
Course Script
IN 5110: Specification and
Verification of Parallel Sys-
tems
IN5110, autumn 2019

Martin Steffen, Volker Stolz

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

4 µ-calculus model checking 1
4.1 Introduction . 1
4.2 Propositional µ-calculus: syntax and semantics 8

4.2.1 Syntax . 8
4.2.2 Background: Fixpoints . 14
4.2.3 Semantics . 17

4.3 Model checking . 18

4 µ-calculus model checking 1

4
µ-calculus model checking
Chapter

What
is it

about?Learning Targets of this Chapter
The chapter covers an short intro to
the (resp. one variant) of the
µ-calculus and model-checking it.
We focus on the most prominent
version of the µ-calculus for model
checking known as modal
µ-calculus, with a “branching time”
interpretation. The logic can be
understood as the “prototypical”
logic with fixpoints, so we’ll have
to talk about fixpoints, as well. For
model checking, we look at a bit of
“game theory” (parity games).

Contents

4.1 Introduction 1
4.2 Propositional µ-calculus:

syntax and semantics 8
4.3 Model checking 18

4.1 Introduction

The presentation takes information from the handbook article Bradfield and Walukiewicz
[1], but cannot cover all of the theoretical background in there (and there’s a lot, due to
the rather fundamental nature of the µ-calculus). There are many starting points that
have led to what here is called µ-calculus. In computer science, one important reference
point is the article Kozen [3].

Intro remarks

• rather fundamental logic
• central to µ-calculus: fixpoints
• many variations (and names)

– propositional µ-calculus
– modal µ-calculus
– Hennessy-Milner logic with recursion
–

2 4 µ-calculus model checking
4.1 Introduction

For the lecture: vanilla µ-calculus a plain, propositional modal logic + fixpoints

It’s not an exaggeration to say, “the” µ-calculus is “fixpoint logic” as it’s all about fixpoints.
Depending on the starting point, one can (and some did) add fixpoints to, for example,
first-order logic and what not. For the model checking lecture, we take as a starting
point a modal logic (like the ones we discussed in the respective chapter). Actually, we
are going for a multi-modal logic. The intuition behind the logic is that the modalities
talk about transitions (labelled transitions in fact, as we have a multi-modal logics), not
about “knowlege” or “beliefs” etc. One can for sure also think of adding fixpoints with
such more philosophical interpretations in mind. However, we focus on Kripke structures
resp. transitition system representing steps in the executions of programs or systems. Like
we mostly did for LTL (and CTL etc. covered by student representation), the starting
point is also a propositional core logic, underneath the modal part (but that also is a
bit orthogonal: there will be a student talk about QTL, quantified temporal logic, which
allows first-order quantification. One could also turn that into a µ-calculus-like formalism).
This set-up here is kind of the vanilla propositional µ-calculus. We start by recalling what,
very generally, a fix-point of a function is. That’s actually pretty simple.

What’s a fixpoint?

f : A→ A

f(a) = a

A fixpoint of a function f is is thus defined quite simple (the a from set A in the above
example is a fixpoint if f). The next part of the lecture is more a warm-up, as a reminder
that there are actually fixpoints “everywhere”. It’s not always explicitly stated, like “let
such-and-such be defined as fixpoint in the following way . . . ”, there are other formula-
tions used, and we have encountered such formulations in the lecture already (perhaps
without being aware that underlying the respective definition, there was actually a fix-
point construction. The definitions were all on the “meta-level” not as part of a logic, i.e.,
fixpoints were mostly used (implicitly) to define or talk about a logic, we did not intro-
duce fixpoints as part of the logics (that what the µ-calculusdoes). Actually, it’s not 100%
correct when saying that so far the logics did not allow to express fixpoints. It will turn
out that temporal operators such as “eventually”, “always”, “until” are effectively fixpoint
constructors. Only that there are no explicit fix-point constructors, so their nature as
fixpoints is hidden.

Fixpoints are everywhere

A pedestrian definition of syntax The set Φ of propositional formulas is given as fol-
lows

• all propositional constants from AP are formulas
• if ϕ is a formula, then so is ¬ϕ
• if ϕ1 is a formula and ϕ2 is a formula, then so is ϕ1 ∧ ϕ2
• if ϕ1 is a formula and ϕ2 is a formula, then so is ϕ1 ∨ ϕ2
• . . . [more constructs if wished] . . .

4 µ-calculus model checking
4.1 Introduction 3

Is that even a definition?

Fixpoints are everywhere

A pedestrian definition of syntax (reformulated) The set Φ of propositional formulas
is given as follows

• AP ⊆ Φ
• if ϕ ∈ Φ, the ¬ϕ ∈ Φ
• if ϕ1 ∈ Φ and ϕ2 ∈ Φ, then ϕ1 ∧ ϕ2 ∈ Φ
• if ϕ1 ∈ Φ and ϕ2 ∈ Φ, then ϕ1 ∨ ϕ2 ∈ Φ
• . . . [more constructs if wished] . . .

What about that?

Φ = {p, q, ..., p ∧ p, p ∧ q, p ∧ (p ∨ q) . . .} ∪ {5, p#q,¬5, 5 ∧ (q#q) . . .}

The point of that example is that the set Φ of formulas given at the end satisfies the
conditions, but it’s not the one one had in mind. Basically, it means, the sentences as
given are not a definition: they don’t precisely fix the set of formulas, they just spell out
conditions or constraints on Φ. Those constraints corresponds to closure conditions.
For a condition like “if it so happens that ϕ ∈ Φ for some ϕ, then it’s neccessary that also
¬ϕ in Φ”, one says more shorter that the set of formulas is closed under ¬, which is an
unary operation or constructor.

How to fix(-point) it?

Depending to the style of writing or conventions in the field, one finds different ways of
removing this ambiguity.

• . . . No other entities are formulas, i.e. elements of Φ
• Φ is the smallest set such that 1) AP ⊆ Φ, 2) . . .
• Φ is inductively given by the following conditions: 1) . . .

“Mu” F (S) = AP ∪ {¬φ | φ ∈ S} ∪ {ϕ1 ∧ ϕ1 | ϕ1 ∈ S, ϕ2 ∈ S} ∪ . . .

Φ = µF

The last “fix”, the one labelled “Mu”, approaches a definition based on explicit fixpoints.
A function F is defined, which takes a set (the formal parameter S) and produces another
set, by adding more elements (actually formulas). The the intended set Φ is given as the
smallest fixpoint of that function F , i.e., the smallest set Φ such that Φ = F (Φ). The
traditional symbol that represents the smallest fixpoint is µ, i.e., Φ = µF . As a side
remark: the “mu” is a reference to some very famous popular science book GEB (Gödel,
Escher, Bach. An Eternal Golden Braid), which in an deep, broad, and entertaining

4 4 µ-calculus model checking
4.1 Introduction

way builds connections between art and logic, and where recursion (i.e., fixpoints) play a
central role, and the book also contains something called MU-puzzle).

Fixpoints are everywhere, indeed

• grammars (with special syntax)

ϕ ::= AP | ¬ϕ | ϕ1 ∧ ϕ2 | . . .

• Kleene star and regular expressions:
– finite words over Σ: written Σ∗
– a(b+ c)∗

• semantics of programming language
– while-loop: make single steps, until termination (but not more!)

• data structures
– the natural numbers are given (“constructed”) by 0 and succ as constructor (and

not more!)
• proof (and proof trees): a proof is given (“constructed”) from axioms and application

of rules (but not more!)

The list contains some examples which can be interpreted as involving fixpoints. A com-
mon denominator of the list is: all of them correspond to smallest fixpoints; it always
about “the smallest collection closed unter something”. The µ-calculus later allows two
kinds of fixpoints, smallest ones with “µ” as binder and largest fixpoints (“ν”). It’s prob-
ably fair to say, that one is used more to smallest fixpoints constructions, generally seen:
One is very much used to list as data structure, which corresponds to a smallest fix-point.
In some sense (that can be made precise, but is not relevant for the lecture), a correspon-
dent largest fix-point data structure is their “infinite” counterpart, i.e., streams. As said,
it’s fair to say, that lists are a more common (and simpler?) data structure than streams.
As a side remark, as came up during the lecture: infinite data structures, such as streams,
can be seen as “lazy” data structure (as in Haskell). Lazy refers to the fact that, obviously,
an infinite list (= stream) cannot be kept in memory in its infinite entirety, i.e., treated
eagerly. What can be done is treating such an “infinite list” lazily, i.e., handing out the
head of the last resp. the rest or tail of the streap piecewise and on demand.

Thinking about those kinds of examples (lists vs. streams, proofs as finite derivation
trees vs. infinite proofs using infinite trees?. . .), the smallest fix-point indeed seems more
common and less scary. In the µ-calculus later, however, the two fixpoints are completely
symmetric. Actually, they are duals in a technical sense (like “¬µ¬ = ν” and vice
versa). What will be analogous is that smallest fixpoint formulas intuitively talk about
finite “iterations” and largest fixpoints about infinite ones (we will see examples for that).
Since the situation is symmetric in that sense, it’s also misleading to think that µ-fixpoint
necessarily are easier to understand compared to ν)-fixpoints. Arguably, the simplest
useful temporal properties one might want to model-check are invariants. In LTL-notation,
one can write �p (for “always p holds). The proposition p must always hold, in all infinity,
and that may give a hint that it corresponds to an ν-fixpoint. The dual formula “eventually
q” (or ♦q in LTL) is not harder or easier to understand and corresponds dually to a smallest
fixpoint: the satisfaction of q is requestion within a finite time!

4 µ-calculus model checking
4.1 Introduction 5

Connection to induction

Previously, the presentation stressed that “fixpoints are everywhere” (by giving examples
mostly of data structures and constructions involving smallest fixpoints). As mentioned
in that context: in textbooks one not often finds an explicit mention of the fixpoints,
often other “keywords” are used (“the smallest set such that . . . ”). One keyword in
that context is: “inductively”, like: the natural numbers are given inductively by the
constant 0 and the unary function (symbol) succ. The use of the word “inductively” is
no coincidence: inductively given structures are equipped with a proof principle called
induction. One presumably is most used to that principle in the context of natural
numbers, so much so that induction in that setting is also called mathematical induction or
natural induction. The latter word just means induction over natural numbers. The rather
grandiose qualification as being the principle of “mathematical” induction perhaps is meant
to differentiate that from “philosophical” induction, the principle to draw conclusions from
special cases or instances to a general case. By way of mentioning: the latter interpretation
is also connected to what the machine learning people mostly understand when they talk
about induction. In that kind of interpretation of induction, is often positioned as opposite
to deduction.

Anyway, we are here only interested in the mathematical proof principle of induction which
roughly says (in the case of the natural numbers):

if you need to prove some propery for all natural numbers, then the way to go
for it is:

1. prove that the property holds for 0, and prove that,
2. if it holds for n, that implies that it also holds for n+ 1.

Note that there are infinitely many numbers, each of which is finitely constructed though.
The two parts of that proof principle are known, of course, as the base case and the induc-
tion case or induction step, and the assumption in the induction step that the property
holds for n (which is arbitrary) is also called induction hypothesis.

So far, so familiar (hopefully). Now, the slide contains one well-known and early “for-
malization” of natural numbers. It’s known as Peano’s axioms or postulates (or Peano-
Dedekind). Depending on the source, there may be addition axioms (for instance, stating
properties of the equality symbol "=). We are interested not in that part, we are interested
in the natural numbers alone. Relevant for us are in particular axioms 1. and 2. from the
slide. Axiom 3. and 4. are not really too relevant for us (they have to do with the fact
that the historical axioms also formalized axioms about = as part of the logic and being
very explicit about that).

Anyway, the really interesting one is axiom number 5 (here listed in equation (4.1)). It’s
often mentioned with this epithet (the famous fifth axiom of Peano. . . Whether it was in
his own original writings numbered as the fifth, I have not checked). What it effectively
does is another way of stating that the natural numbers (closed under 0 and successor)
is the smallest set closed under those. It does so slightly indirectly, referring to another
S is, and it stipulates that any other set closed in 0 and successor must be the natural
numbers already. Actually, reading the sentence carefully, it states that for each set S,
closed under 0 and successor

6 4 µ-calculus model checking
4.1 Introduction

N ⊆ S

not N = S. Effectivly, it does not make a difference (see a bit further down below), after
we have discussed the formulation of Peano’s axiom in the form of equation (4.2).

remember: one way of formulation “Φ is inductively given as follows . . .

Natural numbers

1. 0 is a natural number
2. if n is a natural number, then so is succ(n) (written also n+ 1)
3. n+ 1 = m+ 1, then n = m
4. there is no natural number n with n+ 1 = 0

Peano Nr. 5
If a set S contains 0 and is closed under successor,
then all natural numbers are in S.

(4.1)

Peano Nr. 5: natural induction

∀ϕ.ϕ(0) ∧ (∀n.ϕ(n)→ ϕ(n+ 1))→ ∀n.ϕ(n) . (4.2)

Peano’s 5th axiom is also called the induction axiom. That is more clearly felt in the
second formulation of that principle, the one from equation (4.2). Instead of talking about
subsets S of N, that one speaks about a property ϕ of natural numbers. Both views are
equivalent: a subset of N can be interpreted as a property and vice versa. Like: the even
numbers correspond to the property of “being even” and “being even” characterizes the
subset of N containing the even numbers.

Before wrapping up the discussion of the slide with some conclusions, let’s have a closer
look at the first definition of Peano’s 5th postulate from equation (4.1), which is insofar
informal that it’s an English sentence. Apart from that it’s actually unambiguous and in
that sense formal. Anyway, let’s be more explicit, in particular trying to shed light on the
notion of closure.

For that, let’s define the following function (on sets)

F (S) = {0}+ succ(S) (4.3)

It’s meant as follows: Take set S and build succ(S) (which is defined as {succ(s) | s ∈
S}) and add 0 to the resulting set (the + stands for “disjoint union”, i.e., ∪ in case
there are no common elements). As an example: If S = {•, 6, a, 0}, then F (S) =
{0, succ(•), succ(6), succ(a), succ(0)}. The 0 and succ are best thought of as construc-
turs (i.e., “syntax”), so succ(6) is just the constructor succ applied not to the element 6.
We have no reason to say succ(0) is 1, thought that might be our intention (and then:
what is succ(•) supposed to mean, anyhow), Of course arabic numerals in a decimal po-
sitional system are a well-suited notation or convention to refer to natural numbers, but

4 µ-calculus model checking
4.1 Introduction 7

that requires extra overhead, here we are concerned about “what are natural numbers”
not so much “what’s an efficient way of writing then and working with them”. Now, the
English formulation of (4.1) formulates (about the mentioned S) that S contains 0 and is
closed under successor. One can also see that as as requiring that S is closed under the
nullary constructor 0 (which is a “constant” symbol) and the unary constructor of succes-
sor. With this alternative (but equivalent) wording in mind, we can write the postulate
from (4.1) a bit more formulaic as follows. A set S is closed under F , if

F (S) ⊆ S (4.4)

Note that S plays the role of a “variable” in the condition or constraint from equation
(4.4), as the sub-set “equation” formulates a condition on S. Furthermore, equation (4.4)
is almost an equation: it almost requires F (S) = S, but not quite. If one had this equation
instead of the in-equation or subset requirement from (4.4), one has another example of
a fixpoint: F (S) = S means that S has to be a fixpoint of S. The slight weakening
for the closure formulation from equation (4.4), specifies “almost” fixpoint, but not quite.
Solutions of such subset inequations in the form of (4.4) are called pre-fixpoints, so an
S, satisfying the requirement is a pre-fixpoint of F . In other words: being a pre-fixpoint
of F and being closed under F means exactly the same.

Now, as we illustrated with the “grammar example” and the “natural numbers” example:
being closed is not good enough for definining uniquely the set; what is missing is the
“nothing else” part or “the smallest such set” part. So we are after the smallest set S
satisfying the closure condition of (4.4), resp. the smallest pre-fixpoint of F . It’s obvious
that every fixpoint is also a pre-fixpoint. The convers typically does not hold, there are
strictly more pre-fixpoints than fixpoints (the ⊆ condition is just weaker than requiring
=). That’s easy enough, and not too interesting. However, we are actually not interested
in fixpoints or pre-fixpoints as such. We are interested in the smallest such things. Then,
what is interesting and relevant indeed is the following: under standard circumstances
there is no difference between smallest fixpoints and smallest pre-fixpoints for
a given F . In fact, not only that, but there is exactly one unique smallest fix-point
which at the same is the one unique smallest pre-fixpoint. This fact, which is, with
a bit of background, straightforward to establish also justifies that one speaks (under
standard circumstances) of the smallest or the least fixpoint (as opposed to some or
other “miminal” fixpoint).

Now, as argued, the two formulations of Peano’s 5th axiom, the ones from equations (4.1)
and (4.2) are equivalent and also correspond to a (smallest) fixpoint requirement and,
equivalently, allow the proof principle of mathematical induction. Looking especially at
the formulation (4.2) where it’s more visible: the formula is not a formula of first-order
logic: there is quantification over “all propositions” ϕ in (4.2). Whatever logic it is, it’s
NOT first-order. One actually should tread rather careful here, it’s slippery ground. The
natural impulse could be: Oh, well, quantifying over propositions, I know already, that’s
second-order logic. Now, what may act as a warning sign here pondering the question of
whether the above formula corresponds to a proposition itself. If so, one can have a logic
where the quantifiers quantify over propositions including the quantified formula itself
(the technical term in that connection is impredicativity). That kind of self-referential
quantification may or may not lead to a catastrophe (catastophe in the sense that the

8 4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics

whole logic collapses and everything can be proven in that logic, and that mean really
everything, including the negation of everything). In other words, the logic could become
inconsistent. That form if self-referantiality is connected to the concept of whether there
is a “set of all sets”. If allows such things, one can introduce contradictions into set-theory
(like the set of all sets that don’t contain themselves).

Let’s leave it at that. The importance for us is: Peanos induction axiom corresponds to
a fix-point operator, and the discussion about the dangers of internalizing induction resp
fixpoint into some logic should be an indication that this yields are some fairly powerful
mechanism and it supports the status of the µ-calculusas an important logic.

A final remark: the discussion here centered on “natural induction”, i.e., over N, but
completely analogous principles hold for other inductively given structures. In that case,
one also speaks of stuctural induction (induction over the structure) and N is just a special
case of a particularly simple structure.

Expressivity

modal µ-calculus
ω-tree automata

CTL∗

CTL

ω-word automata
Büchi automata
(never claims)
∃LTL

LTL

LTL without ©

The picture (shown earlier as well) shows again the order of different logics that are relevant
in connection with model checking (and some automata model) with the µ-calculussitting
on top. There is also a corresponding automaton model which we will not cover in the
lecture.

4.2 Propositional µ-calculus: syntax and semantics

4.2.1 Syntax

Labelled transition systems

A transition system is a tuple

(S,−→, {Pi}i∈N)

4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics 9

• AP = {p0, p1, p2, . . .}
• Act: (= Σ) actions a, b′, . . .
• −→ ⊆ S ×Act × S

– s
a−→ s′, a-transition, from s to s′

• Pi ⊆ S
• note: switch of perspective for “proposition labelling”

Basically, it’s a recap of earlier notions. The notion of (labelled) transition system here
corresponds to that what we had before called Kripke model, except that now also the
transitions are labelled by letters from an alphabet. Basically we encountered them in
connection with multi-modal logics already. That’s not surprising, insofar the flavor of
the µ-calculuswe present here is bascially adding fixpoints to a multi-modal logic. In [1],
they call the “models” just transition systems (not labelled transition systems), also what
we introduced as alphabet Σ, a finite set of “symbols” or letters, they call that action set,
the element of which are consequently called actions. Again, that’s just terminology.

Syntax

ϕ ::= p | ¬p props and their negation
| X variables
| ϕ ∧ ϕ | ϕ ∨ ϕ 2 usual boolean connectives
| [a]ϕ | 〈a〉ϕ (multi)-modal operators
| µX.ϕ | νX.ϕ fix-points

• true and false: p ∧ ¬p resp. p ∨ ¬p
• variables X,Y . . . ∈ Var
• actions a, b′... ∈ Act

Remarks on the syntax

• general negation: missing
– especially ¬X not part of the syntax
– but: ¬ϕ definable

• µ and ν (or σ when unspecific): binding operators
– free and bound occurrences of variables
– renaming of bound variables (α-renaming)

• some well-formedness conditions
– don’t reuse variables
– guardedness

10 4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics

We don’t go into details about those well-formedness conditions (they are important for
some technical developments, only). But the concept of free and bound occurrences of
variables should be familiar. Guardedness, just to given an impression, wants to avoid
“immediate recursions” like µX.X or also νX.X ∨ p (these are examples where X occurs
unguarded). Those formulas are not contradictory, they have a meaning, but one tries to
keep them out as they make some troubles in exstablishing results. Fortunately, some have
proved that one can ignore them (insofar that one can always transform a formula into an
equivalent one that avoids such situations; that particular transformation is not obvious,
though. . .). Anyway, whereas µX.X is not meaningless per se (just not nice to handle in
establishing some results), formulas like µX.¬X are meaningless in that it cannot be
given an interpretation in a manner that “makes sense”. The cause of the problem is, that
the body of the fixpoint construction, the formula ¬X in that case, does not represent a
monotone function. By monotone we understand monotoneously increasing.

During the lecture there had been comments that in some fields, the terminology of
mononote functions capture both monotoneously increasing and monotoneously decreas-
ing functions. For us, monotone refers to the increasing case (or at least not-decreasing),
only. The “decreasing” situation, we would call antitone. Now, fixpoints are guaranteed
to exists only in case the involved function is monotone, and that’s the same for µ and
for ν (it’s not like: for µ, the function need to be mononote, for ν, on the other hand,
antitone). Non-monotonic functions are out of the picture for us. That’s why the syntax
does not allow free-form negation, as there would be a danger to write formulas that act
non-monotone. The syntax as given results in monotone functions, only. The (small) price
to pay is that the syntax becomes slighty less compact than it would be otherwise: for
each constructor, one also has to include its dual.

What about the variables?

• propositional µ-calculus
• X,Y . . . different from first-order logic variables
• variables here represent

– formulas (from µ-calculus), resp.
– semantically: sets of states

⇒ second-order flavor!

By “second-order” flavor we mean that we have variables that represent formulas (resp.
sets of states captured by formulas). And we also (in some way) “quantify” over them, only
not by existential or universal quantification ∃ and ∀, but by the fix-point binders µ and
ν. At any rate, the variables X,Y ′ . . . are of quite a different nature from a setting if we
had not the propositional µ-calculus, but had a first-order logic setting as underlying logic
(with term variables x, y′). We see that also in the notion of valuation (when discussing the
semantics). A valuation (or variable assignment) maps values or “semantics” to variables.
Now, valuations will map variables from Var to set of states.

Preview on the semantics

• given transition systemM

4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics 11

Satisfaction relation
s |=M ϕ

s |=VM ϕ (4.5)

Equivalently: semantic function semantics of ϕ in transition systemM and with valu-
ation V:

[[ϕ]]MV ∈ 2S (4.6)

V : Var → 2S

There is not much “new” on the slides, compared to what we had in earlier chapters.
Instead of the satisfaction relation |=, we define the semantics as “semantic function”,
traditionally written like [[_]]. That’s just more convenient when later talking about fix-
points. The fixpoints will be built over functions (as usual), and therefore, writing down
the semantics using the “semantical function” formulation comes in more handy.

Formulas are interpreted over a given transition systemM, i.e., the semantics of a formula
ϕ is a set of states in that givenM. Since formulas may contain variables, the interpre-
tation is additionally relative to choosing values for those free variables. So we assume a
valuation V for those, with V : Var → 2S , which assigns “semantics” (= sets of states)
to each variable. That’s why the semantic function from (4.6) or the satisfaction relation
from (4.5) mentions V (besidesM).

Semantics (no fix-points)

The semantics for the logic without fixpoints is rather straightforward. That fragment is
sometimes also called Hennessy-Milner logic (without recursion). It’s basically the multi-
modal logic we have encountered earlier (in preparation of dynamic logic.)

ϕ ::= pi | ¬pi | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | 〈a〉ϕ

[[true]]MV = S [[false]]MV = ∅
[[pi]]MV = Pi [[¬pi]]MV = S − Pi

[[ϕ1 ∧ ϕ2]]MV = [[ϕ1]]MV ∩ [[ϕ2]]MV [[ϕ1 ∨ ϕ2]]MV = [[ϕ1]]MV ∪ [[ϕ2]]MV
[[[a]ϕ]]MV = {s ∈ S | ∀s′.s a−→ s′ ⇒ s′ ∈ [[ϕ]]MV }
[[〈a〉ϕ]]MV = {s ∈ S | ∃s′.s a−→ s′ ∧ s′ ∈ [[ϕ]]MV }

12 4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics

Fixpoints in LTL

• �p?
• ♦p
• p U q

Earlier, we made a big story around the fact that there are “fixpoints everywhere”. Exam-
ples where mostly drawn from some constructions in “math” but not as integral part of
a logic. Of course, the µ-calculusis kind of a the prototypical logic which offers fixpoints
inside the logic, not just externally on the meta-level. But what about the other temporal
logic we covered, LTL? On the next slide, we have a look at, for example, the “always”
operator, �.

Reconsider for instance �p?

• fix-point equation for “always”?

�p = p ∧©�p. (4.7)

choose �p = false
false = p ∧©false (4.8)

Let’s take � for illustration. We are currently using LTL, which is a linear logic. The
µ-calculusis in its general form a branching logic, but the arugments or illustrations work
equally for a linear logic. Actually, one can also interpret the µ-calculusover linear tran-
sitions sytems, only. Anyway, “always p” can be intutively explained as

“always p” means p now and, after one step “always p”.

That’s of course a recursive “definition” in that the thing one tries to define, “always p”
is define in terms of itself (we should thought be careful with the word definition, as there
may be more than one solution to that equation; and indeed there are). It also corresponds
to the unrolling feature of �p, as given in equation (4.7). Seeing it this way means, we
have been given �p already. The chapter about LTL gave a definition of the semantics
of �p; maybe it was given indirectly, in that we focused on U alone, but anyway, it was
somehow defined, and the definition would state that a path satisfies �p, if ∀i, the suffix
of the path starting at i satisfies p. So far, so familiar. Point being, equation (4.7) states
a fact about �p whose definition is given already.

However, we can try to use the equation also as defining �p. In that case we should
probably write better

”�p” = p ∧©”�p” ,

to make clear that ”�p” is something that we want to define and which we intend to
satisfy the stated (recursive) equation. Since we want to “solve” that equation (to define
�p), it’s probably even better to write

4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics 13

X = p ∧©X (4.9)

i.e., to use a variableX (as opposed to ”�p”) to represent the (yet to define) thing for which
we want the equation to hold. That, of course, can be seen as a fix-point equation (in the
discussion here, we dispense with the distinction of fixpoints (using =) and pre-fixpoints
(using ⊆ or implication).

Now, we can try to solve it. We have heared about the importance of smallest fix-points
extensively. The smallest imaginable solution (in terms of sets of states) would be the
empty set. That corresponds alternatively to the proposition false. So, let’s fill in false
for the unknown X (or interpreting semantically X as ∅), checking if false =? p ∧©false
(equation (4.8) from the slide). Well, ©false is equal to false, which means false is indeed
a solution to the fixpoint equation (4.9). And, being the empty set, it’s definitely the
smallest fixpoint.

That’s a disappoinment, since we set out to give a fixpoint definition of �p, not of false.
Now, since the smallest fixpoint was a failure, the only hope is the largest fixpoint (nobody
needs fixpoints somewhere in the middle. . .) As it turns out, the largest fixpoint is what
we are after, it corresponds to �p. So we can define

�p = νX.p ∧©X . (4.10)

That’s all fine and good, but one may feel uneasy, for instance by the obvious “failure”
of µX.p ∧©X. Maybe in this case it’s clear that it can’t be the smallest fixpoint (as it’s
false), so it must in all plausibility the largest. But maybe there are situations where the
smallest fixpoint does not collapse to false but makes some form of sense, it’s only not the
one we planned for. How do we know that the definition from equation (4.10) is what we
want? At least it is a definition, because we know that in the given circumstances, the
greatest fixpoint is unique (as is the smallest fixpoint which turned out to be false). We
could leave it like that: we defined �p by (4.10) and that just it. However, we already had
an independent definition of “always p” not involving µ in an apparent way, and beside
that we have an intuition what “always p” is supposed to mean. How can we make sure
that our intention is captured by the definition from (4.10)? Or in general: what the
intiution, when should one choose µ and when ν?

Now, it’s tricky to communicate “intiution”, intuition builds up by doing things and
exercising and repeating things. After a while things seem “natural” and intuitively clear,
and one forgets that one had been struggling with the concept in the beginning. That’s
also when it becomes hard to communicate the idea, because stating “it’s intuitively clear
that . . . ” is not helpful. But many things in math are like that and for many things we
have forgotten that they may not seem clear at the beginning. Notions about “infinity” are
notoriously “unclear” (and philosophically debated, like in which sense does the “infinite”
exist, etc). In some sense we get used to it: N = {0, succ(0), succ(succ(0))...} (or more
commonly {0, 1, 2, ...}, and no one looses sleep about the “. . . ”, we all know that there
“are” infinitely many natural numbers (maybe on a computer only up to MAXINT, but,
well, in priciple, you know. . .). We are just used to deal conceptually with infinite sets
without breaking a swet (like natural numbers, the set of propositional formulas as give

14 4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics

by a grammar, the set Σ∗ and those examples from before). It may be noted that even
other mathematical facts needed time “to get used to” (historically). One is 0. There
had been a time where people had scruples to “have” or work with 0, like: “how can
there be or should there be there be a symbol for the absense of something”. Zero stands
for “nothing” and one cannot meaningfully compute with nothing (there was a time also
where the people had the concept of 0 but did not use a symbol for it, like leaving the
place empty. That did not help readability much. And it took time to “get used to it”
and have the courage to write 0 for something that “actually” (?) does not exists. Same
with the imaginary numbers (numbers like

√
−1 that do not really exist, or do they?)

The examples about inifinite sets (N, Σ∗ . . .) correspond perhaps not coinicidentally
to smallest fixpoints. It’s about infinite sets build up by using finite constructions for
each elements. a∗ = {ε, a, aa, aaa, . . .} = {an | n ∈ N} which we understand as the set
containing words using a, where the words are of arbitrary length n. Implicit in the
word “arbitrary length” is that it not really “arbitrary” in the sense “n = infinite length”.
Not arbitrary in this radical sense, just ordinary arbitraryness please, like n ∈ N. N is
infinite, that’s fine, but n please not (because infinite numbers don’t really exist, or do
they?. . .).

This discussion is meant less historical, but more of giving intution about µ and ν. The
smallest fixpoints are of the form as in an with n ∈ N. They may describe a infinite
collection of entities (like words or numbers) each of which is finite. $µ$-based definition
corresponds to constructions where the single elements are conceptually infinite (or at
least include infinite elements). One example we have actually seen was Σω, the set of
infinite words over Σ.

4.2.2 Background: Fixpoints

Orders, lattices, etc.

as a reminder:

• partial order (L,v)
• upper bound l of Y ⊆ L:
• least upper bound (lub):

⊔
Y (or join)

• dually: lower bounds and greatest lower bounds:
d
Y (or meet

• complete lattice L = (L,v) = (L,v,
d
,
⊔
,⊥,>): a partially ordered set where

meets and joins exist for all subsets, furthermore > =
d
∅ and ⊥ =

⊔
∅.

There are also other forms of lattices, for instance, if one only needs joins, but not meets,
one can get away with a semi-lattice, and there are many more variations. For the lecture,
we generally simply assume complete lattices and thus, the montone framework is happy.
In particular, if we are dealing with finite lattices, which is an important case, we don’t
need to consider infinite sets, and “standard” lattices with binary meets and joins (and
least and largest elements) are complete already.

4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics 15

Fixpoints

given complete lattice L and monotone f : L→ L.

• fixpoint: f(l) = l

Fix(f) = {l | f(l) = l}

• f reductive at l, l is a pre-fixpoint of f : f(l) v l:

Red(f) = {l | f(l) v l}

• f extensive at l, l is a post-fixpoint of f : f(l) w l:

Ext(f) = {l | f(l) w l}

Define “lfp” / “gfp”

lfp(f) ,
l

Fix(f) and gfp(f) ,
⊔

Fix(f)

The last display just gives the names to the two elements of the lattice defined by the
corresponding right-hand sides. We know that those elements are existing thanks to the
fact that L is a complete lattice (and it’s very easy to see that meets and joins are unique,
that means the lfp(f) and gfpf are well-defined elements of the lattice). The chosen
names somehow suggest that the two thusly defined elements are the least fixpoint, resp.
the greatest fixpoint of the monotone function f .

But, so far lfp and gfp is just a suggestive choice of name. It requires a separate argument
that the elements are actually fixpoints, and the least, resp. the largest fixpoint as that
as well. Finally, if we take it really serious, an argument should be found that allows
to speaking of the least fixpoint. If there is more than one least fixpoint, one should
avoid talking about “the least fixpoint” (same for the largest fixpoint). The argument
for uniquess of least fixpoints (or for greatest fixpoint) is very simple though, similar to
arguing for the uniqueness of “the least upper bound” etc.

If one would carry out the argument, i.e., the proof, that all fits together in the sense that
the lfp(f) and gfp(f) defined above are actually the least fixpoint and the largest fixpoint,
and if one would carefully keep track of what is actually needed to make the proof go
through step by step, then one would see that every single condition for being a complete
lattice is needed (plus the fact that f is monotone). If one removes one condition, the
argument fails! Conversely that means the following: We are interested in uniquely “best
approximations” (least or greatest fixpoints depending in whether it’s a may or a must
analysis),

and, having a monotone f , a complete lattices is exactly what guarantees
that those fixpoints exists. Exactly that, nothing less and nothing more, If
your framework has monotone functions and is based on a complete lattice, it
works. If not, it does not work, very simple.

16 4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics

That explains the importance of lattices and monotone function. Also, I would guess that
historically, the need to assure existance of fixpoints has led Tarski (the mathematician
whose concepts we are currently covering) exactly to the definition of lattice, not the other
way around (“oh, someone defined some lattice, let’s see what I can find out about them,
perhaps I could define some lfp(f) like above and see if I could prove something iteresting
about it, perhaps it’s a fixpoint?”. But as said, that is speculation.

Having stressed the importance of complete lattices, for fairness sake it should be said
that there’s also a place for analyses which fail to meet those conditions. In that case,
one might not have a (unique) best solution. Perhaps even worse (and related to that),
one might need combinatorial techniques (like backtracking), i.e., checking all possible
solutions to find an acceptable one. If that happens, the cost of the analysis may explode.
To avoid that one may give up to look for a “best solution” and settle for a “good enough”
one and heuristics that hopefully find an acceptable one efficiently, or even throw the towel
and give up “soundness”. Anyway and fortunately, plenty of important analyses fit well
into the monotone framework with its lattices, its unique best solution and —perhaps best
of all– its efficient solving techniques. Therefore this lecture will cover only those here.
Those are called classical data flow analyses.

Tarski’s theorem

Core Perhaps core insight of the whole lattice/fixpoint business: not only does the
d

of
all pre-fixpoints uniquely exist (that’s what the lattice is for), but —and that’s the trick—
it’s a pre-fixpoint itself (ultimately due to montonicity of f).

Theorem 4.2.1. L: complete lattice, f : L→ L monotone.

lfp(f) ,
d

Red(f) ∈ Fix(f)
gfp(f) ,

⊔
Ext(f) ∈ Fix(f)

(4.11)

• Note: lfp (despite the name) is defined as glb of all pre-fixpoints
• The theorem (more or less directly) implies lfp is the least fixpoint

Fixpoint iteration

• often: iterate, approximate least fixed point from below (fn(⊥))n:

⊥ v f(⊥) v f2(⊥) v . . .

• not assured that we “reach” the fixpoint (“within” ω)

⊥ v fn(⊥) v
⊔
n f

n(⊥) v lfp(f)
gfp(f) v

d
n f

n(>) v fn(>) v (>)

• additional requirement: continuity on f for all ascending chains (ln)n

f(
⊔
n

(ln)) =
⊔

(f(ln))

4 µ-calculus model checking
4.2 Propositional µ-calculus: syntax and semantics 17

4.2.3 Semantics

Semantics of formulas with free variables

• apply the FP theorem (Knaster-Tarski)
• assume µX.ϕ(X) or νX.ϕ(X)
• M with state set S: fixed
• consider semantics of body ϕ(X),

– assume (for simplicity), only one free variable X

[[ϕ(X)]]M : 2S → 2S

• 2 welcome facts
1. 2S a complete lattice
2. the function is monotone (and also continuous, under reasonable assump-

tions)

• general case: ϕ may have more variables than just X

f(S′) = [[ϕ]]MV[X 7→S′] : 2S → 2S

with S′ ⊆ S

Semantics of the fixpoints

[[µX.ϕ]]MV =
l
{S′ ⊆ S | [[ϕ]]MV[X 7→S′] ⊆ S

′} (lfp)

=
l
{S′ ⊆ S | f(S′) ⊆ S′}

[[νX.ϕ]]MV =
⊔
{S′ ⊆ S | S′ ⊆ [[ϕ]]MV[X 7→S′]} (gfp)

=
⊔
{S′ ⊆ S | S′ ⊆ f(S′)}

where f(S′) = [[ϕ]]MV[X 7→S′]

Alternation of fixpoints

• expressivity of µ-calculus: due to fix-points
• more precisely: “nesting” of fix.points
• even more precisely: alternation-depth of nested fixpoints.
• compare: direct recursion vs. mutual recursion
• similarly: “µ2 = µ”
• technical definition of nesting: not 100% immediate

1. (µX.ϕ) ∧ (νX.ϕ2): no nesting
2. µX.µY ϕ(X,Y): no alternation
3. νX.((µY.p ∨ 〈b〉Y) ∧ [a]X): ??
4. ???

18 4 µ-calculus model checking
4.3 Model checking

The definition is not 100% obvious. In particular, the formula number 3 is not nested in
the way covered by the definition. Naively it is: the µ fixpoint is inside the ν fixpoint, so
there seems to be nesting. Also there is alternation. But: as said, the definition is slightly
more complex. The sitution in formula 3 does not count as proper nesting, in that the two
“loops” are somehow “independent”. The inner loop is completely enclosed in the outer
loop. Why that may be called a form of nesting, but it’s not the “proper” nesting that
gives the µ-calculusits power.

4.3 Model checking

Game

Definition 4.3.1 (Game). A game is a triple G = (V, T,Acc) where

1. V are nodes partitioned between two players, Adam and Eve: V = VA + VE .
2. T ⊆ V × V is a transition relation determining the possible successors of each node,

and
3. Acc ⊆ V ω is a set defining the winning condition

• node: aka position
• Acc: winning condition

Playing a game like this

• two-player game
• two kinds of nodes (Eve’s and Adam’s)
• game “moves” through positions

– in one of Eve’s nodes: Eve chooses
– analogous for Adam

• winning:
– winning condition: from the perspective of Eve

∗ ininite path through G: if Acc satisfied, Eve wins, otherwise Adam
– a player “stuck”: looses as well
– no draw possible

• winning node: ∃ winning strategy

strategy θ (for Eve) Given G. For each sequence of nodes ~v, ending in a node v ∈ VE :
choose θ(~v) = v′, such that v → v′

Games as general framework

• “game theory”: broad field with many applications
• here: game used for

– semantics, logics, model-checking
• situation often: open systems

4 µ-calculus model checking
4.3 Model checking 19

– enviroment context ↔ program
– attacker ↔ system
– controllable ↔ non-controllable parts

Game Different, players with own “goals” (conflicting or at least different) and local
“influence” or control.

Rest

• many variations
– 2-player, multi-player
– zero-sum games (no win/win situation in those. . .)
– restricted information
– probabilistic (“mixed”) strategies (Nash-equilibrium!)
– . . .

Game example

• nodes or positions in the graph
– Eve: “diamond”-shaped
– Adam: “box”-shaped

• winning condition (here): Eve wins, if the game passes through “2” infinitely many
times

• numbers in the nodes: “ranks” (see later)

Eve (in this example) has only one node, where she can choose going up or down. If she
chooses uniformely each time to go down, she wins, as she passes infinitely often through
the node marked with 2. This condition is, in this example, the winning condition Acc
(which is formulated from the perspective of Eve). If she goes up, Adam then get’s a
choice. He could actually prevent Eve from ever reaching 2 again, but in doing so, and
going down, he will be stuck, and thereby loose immediately (getting stuck means loosing).
Therefore, he is forced to take the loop back.

Note: even if Eve cannot control or know what Adam does, she can rely on the fact that
he acts “rational” in the sense that he wants to make moves with the goal of winning (or
not loosing)

BTW: not loosing is actually the same thing as winning since in the games we are looking
at, the outcome is binary or “boolean”: either Adam wins and Eve looses, or the other

20 4 µ-calculus model checking
4.3 Model checking

way around. We use a game formulation to determine if a property holds in a state or
not, and that is either the case or not, as in classical logic.

Positional strategies

• stategy in general θ(~vv) = v′

• in the example: strategy of Eve: can be dependent on the “current node” only
⇒ memoryless or positional

θ(v) = v′

Parity games

given game G

Parity winning condition ranking: Ω : V → {0, 1, . . . , d}

Acc = {~v ∈ V ω | lim
i→∞

sup Ω(vi) is even}

Mostowski [4], Emerson and Jutla [2]

PWC theorem

• every position is winning for one of the two players
• it’s winnable by a positional strategy
• it’s decidable who wins

Model checking µ-calculus and parity games

Verification game
M, s |= ϕ ⇒ G(M, ϕ)

M, s |= ϕ iff
Eve wins from position cor-
responding to s and ϕ in
G(M, ϕ)

• V: valuation for free vars, i.e., game GV(M, ϕ)

• positions in the game

(s, ψ)

ψ: 1 formula from the closure of ϕ

4 µ-calculus model checking
4.3 Model checking 21

Intention of the construction Eve has winning strategy from (s, ψ) iffM,V, s |= ψ

Rules of the verification game

Ranking

• ranking positions with fp- formulas ν.ψ or µ.ψ

1. µ-formula odd.
2. ν-formula even

Rest

• additionally: subformulas should must no higher ranks than the surrounding formula
• standard way: connect to alternation depth

Rest
Γ(ψ) = 2badepth(X)/2c for ψ = νX.ψ′(X)
Γ(ψ) = 2badepth(X)/2c+ 1 for ψ = µX.ψ′(X)
Γ(ψ) = 0 otherwise

22 Bibliography
Bibliography

Bibliography
[1] Bradfield, J. and Walukiewicz, I. (2018). The mu-calculus and model checking. In

Clarke, E. C., Henzinger, T. A., Veith, H., and Bloem, R., editors, Handbook of Model
Checking. Springer Verlag.

[2] Emerson, E. A. and Jutla, C. (1991). Tree automata, mu-calculus, and determinacy.
In IEEE Symposium on Foundations of Computer Science (FOCS’91).

[3] Kozen, D. (1983). Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354.

[4] Mostowski, A. W. (1984). Regular expressions for infinite trees and a standard form
of automata. In Skowron, A., editor, Computation Theory, volume 208 of Lecture Notes
in Computer Science, pages 157–168. Springer Verlag.

Index
Index 23

Index
closure, 6
compact, 18
complete lattice, 18

game, 22
grammar, 4

join, 18

Kleene star, 4

lattice, 18
complete, 18

meet, 18

partial order, 18
proof tree, 4

rank, 24

Tarski’s fixpoint theorem, 20
transition system, 8

	Contents
	-calculus model checking
	Introduction
	Propositional -calculus: syntax and semantics
	Syntax
	Background: Fixpoints
	Semantics

	Model checking

