one automaton does
something, the others not

synchronous

• together with (the
automaton representing)
the formula

• lock-step
• however: stuttering.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-49

Asychronous product

Definition (Asynchronous product)

The asynchronous product
∏

of a finite set of finite
automata A1, . . . An is a new finite state automaton
A = (S, s0, L, T, F) where:
• A.S is the Cartesian product A1.S ×A2.S × . . .×An.S
• A.s0 is the n-tuple (A1.s0, A2.s0, . . . , An.s0)
• A.L is the union set A1.L ∪A2.L ∪ . . . ∪An.L
• A.T is the set of tuples ((x1, . . . , xn), l, (y1, . . . , yn))
such that ∃i, 1 ≤ i ≤ n, (xi, l, yi) ∈ Ai.T and
∀j, 1 ≤ j ≤ n, j 6= i =⇒ (xj = yj)
• A.F contains those states from A.S that satisfy
∀(A1.s, A2.s, . . . , An.s) ∈ A.F,∃i, 1 ≤ i ≤ n,Ai.s ∈
Ai.F

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-50

3n+1 inspired example

• 3n+1 problem
• Assume 2 non-terminating asynchronous processes A1
and A2:
• A1 tests whether the value of a variable x is odd, in

which case updates it to 3 ∗ x+ 1
• A2 tests whether the value of a variable x is even, in

which case updates it to x/2

Question
Does the corresponding function terminate for all inputs x?

• Let ϕ the following property: �♦(x ≥ 4) (negated
♦�(x < 4))

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-51

Example: async product

A1 and A2

s0start s1

s0start s1

odd(x)

x := 3x+ 1

even(x)

x := x/2

A1 ×A2

s00start s01

s10start s11

odd(x)

x := 3x+ 1

even(x)x := x/2

odd(x)

x := 3x+ 1

even(x)x := x/2

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-52

Tests or guards on transitions

• guarded commands (thanks to Dijsktra)
• conditional transitions, predicated on a guard
• in Promela1 semantics, an expression statement has to
evaluate to non-zero to be executable (endabled). So to
test whether a variable x is odd, we write !(x%2), and
(x%2) for checking whether x is even.

Given x=4, !(4%2) evaluates to !(0) or written more
clearly as !(false) which is (true).

1Probably inspired by C . . .

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-53

Example: Async. product

• ignore B on the right-hand side first
• final states not really important

s0

s1

(x%2)

x=3x+1

A1

s0

s1

!(x%2)

x=x/2

A2

s0

s1

true

x<4

x<4

B

s0,s0

s1,s0

s0,s1

s1,s1

(x%2)

x=3x+1

(x%2)

x=3x+1

x=x/2

x=x/2

!(x%2)

!(x%2)

ΠΠΠΠ

an unreachable state
under Promela interpretation
of statement (label) semantics

int x

note that variable x
also holds state information
we have to take Promela semantics
into account to determine which
states are really reachable

⊗

we can also “expand” the automaton
into a pure automaton, without variables

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-54

Example: Pure automaton

initial value: x = 4

s0,s0

s1,s0

s0,s1

s1,s1

(x%2)

x=3x+1

(x%2)

x=3x+1

x=x/2

x=x/2

!(x%2)

!(x%2)

s0,s0
4

s0,s1
4

s0,s0
2

s0,s1
2

s1,s0
1

s0,s0
1

!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1

“pure” finite state asynchronous
product automaton
for initial value x = 4
(the value of x is now part of
the state of the automaton)

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-55

Remarks
• Not all the states in the product necessarilty reachable
from q0

• Their reachability depends on the semantics given to
the labels in A.L (the interpretation of the labels depends
on Promela semantics as we’ll see in a future lecture)

• The transitions in the asyc. product automaton are the
transitions from the component automata arranged
such that only one of the components automata can
execute at a time ⇒ interleaving
• Promela has also rendez-vous synchronization (A special

global variable has to be set)

• Some transitions may synchronize by sending and
receiving a message

• For hardware verification, the asynchronous product is
defined differently: each of the components with
enabled transitions is making a transition
(simultaneously)2

2And, in my humble opinion, should then better not be called
asynchronous product, but synchronous.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-55

Remarks
• Not all the states in the product necessarilty reachable
from q0
• Their reachability depends on the semantics given to

the labels in A.L (the interpretation of the labels depends
on Promela semantics as we’ll see in a future lecture)

• The transitions in the asyc. product automaton are the
transitions from the component automata arranged
such that only one of the components automata can
execute at a time ⇒ interleaving
• Promela has also rendez-vous synchronization (A special

global variable has to be set)

• Some transitions may synchronize by sending and
receiving a message

• For hardware verification, the asynchronous product is
defined differently: each of the components with
enabled transitions is making a transition
(simultaneously)2

2And, in my humble opinion, should then better not be called
asynchronous product, but synchronous.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-55

Remarks
• Not all the states in the product necessarilty reachable
from q0
• Their reachability depends on the semantics given to

the labels in A.L (the interpretation of the labels depends
on Promela semantics as we’ll see in a future lecture)

• The transitions in the asyc. product automaton are the
transitions from the component automata arranged
such that only one of the components automata can
execute at a time ⇒ interleaving

• Promela has also rendez-vous synchronization (A special
global variable has to be set)

• Some transitions may synchronize by sending and
receiving a message

• For hardware verification, the asynchronous product is
defined differently: each of the components with
enabled transitions is making a transition
(simultaneously)2

2And, in my humble opinion, should then better not be called
asynchronous product, but synchronous.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-55

Remarks
• Not all the states in the product necessarilty reachable
from q0
• Their reachability depends on the semantics given to

the labels in A.L (the interpretation of the labels depends
on Promela semantics as we’ll see in a future lecture)

• The transitions in the asyc. product automaton are the
transitions from the component automata arranged
such that only one of the components automata can
execute at a time ⇒ interleaving
• Promela has also rendez-vous synchronization (A special

global variable has to be set)

• Some transitions may synchronize by sending and
receiving a message

• For hardware verification, the asynchronous product is
defined differently: each of the components with
enabled transitions is making a transition
(simultaneously)2

2And, in my humble opinion, should then better not be called
asynchronous product, but synchronous.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-55

Remarks
• Not all the states in the product necessarilty reachable
from q0
• Their reachability depends on the semantics given to

the labels in A.L (the interpretation of the labels depends
on Promela semantics as we’ll see in a future lecture)

• The transitions in the asyc. product automaton are the
transitions from the component automata arranged
such that only one of the components automata can
execute at a time ⇒ interleaving
• Promela has also rendez-vous synchronization (A special

global variable has to be set)
• Some transitions may synchronize by sending and

receiving a message

• For hardware verification, the asynchronous product is
defined differently: each of the components with
enabled transitions is making a transition
(simultaneously)2

2And, in my humble opinion, should then better not be called
asynchronous product, but synchronous.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-55

Remarks
• Not all the states in the product necessarilty reachable
from q0
• Their reachability depends on the semantics given to

the labels in A.L (the interpretation of the labels depends
on Promela semantics as we’ll see in a future lecture)

• The transitions in the asyc. product automaton are the
transitions from the component automata arranged
such that only one of the components automata can
execute at a time ⇒ interleaving
• Promela has also rendez-vous synchronization (A special

global variable has to be set)
• Some transitions may synchronize by sending and

receiving a message
• For hardware verification, the asynchronous product is
defined differently: each of the components with
enabled transitions is making a transition
(simultaneously)2

2And, in my humble opinion, should then better not be called
asynchronous product, but synchronous.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-56

Synchronous product
Definition (Synchonous product)

The synchronous product of two finite automata A1 and A2
(written A1 ⊗A2 is defined as finite state automaton
A = (Q, q0,Σ, F,→) where:
• Q = Q1 ×Q1
• q0 = (q01, q02)
• Σ = Σ1 × Σ2.
• −→=−→1 × −→2
• (q1, q2) ∈ F if q1 ∈ F1 or q2 ∈ F2

• The latter condition: not so important in general, resp.
up-to debate
• Synchonous product here:

• used in connection with stuttering
• for LTL to Büchi

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-57

Let the system automaton stutter

• asymmetric situation
• one automaton: “system”
• second one:

• “recognizer”
• automaton that represents the logical LTL formula

• for system automating: add stuttering
• stutter: a self-loop labeled with ε at every every state in
without outgoing transitions

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-58

Example: synch. product for 3n + 1 system
and property

the example: B ⊗ Π Ai

s0

s1

true

x<4

x<4

B

all paths with
accept states
dead-end here;
not stutter possible

are there any
accepting cycles?

if not, then the
property <>[](x<4)
cannot be satisfied
and its negation holds

!<>[](x<4)
[]![](x<4)
[]<>!(x<4)
[]<>(x>=4)

⊗⊗⊗⊗

s0,s0,
4,s0

s0,s1
4,s0

s0,s0
2,s0

s0,s1
2,s0

s1,s0
1,s0

s0,s0
1,s0

!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1
x=x/2

(x%2)

s1,s0
1,s1

s0,s0
1,s1

s0,s1
2,s1

s0,s0
4,s1s0,s0

4

s0,s1
4

s0,s0
2

s0,s1
2

s1,s0
1

s0,s0
1

!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1

i=1

2

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-59

Remarks

• We require the stutter-closure of P (as P is a finite
state automaton (the asynchronous product of the
processes automata) and B is a standard Büchi
automaton obtained form a LTL formula

• Not all states necessarily reachable from q0
• Main difference between asynchronous and synchronous
products: labels and transitions. for synchronous
product:
• joint transitions of the component automata
• labels are pairs: the combination of the two labels of

the original transitions in the component automata
• In general here P ⊗B 6≡ B ⊗ P , but given that in SPIN
B is particular kind of automaton (labels are state
properties, not actions), we have then P ⊗B ≡ B ⊗ P

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-59

Remarks

• We require the stutter-closure of P (as P is a finite
state automaton (the asynchronous product of the
processes automata) and B is a standard Büchi
automaton obtained form a LTL formula
• Not all states necessarily reachable from q0

• Main difference between asynchronous and synchronous
products: labels and transitions. for synchronous
product:
• joint transitions of the component automata
• labels are pairs: the combination of the two labels of

the original transitions in the component automata
• In general here P ⊗B 6≡ B ⊗ P , but given that in SPIN
B is particular kind of automaton (labels are state
properties, not actions), we have then P ⊗B ≡ B ⊗ P

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-59

Remarks

• We require the stutter-closure of P (as P is a finite
state automaton (the asynchronous product of the
processes automata) and B is a standard Büchi
automaton obtained form a LTL formula
• Not all states necessarily reachable from q0
• Main difference between asynchronous and synchronous
products: labels and transitions. for synchronous
product:
• joint transitions of the component automata
• labels are pairs: the combination of the two labels of

the original transitions in the component automata

• In general here P ⊗B 6≡ B ⊗ P , but given that in SPIN
B is particular kind of automaton (labels are state
properties, not actions), we have then P ⊗B ≡ B ⊗ P

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-59

Remarks

• We require the stutter-closure of P (as P is a finite
state automaton (the asynchronous product of the
processes automata) and B is a standard Büchi
automaton obtained form a LTL formula
• Not all states necessarily reachable from q0
• Main difference between asynchronous and synchronous
products: labels and transitions. for synchronous
product:
• joint transitions of the component automata
• labels are pairs: the combination of the two labels of

the original transitions in the component automata
• In general here P ⊗B 6≡ B ⊗ P , but given that in SPIN
B is particular kind of automaton (labels are state
properties, not actions), we have then P ⊗B ≡ B ⊗ P

Section
Model checking algorithm

Preliminaries
The Algorithm
LTL to Büchi

Chapter 1 “LTL model checking”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-61

Algorithmic checking for emptyness

• for FSA: emptyness checking is easy: reachability
• For Büchi:

• more complex acceptence (namely ω-often)
• simple, one time reachability not enough

⇒ “repeated” reachability
⇒ from initial state, reach an accepting state, and then

again, and then again . . .
• cf. “lasso” picture
• technically done with the help of SCCs.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-62

Strongly-connected components

Definition (SCC)

A subset S′ ⊆ S in a directed graph is strongly connected if
there is a path between any pair of nodes in S′, passing only
through nodes in S′.
A strongly-connected component (SCC) is a maximal set of
such nodes, i.e. it is not possible to add any node to that set
and still maintain strong connectivity

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-63

SCC example

s0
++ s1kk //

��

s2

��
s3 // s4 //

]]

s5

Figure: Strongly connected component

• Strongly-connected subsets:

S = {s0, s1}, S′ = {s1, s3, s4}, S′′ = {s0, s1, s3, s4}

• Strongly-connected components:

Only
S′′ = {s0, s1, s3, s4}

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-63

SCC example

s0
++ s1kk //

��

s2

��
s3 // s4 //

]]

s5

Figure: Strongly connected component

• Strongly-connected subsets:

S = {s0, s1}, S′ = {s1, s3, s4}, S′′ = {s0, s1, s3, s4}

• Strongly-connected components:

Only
S′′ = {s0, s1, s3, s4}

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-63

SCC example

s0
++ s1kk //

��

s2

��
s3 // s4 //

]]

s5

Figure: Strongly connected component

• Strongly-connected subsets:
S = {s0, s1}, S′ = {s1, s3, s4}, S′′ = {s0, s1, s3, s4}
• Strongly-connected components:

Only
S′′ = {s0, s1, s3, s4}

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-63

SCC example

s0
++ s1kk //

��

s2

��
s3 // s4 //

]]

s5

Figure: Strongly connected component

• Strongly-connected subsets:
S = {s0, s1}, S′ = {s1, s3, s4}, S′′ = {s0, s1, s3, s4}
• Strongly-connected components: Only
S′′ = {s0, s1, s3, s4}

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-64

Checking emptiness

Büchi automaton A = (Q, s0,Σ,→, F) with accepting run σ

Core observation
As Q is finite, there is some suffix σ′ of σ s.t. every state on
σ′ is reachable from any other state on σ′

• I.a.w: those set of states is strongly connected.
• This set is reachable from an initial state and contains
an accepting state

Emptyness check
Checking non-emptiness of L(A) is equivalent to finding a
SCC in the graph of A that is reachable from an initial state
and contains an accepting state

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-65

Emptyness checking and counter example

• different algos for SCC. E.g.:
• Tarjan’s version of the depth-first search (DFS)

algorithm
• SPIN nested depth-first search algorithm

• If the language L(A) is non-empty, then there is a
counterexample which can be represented in a finite
way
• It is ultimately periodic, i.e., it is of the form σ1σ

ω
2 ,

where σ1 and σ2 are finite sequences

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-65

Emptyness checking and counter example

• different algos for SCC. E.g.:
• Tarjan’s version of the depth-first search (DFS)

algorithm
• SPIN nested depth-first search algorithm

• If the language L(A) is non-empty, then there is a
counterexample which can be represented in a finite
way
• It is ultimately periodic, i.e., it is of the form σ1σ

ω
2 ,

where σ1 and σ2 are finite sequences

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-65

Emptyness checking and counter example

• different algos for SCC. E.g.:
• Tarjan’s version of the depth-first search (DFS)

algorithm
• SPIN nested depth-first search algorithm

• If the language L(A) is non-empty, then there is a
counterexample which can be represented in a finite
way
• It is ultimately periodic, i.e., it is of the form σ1σ

ω
2 ,

where σ1 and σ2 are finite sequences

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-66

Model checking algorithm
• Let A be the automaton specifying the system and B

the automaton corresponding to the negation of the
property ϕ

1. Construct the intersection automaton C = A ∩B
2. Apply an algorithm to find SCCs reachable from the

initial states of C
3. If none of the SCCs found contains an accepting state

• The model A satisfies the property/specification ϕ
4. Otherwise,

4.1 Take one strongly-connected component SC of C
4.2 Construct a path σ1 from an initial state of C to some

accepting state s of SC
4.3 Construct a cycle from s and back to itself (such cycle

exists since SC is a strongly-connected component)
4.4 Let σ2 be such cycle, excluding its first state s
4.5 Announce that σ1σ

ω
2 is a counterexample that is

accepted by A, but it is not allowed by the
property/specification ϕ

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-66

Model checking algorithm
• Let A be the automaton specifying the system and B

the automaton corresponding to the negation of the
property ϕ

1. Construct the intersection automaton C = A ∩B

2. Apply an algorithm to find SCCs reachable from the
initial states of C

3. If none of the SCCs found contains an accepting state
• The model A satisfies the property/specification ϕ

4. Otherwise,
4.1 Take one strongly-connected component SC of C
4.2 Construct a path σ1 from an initial state of C to some

accepting state s of SC
4.3 Construct a cycle from s and back to itself (such cycle

exists since SC is a strongly-connected component)
4.4 Let σ2 be such cycle, excluding its first state s
4.5 Announce that σ1σ

ω
2 is a counterexample that is

accepted by A, but it is not allowed by the
property/specification ϕ

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-66

Model checking algorithm
• Let A be the automaton specifying the system and B

the automaton corresponding to the negation of the
property ϕ

1. Construct the intersection automaton C = A ∩B
2. Apply an algorithm to find SCCs reachable from the

initial states of C

3. If none of the SCCs found contains an accepting state
• The model A satisfies the property/specification ϕ

4. Otherwise,
4.1 Take one strongly-connected component SC of C
4.2 Construct a path σ1 from an initial state of C to some

accepting state s of SC
4.3 Construct a cycle from s and back to itself (such cycle

exists since SC is a strongly-connected component)
4.4 Let σ2 be such cycle, excluding its first state s
4.5 Announce that σ1σ

ω
2 is a counterexample that is

accepted by A, but it is not allowed by the
property/specification ϕ

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-66

Model checking algorithm
• Let A be the automaton specifying the system and B

the automaton corresponding to the negation of the
property ϕ

1. Construct the intersection automaton C = A ∩B
2. Apply an algorithm to find SCCs reachable from the

initial states of C
3. If none of the SCCs found contains an accepting state

• The model A satisfies the property/specification ϕ

4. Otherwise,
4.1 Take one strongly-connected component SC of C
4.2 Construct a path σ1 from an initial state of C to some

accepting state s of SC
4.3 Construct a cycle from s and back to itself (such cycle

exists since SC is a strongly-connected component)
4.4 Let σ2 be such cycle, excluding its first state s
4.5 Announce that σ1σ

ω
2 is a counterexample that is

accepted by A, but it is not allowed by the
property/specification ϕ

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-66

Model checking algorithm
• Let A be the automaton specifying the system and B

the automaton corresponding to the negation of the
property ϕ

1. Construct the intersection automaton C = A ∩B
2. Apply an algorithm to find SCCs reachable from the

initial states of C
3. If none of the SCCs found contains an accepting state

• The model A satisfies the property/specification ϕ
4. Otherwise,

4.1 Take one strongly-connected component SC of C
4.2 Construct a path σ1 from an initial state of C to some

accepting state s of SC
4.3 Construct a cycle from s and back to itself (such cycle

exists since SC is a strongly-connected component)
4.4 Let σ2 be such cycle, excluding its first state s
4.5 Announce that σ1σ

ω
2 is a counterexample that is

accepted by A, but it is not allowed by the
property/specification ϕ

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-67

LTL to Büchi

• translation to Generalized Büchi GBA
• cf. Thompson’s construction
• structural translation
• Crucial idea: connect semantics to the syntax.
• compare Hintikka-sets or similar constructions for FOL

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-68

Source and terminology: Baier and Katoen
[1]

• transition systems TS:
• corresponds to Kripke systems
• state-labelled3
• labelled by sets of atomic props: Σ = 2AP

• “language” or behavior of the TS: (traces): infinite
sequences over Σ

3transition labels irrelevant

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-69

Illustrative examples (5.32)

1. �♦green
2. �(request → ♦response)
3. ♦�a

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-70

�♦green

¬green green green

¬green

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-71

�(request → ♦response)

¬a ∨ b a ∧ ¬b ¬b

b

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-72

♦�a

>
a

a

¬a
>

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-73

Reminder: Generalized NBA

• equi-expressive than NBA
• used in the construction
• different way of defining acceptance
• Acceptance: set of acceptance sets = set of sets of
elements of Q.
• Acceptance: each acceptance set Fi must be “hit”
infinitely often

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-74

Basic idea for Gϕ
• not the construction yet, but: “insightful” property
• find a mental picture:

• what are the states of the automaton
• (and how are they connected by transitions)

• Ai ∈ Σ, sets of atomic props
• Bi : “extended” (by sub-formulas of ϕ), i.e., Bi ⊇ Ai.

States as sets of formulas
Namely those that are intended to be in the “language of
that state”. I.e., the Bi’s form the states of Gϕ.

Given σ = A0A1A2 . . . ∈ L(ϕ).
Extension to σ̂ = B0B1B2 . . .

ψ ∈ Bi iff Ai, Ai+1Ai+2 . . .︸ ︷︷ ︸
σi

|= ψ

σ̂ = run (state-sequence) in Gϕ

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-75

Cf. FSAs

• states as “sets” of “words” (language resp. set of ltl
formulas)
• cf. Myhill-Nerode
• a bit different, (equivalence on languages of finite
words)
• represent states by equivence classes of words

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-76

Closure of ϕ

• related to Fisher-Ladner closure
• See page 276
• “states” Ai from the mental picture
• what’s a “closure” in general?
• Extending Ai to Bi not by all true formulas, but only
those that could conceivably play a role in an
automaton checking ϕ
• ⇒ achieving “finiteness” of the construction

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-77

How to extend Ai’s

• not by irrelevant stuff (closure of ϕ).
• two other conditions:

• avoid contradictions (consistency)
• include logical consequences4 (maximality)

• maximally consistent sets! (here called elementary)
• in one state: local perspective only (but don’t forget U)
• Cf: KS has an interpretation for each AP, here now (in

the intended BA),

“semantics” (states) by “syntax”

“interpretation” for all relevant formulas “in” each state
(subformulas of ϕ and their negation)

4hence the notion of “closure”

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-78

Elementary sets/maximally consistent sets

• given ϕ
• elementary: “maximally consistent set of subsets (of the
closure of ϕ)”
• consistent: “no obvious contradictions”
• maximally consistent: sets for formulas ψ in the closure

of ϕ s.t., there exists some path π s.t. π |= ψ.
• wrt. propositional logic
• locally consistent wrt. until

• “maximal”

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-79

Example: ϕ = a U (¬a ∧ b)

{a, b, ϕ} ⊆ closure(ϕ)

{¬a,¬b,¬(¬a ∧ b), ϕ}?

page 276/277

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-80

Construction of GNBA: general

• given AP and ϕ
• given ϕ, construct an GNBA such that

L(B) = words(ϕ)

• 3 core ingredients
1. states = sets of formulas which (are suppsed to) “hold”

in that state
2. transition relation: connect the states appropriately,
3. transitions labelled by sets of AP.

• labeled transition connected states to match the
semantics: for ©ϕ:

simplified for ©
go from a state containing ©ϕ to a state containing ϕ.
Label the transition with the APs from the start state.

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-81

Transition relation

δ : Q× 2AP → 2Q

• if A 6= B ∩AP: δ(B,A) = ∅
• if A = B ∩AP, then δ(B,A) is the set B′ such that

• for every ©ψ ∈ closure(ϕ):

©ψ ∈ B iff ψ ∈ B′

• for every ϕ1 U ϕ2 ∈ closure(ϕ):

ϕ1 U ϕ2 ∈ B iff ϕ2 ∈ B or
(ϕ1 ∈ B and ϕ1 U ϕ2 ∈ B′)

Section
References

Chapter 1 “LTL model checking”
Course “Model checking”
Volker Stolz, Martin Steffen
Autumn 2019

IN5110 –
Verification and
specification of
parallel systems

Logic model
checking: What is
it about?
The basic method

General remarks

Motivating examples

Automata and
logic
Finite state automata

Büchi Automata

Something on logic and
automata

Implications for model
checking

Automata
products

Model checking
algorithm
Preliminaries

The Algorithm

LTL to Büchi

References
1-83

References I

Bibliography

[1] Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking. MIT Press.

[2] Büchi, J. R. (1960). Weak second-order arithmentic and finite automata. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 6:66–92.

[3] Büchi, J. R. (1962). On a decision method in restricted second-order logic. In Proceedings of the
1960 Congress on Logic, Methodology and Philosophy of Science, pages 1–11. Stanford University
Press.

	LTL model checking
	Logic model checking: What is it about?
	The basic method
	General remarks
	Motivating examples

	Automata and logic
	Finite state automata
	Büchi Automata
	Something on logic and automata
	Implications for model checking

	Automata products
	Model checking algorithm
	Preliminaries
	The Algorithm
	LTL to Büchi

	References

