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Chapter 4
Learning Targets of Chapter “µ-calculus model
checking”.

The chapter covers an short intro to the (resp. one
variant) of the µ-calculus and model-checking it. We
focus on the most prominent version of the µ-calculus for
model checking known as modal µ-calculus, with a
“branching time” interpretation. The logic can be
understood as the “prototypical” logic with fixpoints,
so we’ll have to talk about fixpoints as well. For model
checking, we look at a bit of “game theory” (parity
games).
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Intro remarks

• rather fundamental logic
• central to µ-calculus: fixpoints
• many variations (and names)

• propositional µ-calculus
• modal µ-calculus
• Hennessy-Milner logic with recursion
• . . . .

For the lecture: vanilla µ-calculus
a plain, propositional modal logic + fixpoints
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What’s a fixpoint?

f : A→ A

f(a) = a
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Fixpoints are everywhere

A pedestrian definition of syntax
The set Φ of propositional formulas is given as follows
• all propositional constants from AP are formulas
• if ϕ is a formula, then so is ¬ϕ
• if ϕ1 is a formula and ϕ2 is a formula, then so is ϕ1 ∧ϕ2
• if ϕ1 is a formula and ϕ2 is a formula, then so is ϕ1 ∨ϕ2
• . . . [more constructs if wished] . . .

Is that even a definition?
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Fixpoints are everywhere

A pedestrian definition of syntax (reformulated)

The set Φ of propositional formulas is given as follows
• AP ⊆ Φ
• if ϕ ∈ Φ, the ¬ϕ ∈ Φ
• if ϕ1 ∈ Φ and ϕ2 ∈ Φ, then ϕ1 ∧ ϕ2 ∈ Φ
• if ϕ1 ∈ Φ and ϕ2 ∈ Φ, then ϕ1 ∨ ϕ2 ∈ Φ
• . . . [more constructs if wished] . . .

What about that?

Φ = {p, q, ..., p∧p, p∧q, p∧(p∨q) . . .}∪{5, p#q,¬5, 5∧(q#q) . . .}
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How to fix(-point) it?

• . . . No other entities are formulas, i.e. elements of Φ
• Φ is the smallest set such that 1) AP ⊆ Φ, 2) . . .
• Φ is inductively given by the following conditions: 1) . . .

“Mu”
F (S) = AP∪{¬φ | φ ∈ S}∪{ϕ1∧ϕ1 | ϕ1 ∈ S, ϕ2 ∈ S}∪ . . .

Φ = µF
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Fixpoints are everywhere, indeed

• grammars (with special syntax)

ϕ ::= AP | ¬ϕ | ϕ1 ∧ ϕ2 | . . .
• Kleene star and regular expressions:

• finite words over Σ: written Σ∗
• a(b+ c)∗

• semantics of programming language
• while-loop: make single steps, until termination (but

not more!)
• data structures

• the natural numbers are given (“constructed”) by 0 and
succ as constructor (and not more!)

• proof (and proof trees): a proof is given (“constructed”)
from axioms and application of rules (but not more!)



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional
µ-calculus: syntax
and semantics
Syntax

Background: Fixpoints

Semantics

Model checking

4-11

Connection to induction
remember: one way of formulation
“Φ is inductively given as follows . . .

Natural numbers
1. 0 is a natural number
2. if n is a natural number, then so is succ(n) (written

also n+ 1)
3. n+ 1 = m+ 1, then n = m
4. there is no natural number n with n+ 1 = 0

Peano Nr. 5

If a set S contains 0 and is closed under successor, then
all natural numbers are in S.

(1)Peano Nr. 5: natural induction

∀ϕ.ϕ(0) ∧ (∀n.ϕ(n)→ ϕ(n+ 1))→ ∀n.ϕ(n) . (2)



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional
µ-calculus: syntax
and semantics
Syntax

Background: Fixpoints

Semantics

Model checking

4-11

Connection to induction
remember: one way of formulation
“Φ is inductively given as follows . . .

Natural numbers
1. 0 is a natural number
2. if n is a natural number, then so is succ(n) (written

also n+ 1)
3. n+ 1 = m+ 1, then n = m
4. there is no natural number n with n+ 1 = 0

Peano Nr. 5

If a set S contains 0 and is closed under successor, then
all natural numbers are in S.

(1)

Peano Nr. 5: natural induction

∀ϕ.ϕ(0) ∧ (∀n.ϕ(n)→ ϕ(n+ 1))→ ∀n.ϕ(n) . (2)



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional
µ-calculus: syntax
and semantics
Syntax

Background: Fixpoints

Semantics

Model checking

4-11

Connection to induction
remember: one way of formulation
“Φ is inductively given as follows . . .

Natural numbers
1. 0 is a natural number
2. if n is a natural number, then so is succ(n) (written

also n+ 1)
3. n+ 1 = m+ 1, then n = m
4. there is no natural number n with n+ 1 = 0

Peano Nr. 5

If a set S contains 0 and is closed under successor, then
all natural numbers are in S.

(1)

Peano Nr. 5: natural induction

∀ϕ.ϕ(0) ∧ (∀n.ϕ(n)→ ϕ(n+ 1))→ ∀n.ϕ(n) . (2)



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional
µ-calculus: syntax
and semantics
Syntax

Background: Fixpoints

Semantics

Model checking

4-12

Expressivity

modal µ-calculus
ω-tree automata

CTL∗

CTL

ω-word automata
Büchi automata
(never claims)
∃LTL

LTL

LTL without ©
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Labelled transition systems

A transition system is a tuple

(S,−→, {Pi}i∈N)

• AP = {p0, p1, p2, . . .}
• Act: (= Σ) actions a, b′, . . .

• −→ ⊆ S ×Act × S
• s a−→ s′, a-transition, from s to s′

• Pi ⊆ S
• note: switch of perspective for “proposition labelling”
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Syntax

ϕ ::= p | ¬p props and their negation
| X variables
| ϕ ∧ ϕ | ϕ ∨ ϕ 2 usual boolean connectives
| [a]ϕ | 〈a〉ϕ (multi)-modal operators
| µX.ϕ | νX.ϕ fix-points

• true and false: p ∧ ¬p resp. p ∨ ¬p
• variables X,Y . . . ∈ Var
• actions a, b′... ∈ Act
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Remarks on the syntax

• general negation: missing
• especially ¬X not part of the syntax
• but: ¬ϕ definable

• µ and ν (or σ when unspecific): binding operators
• free and bound occurrences of variables
• renaming of bound variables (α-renaming)

• some well-formedness conditions
• don’t reuse variables
• guardedness
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What about the variables?

• propositional µ-calculus
• X,Y . . . different from first-order logic variables
• variables here represent

• formulas (from µ-calculus), resp.
• semantically: sets of states

⇒ second-order flavor!
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Preview on the semantics

• given transition systemM

Satisfaction relation

s |=M ϕ

Equivalently: semantic function
semantics of ϕ in transition systemM and with valuation V:

[[ϕ]]MV ∈ 2S (3)

V : Var → 2S
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s |=V
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Semantics (no fix-points)

ϕ ::= pi | ¬pi | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | 〈a〉ϕ

[[true]]MV = S [[false]]MV = ∅
[[pi]]MV = Pi [[¬pi]]MV = S − Pi

[[ϕ1 ∧ ϕ2]]MV = [[ϕ1]]MV ∩ [[ϕ2]]MV [[ϕ1 ∨ ϕ2]]MV = [[ϕ1]]MV ∪ [[ϕ2]]MV
[[[a]ϕ]]MV = {s ∈ S | ∀s′.s

a−→ s′ ⇒ s′ ∈ [[ϕ]]MV }
[[〈a〉ϕ]]MV = {s ∈ S | ∃s′.s

a−→ s′ ∧ s′ ∈ [[ϕ]]MV }
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Fixpoints in LTL

• �p?
• ♦p
• p U q
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Reconsider for instance �p?

• fix-point equation for “always”?

�p = p ∧©�p. (5)

choose �p = false

false = p ∧©false (6)



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional
µ-calculus: syntax
and semantics
Syntax

Background: Fixpoints

Semantics

Model checking

4-21

Reconsider for instance �p?

• fix-point equation for “always”?

�p = p ∧©�p. (5)

choose �p = false

false = p ∧©false (6)



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional
µ-calculus: syntax
and semantics
Syntax

Background: Fixpoints

Semantics

Model checking

4-22

Orders, lattices, etc.

as a reminder:
• partial order (L,v)
• upper bound l of Y ⊆ L:
• least upper bound (lub):

⊔
Y (or join)

• dually: lower bounds and greatest lower bounds:
d
Y

(or meet
• complete lattice L = (L,v) = (L,v,

d
,
⊔
,⊥,>): a

partially ordered set where meets and joins exist for all
subsets, furthermore > =

d
∅ and ⊥ =

⊔
∅.
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Fixpoints
given complete lattice L and monotone f : L→ L.
• fixpoint: f(l) = l

Fix(f) = {l | f(l) = l}

• f reductive at l, l is a pre-fixpoint of f : f(l) v l:

Red(f) = {l | f(l) v l}

• f extensive at l, l is a post-fixpoint of f : f(l) w l:

Ext(f) = {l | f(l) w l}

Define “lfp” / “gfp”

lfp(f) ,
l

Fix(f) and gfp(f) ,
⊔

Fix(f)
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Tarski’s theorem
Core
Perhaps core insight of the whole lattice/fixpoint business:
not only does the

d
of all pre-fixpoints uniquely exist (that’s

what the lattice is for), but —and that’s the trick— it’s a
pre-fixpoint itself (ultimately due to montonicity of f).

Theorem
L: complete lattice, f : L→ L monotone.

lfp(f) ,
d

Red(f) ∈ Fix(f)
gfp(f) ,

⊔
Ext(f) ∈ Fix(f)

(7)

• Note: lfp (despite the name) is defined as glb of all
pre-fixpoints
• The theorem (more or less directly) implies lfp is the
least fixpoint



Fixpoint iteration

• often: iterate, approximate least fixed point from below
(fn(⊥))n:

⊥ v f(⊥) v f2(⊥) v . . .

• not assured that we “reach” the fixpoint (“within” ω)
⊥ v fn(⊥) v

⊔
n f

n(⊥) v lfp(f)
gfp(f) v

d
n f

n(>) v fn(>) v (>)

• additional requirement: continuity on f for all
ascending chains (ln)n

f(
⊔
n

(ln)) =
⊔

(f(ln))
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Semantics of formulas with free variables
• apply the FP theorem (Knaster-Tarski)
• assume µX.ϕ(X) or νX.ϕ(X)
• M with state set S: fixed
• consider semantics of body ϕ(X),

• assume (for simplicity), only one free variable X

[[ϕ(X)]]M : 2S → 2S

• 2 welcome facts
1. 2S a complete lattice
2. the function is monotone (and also continuous, under

reasonable assumptions)

• general case: ϕ may have more variables than just X

f(S′) = [[ϕ]]MV[X 7→S′] : 2S → 2S

with S′ ⊆ S
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Semantics of the fixpoints

[[µX.ϕ]]MV =
l
{S′ ⊆ S | [[ϕ]]MV[X 7→S′] ⊆ S

′} (lfp)

=
l
{S′ ⊆ S | f(S′) ⊆ S′}

[[νX.ϕ]]MV =
⊔
{S′ ⊆ S | S′ ⊆ [[ϕ]]MV[X 7→S′]} (gfp)

=
⊔
{S′ ⊆ S | S′ ⊆ f(S′)}

where f(S′) = [[ϕ]]MV[X 7→S′]
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Alternation of fixpoints

• expressivity of µ-calculus: due to fix-points
• more precisely: “nesting” of fix.points
• even more precisely: alternation-depth of nested
fixpoints.
• compare: direct recursion vs. mutual recursion
• similarly: “µ2 = µ”
• technical definition of nesting: not 100% immediate

1. (µX.ϕ) ∧ (νX.ϕ2): no nesting
2. µX.µY ϕ(X,Y ): no alternation
3. νX.((µY.p ∨ 〈b〉Y ) ∧ [a]X): ??
4. ???
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Game

Definition (Game)

A game is a triple G = (V, T,Acc) where
1. V are nodes partitioned between two players, Adam and

Eve: V = VA + VE .
2. T ⊆ V × V is a transition relation determining the

possible successors of each node, and
3. Acc ⊆ V ω is a set defining the winning condition

• node: aka position
• Acc: winning condition
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Playing a game like this
• two-player game
• two kinds of nodes (Eve’s and Adam’s)
• game “moves” through positions

• in one of Eve’s nodes: Eve chooses
• analogous for Adam

• winning:
• winning condition: from the perspective of Eve

• ininite path through G: if Acc satisfied, Eve wins,
otherwise Adam

• a player “stuck”: looses as well
• no draw possible

• winning node: ∃ winning strategy

strategy θ (for Eve)

Given G. For each sequence of nodes ~v, ending in a node
v ∈ VE : choose θ(~v) = v′, such that v → v′
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Games as general framework
• “game theory”: broad field with many applications
• here: game used for

• semantics, logics, model-checking
• situation often: open systems

• enviroment context ↔ program
• attacker ↔ system
• controllable ↔ non-controllable parts

Game
Different, players with own “goals” (conflicting or at least
different) and local “influence” or control.

• many variations
• 2-player, multi-player
• zero-sum games (no win/win situation in those. . . )
• restricted information
• probabilistic (“mixed”) strategies (Nash-equilibrium!)
• . . .
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Game example

• nodes or positions in the graph
• Eve: “diamond”-shaped
• Adam: “box”-shaped

• winning condition (here): Eve wins, if the game passes
through “2” infinitely many times
• numbers in the nodes: “ranks” (see later)
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Positional strategies

• stategy in general θ(~vv) = v′

• in the example: strategy of Eve: can be dependent on
the “current node” only

⇒ memoryless or positional

θ(v) = v′
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Parity games

given game G

Parity winning condition
ranking: Ω : V → {0, 1, . . . , d}

Acc = {~v ∈ V ω | lim
i→∞

sup Ω(vi) is even}

Mostowski [2], Emerson and Jutla [1]

Theorem (PWC theorem)

• every position is winning for one of the two players
• it’s winnable by a positional strategy
• it’s decidable who wins
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Model checking µ-calculus and parity games
Verification game

M, s |= ϕ ⇒ G(M, ϕ)

M, s |= ϕ iff
Eve wins from position cor-
responding to s and ϕ in
G(M, ϕ)

• V: valuation for free vars, i.e., game GV(M, ϕ)
• positions in the game

(s, ψ)
ψ: 1 formula from the closure of ϕ

Intention of the construction
Eve has winning strategy from (s, ψ) iffM,V, s |= ψ
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Rules of the verification game



IN5110 –
Verification and
specification of
parallel systems

Targets & Outline

Introduction

Propositional
µ-calculus: syntax
and semantics
Syntax

Background: Fixpoints

Semantics

Model checking

4-38

Ranking

• ranking positions with fp- formulas ν.ψ or µ.ψ

µ-formula
odd.

ν-formula
even

• additionally: subformulas should must no higher ranks
than the surrounding formula
• standard way: connect to alternation depth

Γ(ψ) = 2badepth(X)/2c for ψ = νX.ψ′(X)
Γ(ψ) = 2badepth(X)/2c+ 1 for ψ = µX.ψ′(X)
Γ(ψ) = 0 otherwise
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