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Learning Targets of Chapter “u-calculus model
checking’.

The chapter covers an short intro to the (resp. one
variant) of the p-calculus and model-checking it. We
focus on the most prominent version of the u-calculus for
model checking known as modal u-calculus, with a
“branching time” interpretation. The logic can be
understood as the “prototypical” logic with fixpoints,
so we'll have to talk about fixpoints as well. For model
checking, we look at a bit of “game theory” (parity
games).
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Intro remarks

® rather fundamental logic

® central to p-calculus: fixpoints
® many variations (and names)

® propositional p-calculus
® modal p-calculus

® Hennessy-Milner logic with recursion
[ J

For the lecture: vanilla p-calculus

a plain, propositional modal logic + fixpoints
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What's a fixpoint?

f:A— A

IN5110 -
Verification and
specification of
parallel systems

Targets & Outline
Introduction

Propositional
p-calculus: syntax
and semantics
Syntax

Background: Fixpoints

Semantics

Model checking

46



Fixpoints are everywhere

A pedestrian definition of syntax
The set ® of propositional formulas is given as follows
® all propositional constants from AP are formulas
° if ¢ is a formula, then so is =
® if 1 is a formula and (5 is a formula, then so is 1 A @9
® if p1 is a formula and (5 is a formula, then so is 1 V @9

¢ ... [more constructs if wished] ...

Is that even a definition?
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Fixpoints are everywhere

A pedestrian definition of syntax (reformulated)

The set ® of propositional formulas is given as follows

APC®

if p € ®, the ~p € P

if o1 € ® and w3 € @, then 1 Ay € P
if o1 € ® and g € O, then 1 Vo €
... [more constructs if wished] ...
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Fixpoints are everywhere

A pedestrian definition of syntax (reformulated)
The set ® of propositional formulas is given as follows
°* APC O
° if pc®, thenpecd
° if o1 € P and w2 € @, then 1 A € P
o if o1 € ® and o € P, then 1 V py € O

® ... [more constructs if wished] ...

What about that?

® = {p,q,...,pAP,PAq, PA(pVQ) . . . JU{5, p#q, =5,5A\(q#q) . . .}
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How to fix(-point) it?

® .. No other entities are formulas, i.e. elements of &
® & is the smallest set such that 1) AP C ®, 2) ...

® & is inductively given by the following conditions: 1) ...

“Mu"

F(S)=APU{-¢ | p € STU{p1Ap1 | p1 € S,p2€ S}tU...

D =puF
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Fixpoints are everywhere, indeed

® grammars (with special syntax)

IN5110 -

Verification and
specification of

Y = AP ’ % | ©v1 A ©2 ’ - parallel systems
e Kleene star and regular expressions:

.. . Targets & Outline
® finite words over X: written X*

« Introduction
® a(b+c) N
Propositional
® semantics of programming language p-caleulus: syntax
® while-loop: make single steps, until termination (but Symtax
Background: Fixpoints
not morel!) i
® data structures Rodelichecking
® the natural numbers are given (“constructed”) by 0 and
succ as constructor (and not morel!)
[

proof (and proof trees): a proof is given (“constructed”)
from axioms and application of rules (but not more!)

410



Connection to induction
remember: one way of formulation

“® is inductively given as follows . ..

Natural numbers
1. 0is a natural number
2. if n is a natural number, then so is succ(n) (written
alson +1)

.n+1=m+1, thenn=m

4. there is no natural number n withn+1=20

w
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Connection to induction

remember: one way of formulation

“® is inductively given as follows ... IN5110 —
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2. if n is a natural number, then so is succ(n) (written Targets & Outline
a|SO n + 1) Introduction
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. ) p-calculus: syntax
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If a set S contains 0 and is closed under successor, then
all natural numbers are in S. 1)
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Connection to induction

remember: one way of formulation

“® is inductively given as follows ...
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Natural numbers Siiiiiﬂf‘:?:i';n‘ii
1. 0is a natural number
2. if n is a natural number, then so is succ(n) (written
alson +1)
3.n+1=m-+1, thenn=m

4. there is no natural number n withn+1=0
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Peano Nr. 5: natural induction

Yo.p(0) A (Vn.p(n) = o(n+1)) = Vn.p(n) . (2) a11



Expressivity

modal i-calculus
w-tree automata

w-word automata

oTL Biichi am.f)mata
(never claims)
JLTL

CTL LTL

LTL without O
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Labelled transition systems

A transition system is a tuple

(S, =, {Pi}ien)

AP = {po,p1,p2;---}
Act: (= X) actions a,l/, . ..
- CSx Actx S
e s % ¢ a-transition, from s to s’

P CS

note: switch of perspective for “proposition labelling”
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Syntax

p u= p| p props and their negation
X variables
©AN@ | @V 2 usual boolean connectives

[ale | (a)p  (multi)-modal operators
uX.p | vX.p fix-points

® true and false: p A —p resp. pV —p
® variables XY ... € Var

® actions a,b'... € Act
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Remarks on the syntax

® general negation: missing
® especially =X not part of the syntax
® but: —¢ definable
® u and v (or o when unspecific): binding operators
® free and bound occurrences of variables
® renaming of bound variables (a-renaming)
® some well-formedness conditions

® don't reuse variables
® guardedness
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What about the variables?

® propositional p-calculus
e X,Y ... different from first-order logic variables
® variables here represent

¢ formulas (from p-calculus), resp.
® semantically: sets of states

= second-order flavor!
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Preview on the semantics

® given transition system M
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Preview on the semantics

® given transition system M
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Preview on the semantics

® given transition system M
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W Targets & Outline
S M P (3) ,
Introduction
Propositional
. - o p-calculus: syntax
Equlvalently: semantic function and semantics
Syntax
semantics of ¢ in transition system M and with valuation V: 2o fuene
Model checking
M S
[ely" €2 (4)
V: Var — 2°
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Semantics (no fix-points)

ou=p;i | i | e1Ae2 | o1 Ver | lale | (a)e

[truel = S [false]$yt = 0
[t = P [-p]! = S—P
[er Al = [l Nl [ Vel = [yt U ol
[[[a]«p]]{)/l = {5€8|VssLs =5 c [[go]]{}’[}

layeld! = {s€§|3s% s A s e [oly)



Fixpoints in LTL

e [Op?
.<>p
°*pUgq
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Reconsider for instance [lp?

¢ fix-point equation for “always”?

Op = p A OUp.
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Reconsider for instance [lp?

¢ fix-point equation for “always”?
Up =p A OUp.

choose [lp = false

false = p A Ofalse
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Orders, lattices, etc.

as a

reminder:

partial order (L,C)

upper bound | of Y C L:

least upper bound (lub): ||Y (or join)

dually: lower bounds and greatest lower bounds: [ Y
(or meet

complete lattice L = (L,C) = (L, C,[],0, L, T): a
partially ordered set where meets and joins exist for all
subsets, furthermore T = |_|@ and L =||0.
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Fixpoints
given complete lattice L and monotone f: L — L.
e fixpoint: f(I) =1

IN5110 -
Fix(f) ={l1f() =1} apecifcation of
parallel systems

e f reductive at I, | is a pre-fixpoint of f: f(1) C I:
Targets & Outline

Red(f) ={l | f() C 1} st

Propositional
p-calculus: syntax
and semantics

® f extensive at [, | is a post-fixpoint of f: f(I) 3 Symian

Model checking

Eut(f) ={l] f(1) 21}

Define “Ifp” / “gfp”

ifp(f) [ |Fia(f) and  gfp(f) £ | | Fiz(f)

4-23



Tarski’s theorem

Core

Perhaps core insight of the whole lattice/fixpoint business:
not only does the [] of all pre-fixpoints uniquely exist (that's
what the lattice is for), but —and that's the trick— it’s a
pre-fixpoint itself (ultimately due to montonicity of f).

Theorem
L: complete lattice, f : L — L monotone.

ifp(f) [1Red(f) € Fiz(f) (7)
gfp(f) L Ezt(f) € Fix(f)

L
L

* Note: Ifp (despite the name) is defined as glb of all
pre-fixpoints

® The theorem (more or less directly) implies [fp is the
least fixpoint
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Fixpoint iteration

® often: iterate, approximate least fixed point from below

(f"(L))n:
LEfCAE...

® not assured that we “reach” the fixpoint (“within" w)

LML) EU MWL) B ifp(f)
afp(f) ET1, f*(T) Ef(T)E(T)

® additional requirement: continuity on f for all
ascending chains (Iy)n

FL@) = L)

n



Semantics of formulas with free variables

® apply the FP theorem (Knaster-Tarski)
e assume puX.p(X) or vX.p(X)

® M with state set S: fixed

® consider semantics of body ¢(X),

® assume (for simplicity), only one free variable X

[[gp(X)]]M .25 5 98
® 2 welcome facts

1. 25 a complete lattice

2. the function is monotone (and also continuous, under
reasonable assumptions)

® general case: ¢ may have more variables than just X

F(8") = leltxn gy - 2° = 2°
with S’ C S
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Semantics of the fixpoints

Xl =] NS €S | [¢elfxs) €S}
=[ (' c S| f(8)cs}

Xl = {5’ C 5|8 C H(p]]l/}/l[XHS’}}
=| {s'c S| Cf(s)}

where f(5') = [[(P]]{)V[lXi—)S’]

(1fp)

(efp)
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Alternation of fixpoints

® expressivity of u-calculus: due to fix-points

® more precisely: “nesting” of fix.points

® even more precisely: alternation-depth of nested
fixpoints.

® compare: direct recursion vs. mutual recursion

e similarly: “p? = p”

e technical definition of nesting: not 100% immediate

1.

(uX.¢) A (vX.2): no nesting

2. uX.pYe(X,Y): no alternation
3.
4.

vX.((uYpVv (D)Y)A[a]X): 77
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Game

Definition (Game)

A game is a triple G = (V, T, Acc) where

1. V are nodes partitioned between two players, Adam and
Eve: V =V + Vg.

2. T CV x V is a transition relation determining the
possible successors of each node, and

3. Acc C V¥ is a set defining the winning condition

® node: aka position

® Acc: winning condition
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Playing a game like this

® two-player game

¢ two kinds of nodes (Eve's and Adam’s) D
erimncation an
® game “moves” through positions S
® in one of Eve's nodes: Eve chooses
® analogous for Adam
Targets & Outline
° inning:
winnin g Introduction
® winning condition: from the perspective of Eve Propositional
® ininite path through G: if Acc satisfied, Eve wins, proclE T Ol
otherwise Adam Syntax
" " Background: Fixpoints
® a player "stuck”: looses as well Semantics
® no draw pOSSibIe Model checking
[}

winning node: 3 winning strategy

strategy 6 (for Eve)

Given G. For each sequence of nodes ¥, ending in a node

v € Vg choose 6(¥) = v/, such that v — v/
431



Games as general framework

e "game theory”: broad field with many applications
® here: game used for

® semantics, logics, model-checking
® situation often: open systems

® enviroment context <> program
® attacker <> system
® controllable <+ non-controllable parts

Game

Different, players with own “goals” (conflicting or at least
different) and local “influence” or control.

® many variations
® 2-player, multi-player
® zero-sum games (no win/win situation in those. . .)
® restricted information

® probabilistic (“mixed”) strategies (Nash-equilibrium!)
[ J
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Game example

g X
X Do *I~.
) IN5110 -
Verification and

O specification of

/ parallel systems

2 —_— ] —> O Targets & Outline

Introduction

Propositional
p-calculus: syntax
and semantics

Syntax

Background: Fixpoints

® nodes or positions in the graph Semantics

Model checking

® Eve: “diamond"-shaped
® Adam: “box"-shaped

* winning condition (here): Eve wins, if the game passes
through “2" infinitely many times

® numbers in the nodes: “ranks” (see later)



Positional strategies

* stategy in general 6(tv) =o'

® in the example: strategy of Eve: can be dependent on
the “current node” only

= memoryless or positional

O(v) =
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Parity games

given game G

IN5110 -

Verification and

Parity winning condition specification of

parallel systems
ranking: Q:V — {0,1,...,d}

Targets & Outline

Acc ={v e V¥ | lim supQ(v;) is even} TizsTnene
=00 Propositional
0 p-calculus: syntax
Mostowski [2], Emerson and Jutla [1] and semantics

Syntax

Background: Fixpoints

Theorem (PWC theorem) Semantics

Model checking
® every position is winning for one of the two players
® jt's winnable by a positional strategy
® jt's decidable who wins



Model checking 1i-calculus and parity games
Verification game

IN5110 -
Verification and
M, S |: (P = g(M, (p) specification of
parallel systems

Eve wins from position cor- T & Outl
argets utline
M,s =@ iff responding to s and ¢ in .ntiducuon
G(M,p)

Propositional
p-calculus: syntax
and semantics

Syntax

® V: valuation for free vars, i.e., game Gy, (M, ) s P
L. . Semantics
® positions in the game

Model checking

(s,9)

1. 1 formula from the closure of ¢
Intention of the construction

Eve has winning strategy from (s, ) iff M,V,s = 9



Rules of the verification game
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(s,p) ifseP (s;aVp) (s, nX.B(X))
l ts & Outline
luction
(s,p) > if s ¢ P (s;@)  (s,8) (t,B) ‘w (s, B(nX.B(X)))

sitional
:ulus: syntax

:mantics
(Sv _‘P) ifse P (s, al ﬁ) (5 [a] ‘) (37 vX.B(X)) Jund: Fixpoints
(s

(s-p) | its¢ P | (sa

for all t with s = ¢

| checking

=

»B) (¢ 5) (s, B(wX.B(X)))
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Ranking

® ranking positions with fp- formulas v.¢) or p.v

pu-formula

odd.

v-formula
even

® additionally: subformulas should must no higher ranks
than the surrounding formula

® standard way: connect to alternation depth

I'(y) = 2|adepth(X)/2] for v = v X/ (X)
I'(y) = 2|adepth(X)/2| +1 for ¢ = puX4'(X)
I'y) = 0 otherwise
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