
Course Script
IN 5110: Specification and
Verification of Parallel Sys-
tems
IN5110, autumn 2019

Martin Steffen, Volker Stolz

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

5 Partial-order reduction 1
5.1 Introduction . 1
5.2 Independence and invisibility . 9
5.3 POR for LTL−© . 12

5.3.1 Calculating the ample sets . 24

5 Partial-order reduction 1

5
Partial-order reduction
Chapter

What
is it

about?
Learning Targets of this Chapter

The chapter gives an introduction
to partial order reduction, an
important optimization technique to
avoid or at least mitigate the
state-space explosion problem.

Contents

5.1 Introduction 1
5.2 Independence and invisibility 9
5.3 POR for LTL−© 12

5.1 Introduction

The material here is based on chapter 10 from the book [1] or the handbook article [2].

State space explosion problem

• model checking in general “intractable”
• fundamental limitation: combinatorial explosion
• state space: exponential in problem size

– in particular in number of processes

All analyses based on “exploration” or “searching” suffer from the fact that problems
become unmanagable when confronted with realistic problems. That’s also true for other
approaches like SAT/SMT (but there is not lack intractable problems in all kinds of fields).
If we look as (explicit-state) model checking very naively, and perhaps even focus on only
very simple problems like checking �ϕ (“always ϕ”), the model checking problem phrased
like this seems not really untractable (complexity-wise). It’s nothing else than graph
search, checking “reachability” of a state that violates the property ϕ. Searching through
a graph is tractable (it has linear complexity, measured in the size of the graph, i.e., linear
in the number of nodes and edges). So that’s far from “untractable”.

In model checking, it’s the size of the graph, that causes problems. That’s typically
exponential in the description of the program. In model checking one is often interested in
temporal properties of reactive, concurrent programs, consisting of more than one process
or thread running in parallel. Typically, the size of the global transition system “explodes”
when increasing the number of processes, due to the many interleavings of the different
local process behaviours one needs to explore.

2 5 Partial-order reduction
5.1 Introduction

Of course, given a program or model there may be other sources that makes a raw state
exploration unmanagable. If the problem depends in data input (like inputting numbers),
the the size of the problem increases exponentially with the “size” of the input data. If
one integers with only one byte length, one already has to take 28 inputs into account.
Normally, of course, one has (immensly) larger data to deal with, and perhaps not just with
one input, but repeated input in a reactive system. Those kind of data dependence quickly
goes out of hand. It’s also a form of “state explosion problem”, but mostly, when talking
about the state-explosion problem for model checking, one means the state explosion due
to different interleavings of concurrent processes. Dealing with data is not the strong
suit of traditional model checkers, so it sometime better to deal with data with different
techniques, and/or to ignore the data. This means to abstract away from data (that’s
known as data abstraction) and let the model checker focus on the part of the problem it
is better suited, the reactive behavior and temporal properties.

Especially, partial-order reduction covered in this section is a technique, specially made
to work well to reduce irrelevant interleavings.

One last word about “complexity”: Before we said that model checking is linear in the size
of the transition system. That’s of course an oversimplification, insofar that the “size”
of the formula plays a role as well. For instance, in the section about the µ-calculus
it was hinted at the the alternation-depth is connected to the complexity of the model
checking problem in that contaxt. For model checking LTL, the time complexity is actually
exponential in the size of the formula. Normally, that’s not referred to as state explosion
and also in practice, the size of the formula is not then limiting factor (and if one has many
problems to scheck, which can be seen as a big conjuctions), one can check the individual
properties one by one.

Battling the state space explosion

Since it’s such major road block, it’s clear that many different techniques have be pro-
posed, investigated, and implemented to address it. The list includes some major ones,
of course also clever implementation and data representations and other programming-
related techniques are used.

• symbolic techniques
• BDDs
• abstraction
• compositional approaches
• symmetry reduction
• special data representations
• “compiler optimizations”: slicing, live variable analysis . . .
• parallelization
• here: partial order reduction

“Asynchronous” systems and interleaving

• remember: synchronous and asynchronous product (in connection with LTL model
checking)

5 Partial-order reduction
5.1 Introduction 3

• asynchronous: softwared and asynchonous HW
• synchronous: often HW, global clock
• interleaving (of steps, actions, transitions . . .)

Partial order reduction is most effective in asynchonous systems. The distinction is for
systems with different parts working in parallel or concurrently, and one can make that
distinction for HW or software. In HW, synchronous behavior can be achieved by a global
HW clock, that forces different components to work in lock step. The global clock is used
to synchronize the parts. Also in software, synchronous behavior has it’s place (one could
have protocols simulating or realizing a global clock) there are also so-called synchronous
languages, programming languages based on a synchronous execution model, they are often
used to model and describe HW, resp. software running on top of synchronous HW.

Concurrent software and programs, though, more typically behave asynchronously, i.e.,
without assuming a global clock. A good illustration are different independent processes
inside an operating system, say on a single processor. The operation system juggles
the different processes via a scheduler. The scheduler allocates “time slices” to processes,
letting a process run for a while, until it’s the turn of another process. In a mono-processor,
it’s one process at a time, and the scheduler interleaves the steps of a different processes.
That’s a prototypical asynchronous picture.

Of course, often processes or threads etc. don’t run in a completely independent or “a-
synchronous” manner. To allow coordination and communication (and perhaps to help the
scheduler), there are different ways of synchronization and constructs for synchronization
purposes (locks, fences, semaphores, barriers, channels . . .). Very abstractly, synchro-
nization just means to restrict the completely free and independent execution. Even if
processes coordinate their actions using various means of synchronization, one still speaks
of asynchronous parallelism. If one would go so far in tie the processes together by us-
ing by a sequence of global barriers, where each processes takes part in, then that very
restrictive mode of synchronization would effectively correspond to having a global clock
and synchronous behavior.

The 2 ways of compose two automata “in parallel” reflected those two ends of the spectrum:
completely asynchronous and completely synchronous. (The definition was done for Büchi-
automata, but the specifics of (Büchi-)acceptence are an orthogonal issue that have to
do with the specific “logical” needs we had for those automata (representing LTL). The
synchronous-vs.-asynchronous composition is independent from those details.

Where does the name come from?

• partial-order semantics
• what is concurrent (or parallel) execution?
• “causal” order
• “true” concurrency vs. interleaving semantics
• “math” fact: PO equivalent set of all linearizations
• “reality” fact: POR only “approximates” that math-fact
• perhaps better name for POR: “COR”:

commutativity-based reduction

4 5 Partial-order reduction
5.1 Introduction

The name of the technique seems to promise reductions based on “partial order”. We’ll see
about the reductions of the state space later, but why “partial order”? A partial order (or
partial order relation) is a binary relation which is reflexive, transitive, and anti-symmetric
(we encountered it in connection with lattices when dealing with the µ-calculus).

What’s the connection? The short story is maybe the following: exploring the state space
involves exploring different interleavings of steps of different processes. Often that means
one can do steps either in one order in one exploration, or in reversed order in a alternative
exploration (and the whole trick will be to figure out situations when the exploration
of the alternative order is not needed). One will not figure out precisely all situations
where one can leave out alternatives, that would be too costly. So, one conservatively
overapproximate it: when in doubt with the available information, better explore it.

It’s of course not always the case that one can reorder steps into an alternative order.
Steps within the same process might well be executed in the order written down; likewise,
synchronization and communication may enforce that steps are done in one particular
order or at least that they cannot be freely shuffled around (that’s, in a way, the whole
point of synchronization). Anyway, one may therefore see the actions or steps as partially
ordered, at least when considering the behavior of the system as a whole. Focusing on one
run or path, of course, presents one particular schedule and the steps in that run appear
in a linear or total order. In one particular run, it’s not represented, if two events are
ordered by necessity (one is the cause of the other for instance) or whether the order is
accidental.

That’s the short story. Based on ideas as discussed, people proposed ways to describe
concurrent behavior different from the interleaving picture, but based on partial orders.
Those kind of styles of semantics are connected to true concurrency semantics, to distin-
guish them from “interleaving semantics” (which thereby could be called a “fake concur-
rency” semantics. . .). There is a point to it, though. Remember the informal discussion of
asynchronous processes and interleaving, referring to scheduling processes on a single-core
processor. There, clearly concurrency is an illusion maintained by the operating system’s
scheduler, that juggles the different processes so fast that, for the human, they appear
to be concurrent, whereas “in reality”, there is at most one process actually executed at
a time. Two things being concurrent, in that picture, is just a different way of saying,
they can occur in either order. True concurrency semantics takes a diffent point of view,
seeing concurrency as something different from just unordered. As simple litmus test: A
semantics that considers a ‖ b as equivalent to ab + ba is an interleaving semantics, if
the two “systems” are different, it’s a true concurrent interpretation (details may apply).
For instance, Petri-nets is a quite old “true concurrency” model (they exist also in many
flavors, and they are other true concurrency models as well). True concurrency models
make use of partial orders (and perhaps other relations as well), but we don’t go into true
concurrency models.

Independent from the true-vs-“fake” concurrency question: there is a connection between
partial order semantics and semantics based on arbitray interleavings. It’s a known math-
ematical fact that every partial order can be linearized (i.e., turned into a total order),
and more generally, that a partial order is equivalent to the set of all its linearizations.
The first statement, that partial orders are linearizable, may be known from the 2000-
course “algorithms and data structures”. In that course, a straightforward solution to the

5 Partial-order reduction
5.1 Introduction 5

problem is presented known as “Dijkstra’s algorithm”.

POR here takes as starting point sets of executions or runs, which are linearizations. It
does not take as a starting point a partial-order semantics (let alone a true concurrency
semantics). While connections between partial orders and linearizations are easy, well-
known, and hold generally, i.e., for all partial orders, they are more an inspiration than
a technical basis for partial order reduction here. Nailing down a concrete partial order
semantics for concrete situations in an asynchronous setting with specific synchronization
constructs is not so easy. It’s much easier to specify what a program can do for the next
step; that leads to an operational semantics which also specifies all possible runs of a
program. Implicitly, that also contains all alternative runs, so one could say (based in the
mentioned “math fact”) that somehow indirectly one may view it as described a “partial
order” between the steps of the behavior of the program. But it’s, as said “implicit” and
for the behaviors per program.. But it’s for from easy to start upfront with a partial-order
based semantics for all programs.

POR reduction therefore is not based directly on an explicit partial order semantics. It
does not even strive to reconstruct fully the underlying partial order that is hidden in the
set of all interleavings of one given program. It does something more modest (but also more
ambitious at the same time, as it has to be done during the model-checking run and has
to be done efficiently). Perhaps POR is inspired by the connection between partial orders
and possible linearizations and partial order semantics, but one can understand POR even
simpler: it’s intuitively clear that, under some circumstances, it does not matter in which
way steps are done and in other circumstances it does. POR tries to figure out when
alternative orders don’t matter and avoids them. That needs to be done while running the
“program”, i.e., running the model checker, and compromises need to be done. It needs
to be still efficent. It also (and connected to that) needs to be “local”. One cannot first
generate all runs, then filter out duplicates, and then model check the rest, or something.
Instead, when doing the exploring the state space, during the model checker run, a local
decision needs to be made, like “shall I explore the next candidate edge, or can I leave it
out.” Of course, the criteron should not be trival like: I leave an edges if I know that I
have seen the resulting state already. That’s ridiculous, I might as well follow the edge and
then backtrack ofter discovering that I have seen the state already. Exploring one edge
more and then checking is not worth the effort compared to making some fancy overhead
to avoid that last step. One has to do better namely, one can leave out an edge, if all
what follows is covered already or actually what will be covered later. At any rate, one
cannot expect those estimations to be precise in recovering all of the theoretically possible
reduction (if one had a full partial-order picture, which one does not have anyway).

The contrete details when to explore and edge and when not depend also on the language
and its constructs. For instance, if one has shared variable, and the model checker is in a
state where, in a next step, process 1 can write atomically to a variable or process 2 can
write atomically to the same variable, it’s clear that one has to explore both alternatives.
Or does one? What if they write the same value? Well, perhaps it’s not worth in checking
that, one may conservativel explore both orderings anyway, perhaps it’s not worth the
effort.

To postponed the details of more concrete language constructs for later, one abstract
away a bit first and introduces the concepts of dependence and independence (for instance,

6 5 Partial-order reduction
5.1 Introduction

two reads to the same variable may be independent, whereas two writes may not). The
theory justifying the POR is then based on notions of independence and when the order
of execution is irrelevant and can be commuted. That is perhaps inspired by partial-order
thinking, but can be an approximation at best (already for practical reasong), therefore
a better name of partial-order reduction may be commutativity-based reduction (see
[2] who makes that argument).

Exploiting “equivalences” Instead if checking all “situations”,

• figure which are equivalent (also wrt. to the property)
• check only one (or at least not all) representatives per equivalence class

• see also symmetry reduction
• 8 queens problem
• POR: equivalent behaviors

(Labelled) transition systems

• basically unchanged,
– assume initial states
– states labelled with sets 2AP

– state-labelling function L
– transitions are as well

• alternatively multiple transition relations: instead of α−→, we also see α as relation

(S, S0,−→, L)

Determinism and enabledness

• remember: α−→ deterministic
• in that case: also write s′ = α(s) for s α−→ s′ (or α(s, s′))

Enabledness α−→ enabled in s, if s α−→

Otherwise α−→ disabled in s.

• path π:
s0

α0−→ s1
α1−→ s2

α2−→ . . .

• not necessarily infinite

http://www.nqueens.de/sub/SearchAlgoUseSymm.en.html

5 Partial-order reduction
5.1 Introduction 7

Concurrency in asynchronous systems

• independent transitions
• arbitrary orderings or linearizations (= interleavings)
• [actions themselves assumed atomic / indivisible]

• raw math calculation: n transition relations
– n! different orderings
– 2n states

Reducing the state space

• goal: pruning the state space

Super-unrealistic:

1. generate explititly the state space by DFS
2. then prune it (remove equivalent transitions & states)
3. then model check the property

unrealistic (but for presentation reasons)

1. generate explictly the reduced state space (using modified DFS)
2. then model check the property

8 5 Partial-order reduction
5.1 Introduction

Modified DFS: ample set

• standard DFS: basically recursion (probably with explicit stack)
• exploration: explore “successor states”, i.e.,

follow all enabled transitions

• graph exploration (not tree): check for revisits

Modification/improvement Don’t explore all enabled transitions.

follow enough enabled transition

• ample: think “sufficient” or “enough”
• ample set of transitions in a state ⊆ set of enabled transitions in a state

Modified DFS

Ample sets

General requirements on ample

1. pruning with ample does not change the outcome of the MC run (correctness)
2. pruning should, however, cut out a significant amount
3. calculating the ample set: not too much overhead

• so far:
– quite wishy-washy, only general idea
– “unrealistic” (as mentioned)

5 Partial-order reduction
5.2 Independence and invisibility 9

• details also dependent on the “programming language”
• alternatives of ample sets with analogous ideas (the names are not really indicative

of how all that works):
– sleep sets
– persistent sets
– stubborn sets
– . . .

With a little help of the programmer . . .

• for instance: Spin
• Spin: early adoptor of POR
• reduce the amount of interleavings

atomic atomic block executed indivisibly

D_step deterministic code fragment executed indivisibly.

Rest

• D_step more strict than atomic (eg. wrt. goto statements)

5.2 Independence and invisibility

2 relations between relations

• we have labelled transitions (resp. multiple relations)
• 2 important conditions for POR

– one connects two relations
– one connects one relation with the property to verify

Independence roughly: the order of 2 independent transitions does not matter.

Invisible Taking a transition does not change the satisfaction of relevant formulas

Determinism, confluence, and commuting diamond property

Determinism

a a

=

http:spinroot.com/spin/Man/atomic.html
http://spinroot.com/spin/Man/d_step.html

10 5 Partial-order reduction
5.2 Independence and invisibility

Diamond prop.

Comm. d-prop.

a b

b a

“Swapping” or commuting

a b

b a

and vice versa

Independence

• assume: transition relations αi−→ deterministic
• write αi(s) for s αi−→

Definition 5.2.1 (Independence). An independence relation I ⊆−→ × −→ is a symmetric,
antireflexive relation such that the following holds, for all states s ∈ S and all (α1−→, α2−→) ∈ I

Enabledness If α1, α2 ∈ enabled(s), then α1 ∈ enabled(α2(s))

Commutativity: if α1, α2 ∈ enabled(s), then

α1(α2(s)) = α2(α1(s))

• dependence relation: D = (−→ × −→) \ I

Is that all?

5 Partial-order reduction
5.2 Independence and invisibility 11

2 issues

1. The checked property might be sensitive to the choice between s1 and s2 (and not
just depend on s and r

2. s1 and s2 may have other successors not shown in the diagram.

Visibility

• L : S → 2AP

• α−→ is invisible wrt. to a set of AP ′ ⊆ AP if for all s1
α−→ s2

L(s1) ∩AP ′ = L(s2) ∩AP ′

Blocks and stuttering

stuttering equivalent paths

• block: finite sequence of intentically labelled states
• stuttering (in this form): important for asynchronous systems

Stutter invariance An LTL formula ϕ is invariant under stuttering iff for all pairs of
paths π1 and π2 with π1 ∼st π2,

π1 |= ϕ iff π2 |= ϕ

Next-free LTL

• © breaks stutter invariance
• LTL−©: “next-free” fragment of LTL (often also LTL-X)

Stuttering

• Any LTL−©property is invariant under stuttering
• Any LTL property which is invariant under stuttering is expressible in LTL−©

12 5 Partial-order reduction
5.3 POR for LTL−©

5.3 POR for LTL−©

POR for LTL−©

• general useful and fuitful setting for POR
• of course: one may look more specific for specific formulas
• in that setting:

Correctness of POR Ample sets prune the (DFS) search. Goal:

M, s |= ϕ iff M�, s |= ϕ

• note: “iff”
• mainly a condition on paths

Path representatives each path π1 inM starting in s is represented by an equivalent
path π2 inM�, starting in s

Conditions on selecting ample sets

4 conditions for selecting ample set

• each pruned path can be “reordered” to an which is explored (using independence).
include a condition covering end-states

• make sure that the reordering (pre-poning) does not change the logical status (stutting,
visibility)

• “fairness”: make use not to prune “relevant” transitions by letting the search cycle
in irrelevant ones.

The discussion is based on the presentation in [1].

C1 That’s said to be the most complex condition. It seems to have been ediscussed
(maybe even under different names) in the literature. It is furthermore stressed, that the
condition explisitly refers to the full unreduced state graph and paths throughout those.
Path here are alternating state-transition sequences. Note that unlike in “basic semantics”
for LTL, the paths are also path through the transition system or graphs. It’s important,
insofar that the states in the graph are relevant, in particular also which other actions
are alternatively enabled, resp. which alternative actions are in the ample sets at a given
state. So, a path (or execution) not a fully linear structure, it’s a bit like the picture of
“barbed wire” in the definition of bisimulation, or of resusal sets etc.

Anyway, the condition C1 states

Along every path in the full state graph that starts at S, the following condition
holds: a transition that is dependent on a transition in ample(s) cannot be
executed without a transition in ample(s) occurring first.

5 Partial-order reduction
5.3 POR for LTL−©

13

The choice of word “depending on” is a bit unfortunate. Dependence, which is the opposite
of independence, is symmetric. Maybe “interdependence” would be a better word. Also
the status of “events” are unclear, it’s all quite abstract, but independence means: not
disablbling, therefore depenence can mean disabling (but there’s no talk about “enabling”).
Let’s postpone that a bit.

Note that the condition also does not speak about individual transitions. It talks about
“some” transitions. Timewise, there are 3 points in time relevant: now, in state s, in the
future, and in between those 2 timepoints. But remember: the condition talks about all
paths starting in s, the condition and the 3 time points refer to all those.

As a consequence of the definition: in a state, all enabled ones but not ample are inde-
pendent from the ample ones. That’s indeed a direct consequence of the condition. If a
transition (assuming otherwise) that is dependent on one in ample would both be enabled
but not covered by the ample set, then one could simply start a path using that transition,
contradicting the condition.

The definition of “ample” has two aspects. One is the next-step condition, that’s the one
use in the algorithm. Ample transitions are the prioritized ones, the one in the focus.
For the next-step picture, it’s black and white: there is a set of enabled transitions. The
ample ones are explored, the rest not. We are talking here in the “unrealistic” setting that
we have the unrestricted graph at hand and the ample set allows to restrict the DFS in
the described manner. Choosing one element locally from the ample set may disable an
alternative, so there may be a choice inherent at a given point. Of course, we are here not
dealing with single executions or runs, but with model checking. So the DFS will come
back eventually and explore relevant alternatives as well.

Now, that was the next-step perspective on the ample sets. There is also the temporal
aspect, capture in condition C1: for all runs starting somewhere, the relevant ones takes
some form of priority as well. The condition is a bit more tricky than just having the
relevant ones in a state before the irrelevant ones. The reason is, that transitions can enable
as well as disable other transitions. However, that’s not universally true. Independent
transitions cannot disable each other (enabling is allowed). The ample set (the relevant
transitions) are closed under interdepenence. As stated above in the lemma, it’s an easy
consequence of the “definition” of the relevant and irrelevant next steps, that the two sets
are independent.

It’s straightforward to prove: 2 swappable and deterministic relations that don’t disable
each others satisfy the commuting diamond property.

This statement forbid disabling. The requirement about prohibitin enabling is used if one
wants to prove the reverse implication. But it does not seem to enter the picture here.
That sounds also a bit dubious to call two relations independent if one may enable the
other. It seems to be related to a subtle distinction on the formulation of “swappability”
and the condition of commutativity as part of the independence here. The requirement
corrending to “no-enabling” is covered by the fact that commutativity in the formulation
of [1] requires that the to relations involved for which the commutation holds are both
enabled.

14 5 Partial-order reduction
5.3 POR for LTL−©

Now, coming back to the definition of condition C1. The ultimate goal which one hopes
co capture with C1 is of course correctness of the modified DFS, i.e., one does not miss
out relevant paths.

The argument looks at path in the unreduced graphs (which is what C1 talks about, and
likewise in principle also C0, except that it does not even talk paths, just about states, so
in that perspective there is no difference between the reduced graph and the non-reduced
one). Alright. If we taken an arbitrary path in the non-reduced graph, starting at a point,
one is not forced to start with a relevant transition (from the ample set). That’s what the
reduced graph would do. The liberal behavior can do things outside the ample set. Of
course, we should be aware that that it’s not “the” ample set, the one where we start the
path. After doing a step, we are in a different state, and that state may have a different
ample set (and a different set of low-priority transitions, since the set of enabled transitions
can surely change). However, by taking an irrelevant β, we know that it’s independent
(as required by C1) and therefore it cannot disable the relevant ones. In the successor
states, the situation is new, but the set of relevant transitions cannot get smaller. They
may be other irrelevant transitions, but again according to C1, those (perhaps different)
transitions are likewise subject to the independence requirement, now in the changed state.
Still, the cannot disable the “older” or “inherited” transitions, so they keep on lingering,
as long as one takes non-relevant transitions. One can also not discard them by running
into a dead end. That’s forbidden by C0. That means, for an element α of the relevent
transitions in a state. In a path starting there, there will finitely many βs followed by an
α, or there are infinitely many βs. Again, the definition is semi-fixed on the state s with
respect to the αs, but the βs are not defined relative to s.

Anyway, assume we are at state s and look at paths starting there. Now, the path can
have two forms, either it has a prefix ~βα or it’s infinite ~β..., where α is in the ample
set of s and the βi are all independent for all transitions in the ample set of s (which
includes α). Note that at this particular point the text does not require that the β are
outside ample(s) (which would also a weaker requirement than requiring that the actions
are from enabled(s) \ ample(s), of course). At that point in the text, the only requirement
is that the β are independent from ample(s) (but ample(s) may contain elements which
are among them selves independent, that means, α may actually not be the first element
from ample(s) that is being chosen in the first sequence). Similar remarks apply to the
second form of an infinite β-sequence.

The text may not require that, but either intuitively it’s assumed (because that’s the
interesting case), resp. that additional assumption is added in the further discussion.
Maybe they are just slightly sloppy. Anyway, without adding the additional requirement,
the sequence ~βα may actionally be taken by the modified DFS exploration (it’s only not
interesting). Interesting is only the case where the βs are all not from ample(s).

In that case where α is the first element from ample(s), the sequence β0, . . . , βmα is indeed
not chosen by the modified DFS (in casem > 0, which is also not mentioned in the text).

So, let’s refer to sequences written ~β and starting in s containing no members of the
relevant set ample(s).

The formulation in the book is a bit shifting with the

5 Partial-order reduction
5.3 POR for LTL−©

15

The sequences of the form ~βα may not be taken by the modified DFS. Technically, the
book here is imprecise, it states that sequences of that form are in fact not taken. That
seems not correct. It’s not an real error. The argument that follows states that instead
of this sequence, another one is taken. That’s true indepedent from the question wether
the original sequence ~βα is taken by the algo or not. Therefore one could say, the given
argument covers only the interesting case where the algorithm does not take that sequence.
The text also assumes that none of the elements of ample(s) are taken in ~β. Also that
does

./

#

cycle condition Willems and Wolper [3]

1. Choice, conflict, and interdependence
Choices are covered, I think.

2. Transitions, relations, and events

Reordering conditions (C0, C1)

C0: stop at a dead end, only

ample(s) = ∅ iff enabled(s) = ∅

C1 Along every path in M starting at s, the following condition holds: a transition
dependent on a transition in ample(s) cannot be executed without a transition from
ample(s) occuring first.

• easy fact: ample(s) ./ ¬ample(s)

Form of paths in M�

• consequence of C1: two forms of paths

Blocks

1. with prefix β0β1 . . . βmα
• α ∈ ample(s)
• βi ./ ample(s)

2. without such prefix:
• infinite β0β1β2 . . .
• βi ./ ample(s)

• assume: all βi /∈ ample(s)
• same as βi ∈ ¬ample(s)?

16 5 Partial-order reduction
5.3 POR for LTL−©

Commutation

path ~βα in M, starting in s

• α ∈ ample(s), βi /∈ ample(s)

1. Pic

2. Paths
• π1 = ~βα
• π2 = α~β

• π1 ∈M implies π2 ∈M (and vice versa)
• what about M�?: π1 /∈M� (m > 0) and π2 ∈M�

Explanations The assumptions of independence means that, in the original transition
system M the following holds: if (starting in s) path π1 is possible, then so is π2, both
ending in the same end state. The reason is that part of the condition of independence is
that actions can be swapped or commuted. So, as far as their existance inM is concerned,
π1 and π2 are “equivalent” (and all the “intermediate” paths as well, like β′αβ′′).

In the pruned systemM�, things change. In particular, the “upper” path π1 which puts
α at the end, does not exist (in casem > 0): we assumed that in particular, β0 /∈ ample(s),
so already the first step is not possible.

Now, as said, both paths are interchangable wrt. their existance: if one path exists, it’s
guaranteed that the other exists, and vice versa and they have the same start and end
state (s and r in the picture). But are they interchangable also wrt. to the intermediate,
visisited state, in particular, are the two paths interchangeble wrt. the property we model
check? Well, one paths visits s0, s1, . . . sm, r the other one s, r0, . . . , rm (with start and
end states coinciding, i.e., s0 = s and rm = r). So the question is: does it matter if one
passes though the states ri or the states si?

5 Partial-order reduction
5.3 POR for LTL−©

17

Of course, it may matter if some property holds for ri but not for si or vice versa. The ri
and si states are connected by α, i.e.

si
α−→ ri

Now, whether π1 or π2 is taken (or one of the “intermediate mixtures) does not matter
provided that same formulas hold, comparing ri with si. That’s guaranteed if α is invisible
(with respect to the atomic propositions)

Does it make a difference how to go from s to r?

• π1 and π2 (and intermediate mixures): “interchangable”
• start and end point equal
• but: does it matter which one is taken

– wrt. the logical property, i.e.,
– does it matter which intermediate states are visited?

si
α−→ ri

Explanation The answer is clearly no, it does not matter provided that the satifaction
or “dissatisfaction” of the property does not depend on whether one is in si or ri. That
form of “invariance” has been called “invisibility”. The perspective is that the a formula
observes the transition system, it can “see” if a truth status changes (from true to false or
the other way around). Observing changes means being able to observe transitions. And,
in this picture, a transition is invisible or not observable, if taking said transition doe not
lead to change of any truth values. Actually, visibility has been defined with resp. to
atomic propositions only, more complex formulas don’t need to be considered, resp. their
non-observability follow as a consequence.

18 5 Partial-order reduction
5.3 POR for LTL−©

Invisibility of transitions

• remember: invisibility if transitions (by sets of atomic propositions)

C2 (invisibility) If s is not fully expanded, then every α ∈ ample(s) is invisible.

Partial order reduction allows to ignore steps. In the way it’s presented here, locally, per
state, the (DFS) exploration focuses “ample sets” of the enabled next steps, and omits the
rest. That’s interesting only if really some elements are ignored. As shown in the above
example, we have to be careful when ignoring transitions (for instance the tsb0).

If we ignore transitions, the non-ingored transitions must all be invisible.

As for terminology on the slide: A state s is fully expanded if ample(s) = enabled(s).
That’s a situation where all enabled transitions are explored anyway, so in that case, the
ample-set at s is certainly ok, without need to require invisibility of any transitions.

Is that all?

Pics

1. Two concurrent procs

2. M andM�

5 Partial-order reduction
5.3 POR for LTL−©

19

Is that all?

The previous condition insisted on invisiblity of an action α, in case one omits alternatives.
The picture shown previously illustrated that, that if α is invisble, the uncovered path (in
the picture) with α at the end can be reordered with α at the beginning without omitting
intermediate states with different logical status. That last condition about invisibility took
care about one form of paths that are required as consequence of condition C1, namely
the one with finitely many βi’s (not in the ample set of a state s) followed by one α from
the ample set of s.

The final condition C3 needed for the correctness of pruning the exploration to focus on
the ample-sets has to do with the second form of paths that follow as consequence of C4,
namely the ones with infinitely many βi, and never any α from the ample set.

Based in the intution of the ample sets we can already intuitively see that one has to be
careful there. The ample set in a state represent the transitions that should be explored,
and the rest from ¬ample(s) are the one that intended to be ignored (because one can argue
that they are equivalently covered otherwise during the exploration). Now, a transition in
the ample set of a state marks it as “the transition needs to be explored”. Postponing it
“forever” is not the way to go.

The condition C3 (like the other conditions) is not a condition on the behavor or the
form of paths (like “don’t look at paths where transitions α ∈ ample(s) are postponed
forever”), it’s a general condition on the forms of the ample set in the state that must
be designed in such a way that, when running the system, all paths have the desired
properties (in particular guaranteeing correctness, or avoiding infinite postponements of
the form sketched).

Pics

1. Two concurrent procs

20 5 Partial-order reduction
5.3 POR for LTL−©

start start

α
β1

β2

β3

2. M

β1

β2

β3

β1

β2

β3

α

α
α

M�

5 Partial-order reduction
5.3 POR for LTL−©

21

β1

β2

β3

The three figures serve to illustrate the previously discussed problem of “infinite post-
ponement”. To comple the example, we need to add one piece of information, namely the
“logical part”, i.e., at which states satisfy which propositions.

We make it very simple; the goal is

• α is visible
• the βis are invisible (the second process stuttering)

Intuitively it can be achieved by assuming that there is one boolean variable, initially say
“false”, and the process to the left sets it to “true” via it’s transition a−→. The “label”
a may represent the assignment p := true. The other process does not do anything
(except spinning around, cycling through its three states).

The first pc show two processes running in parallel in an asynchrous fashion, i.e., inter-
leaving their steps. The overall combined behavior is given by the transition systemM,
with 6 states. In that M with its 6 states and if we assume one propositional atom p,
then p is false in all 3 states on the top of the picture, and true in the three states on the
bottom.

For this system, we can find ample sets that satisfy all the three conditions so far, but
still fail to achieve correctness. That’s easily doable by systematically ignoring α, i.e.,
not including this transition in any of the ample sets. I.e., each state has an one element
ample set ample(s) = {βi}, and α is not included anywhere.

It’s easy to check that this choice satisfies C0 (trivally, since no ample set or enabled set is
empty), C1 (since α is assumed to be independent from the βis; remember that C1 speaks
about paths in M, not in M�). And finally C2 is satisfied as well, as the example is
constructed in such a way that the αi are all invisible, as required by C2.

Transition α is visible (it does not stutter), so taking it matters wrt. the verification.
However, the ample sets chosen as given, leads to explorations inM� ignoring α.

The last condition C3 on the next slide exclude such infinite avoidance. Seen as condition
one the graph itself, it’s a condition on a cycle (not a condition on infinite paths resp. only
indirectly so, since in finite-state systems, ininite paths must come from running through
at least one cycle). What needs to be ensure is that a situation as in the example cannot
occur. That a−→ is not included in some of the 3 states of the last picture is fine. What is
not fine is that it’s left out in all of them in the cycle. It would allow (as in the example)
to construct a path running through this cycle where the transition is constantly enabled

22 5 Partial-order reduction
5.3 POR for LTL−©

but always in ¬ample(si), so no state “takes responsiblity” to at least one time, explore
that edge. In the example, the neglegted edge α is a visible one. But the requirement
stating “do not systematically neglect an edge” also applies to invisible ones as well. Even
if an edge is invible, one may reach behavior after taking it that is visible and needs to be
checked. The example is also specific insofar in that α−→ is continuously enabled (but not
taken). Condition C3 is more stringent: don’t neglect a transition α−→, what is somewhere
enabled in a cycle.

This condition is connected with the notion of fairness. It’s a notion that is relevant in
concurrent systems. In practical systems (like operating systems), it also can be under-
stood as a property of a scheduler. In our example, with two processes, a behavior that
constantly schedules the second process, with systematically ignoring the first one (despite
the fact that it could do a step, namely α−→), that’s a non-fair behair. Of course, after the
first process has done α−→, it cannot do any further (no transition is enabled, and that
will remain so as well, as the process is terminated). If, in that situation, the scheduler
“choses” only βi−→ steps from the second process, but no steps from the first, that does not
count as being unfair.

There are, though, two variations of the concept of fairness, namely strong fairness and
weak fairness. The illustrating example corresponds to the weak variant (resp. it illustrates
behavior which not weakly fear). Since it’s not even weakly fair, it also fails to be strongly
fair, though. It illustrates a situation, where α−→ is neglected despite being constantly
enable. The chose infiniten path β1β2β3β1 . . . has an inifinite sequence of points where
α is constantly enabled. Weak fairness requires that one cannot have an action (like α)
enabled infinitely long without also taking it. fairness

Strong fairness say: of an action is enabled infinitely often (but can be disabled in between
the places when it’s enabled again), then, for fairness sake, it must be taken: strong fairness
means, if an action is enabled infinitely often in an execution, it needs also to be taken
infinitely often.

Condition C3 coming up next corresponds to the strong variant of fairness.

A final side remark (to to relevant perhaps for POR): as part of the illustration example,
the chosen βi transitions are all invisible. The resulting behavior (without imposing C3)
is not just unfair in the described sense, neglecting α−→, the behavior is also doing an
infinite amout of do-nothing steps (here formulated by having the αi−→ as invisible). The
have no influence on the satisfaction of formulas. More practically, one can see then as
no-operation or skip steps (sometimes executing NOP steps, eating up processor cycles
without doing anything) or do-nothing “stutter” steps added to the model (like we did in
LTL).

Either way: infinitely many do-nothing or skip or stutter steps is seen as a simple and
discrete form of so called Zeno-behavior. That’s in honor of an old Greek philosopher
Zeno of Elea, who is remembered for some speculative paradoxes (retold by Aristotle),
often concerning infitely many (smaller and smaller time) steps. The most well-known of
those is probably the tale of Achilles and the tartoise, racing against each other.

5 Partial-order reduction
5.3 POR for LTL−©

23

Cycle condition C3

C3 A cycle is not allowed if it contains a state in which some transition α is enabled but
never included in ample(s) for any state s on the cycle.

Remember the 2 issues

Repetition

1. Illustration

2. Text
a) satisfaction depends in chosing path via s1 or s2?
b) forgotten successors?

Rest

• assume: s1 is omitted (β ∈ ample(s), but not α)

1. issue 2

24 5 Partial-order reduction
5.3 POR for LTL−©

2. the conditions imply
a) ss2r ∼st ss1r
b) ss1s′1 ∼st ss2rr′

5.3.1 Calculating the ample sets

Complexity

• checking conditions on-the-fly
• C0: easy
• C1: tricky

– refers toM, notM�

– checking C1: equivalent to reachability checking
• strengthen C3:

sufficient for C3

• at least one state along each cycle must be fully expanded

Rest

• since we do DFS: watch out for “back edges”: C′3: If s is not fully expanded, then
no transition in ample(s) may reach a state that is on the search stack

5 Partial-order reduction
5.3 POR for LTL−©

25

General remarks on heuristics

• dependence and independence ./ “theoretical” relation between (deterministic) rela-
tions

• “use case”: capturing steps of concurrent programs
– processes with program counter (control points)
– different ways of

∗ synchronization
∗ sharing memory
∗ communication

• calculating (approx. of) ample sets: dependent on the programming model

Notions, notations, definitions

• we write now α for α−→
• fixed, finite set of procecesses i (called Pi)
• Ti: those transitions that “belong to” Pi
• some more easy definitions

– pci(s): value of program counter of i in state s
– pre(α):

∗ transition whose execution may enable α
∗ can be over-approximative

– dep(α): transitions interdependent with α
– currenti(s)
– Ti(s)

When are transitions (inter)dependent

• note: dependence is symmtetric! (good terminology?)

Shared variables pairs of transitions, that share a variables which is changed (or writ-
ten?) by at least one of them

Same process pairs of transitions belonging to the same process are interdependent. In
particular currenti(s)

Message passing

• 2 sends to the same channel or message queue
• 2 receives from the same channel
• Note send and receive indepenent (also on the same channel).
• side remark: rendezvouz is seen/ can be seen a joint step of 2 processes

26 5 Partial-order reduction
5.3 POR for LTL−©

Transitions that may enable α (preα)

pre(α) ⊇ {β | α /∈ enabled(s), β ∈ enabled(s), α ∈ enabled(β(s))}

• assume α is an action from Pi
• pre(α) includes

– “local predecessor” of i (“program order”)
– shared variables: if enabling conditions of α involves shared variables: the set

contains all other transitions that can change these shared variables
– message passing: if α is a send (reps. receive), the pre(α) contains transitions

of other processes that receive (resp. send) on the channel

Ample

1 function ample (s) =
2 for a l l Pi such that Ti(s) 6= ∅ // try to f o c u s on one Pi

3 i f
4 check_C1 (s, P1) ∧
5 check_C2 (Ti(s)) ∧
6 check_C3 ' (s,Ti(s))
7 then
8 return Ti(s)
9 i f

10 end for a l l // too bad , cannot f o c u s on any but
11 return enabled(s) // f u l l y expanded can ' t be wrong
12 end

Check C2

1 function check_C2 (X) =
2 for a l l α ∈ X
3 do i f v i s i b l e (α)
4 then fa lse
5 else true

Check C′3

1 function check_C3 ' (s,X) =
2 for a l l α ∈ X
3 do
4 i f on_stack (α(s))
5 then fa lse
6 else true

Check C1

5 Partial-order reduction
5.3 POR for LTL−©

27

1 function check_C1 (s, Pi) =
2 for a l l Pj 6= Pi

3 do
4 i f dep(Ti(s)) ∩ Tj 6= ∅
5 ∨
6 pre(currenti(s) \ Ti(s)) ∩ Tj 6= ∅
7 then return fa l se
8 end f o r a l l ;
9 return true

28 Bibliography
Bibliography

Bibliography

[1] Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model Checking. MIT Press.

[2] Peled, D. (2018). Partial-order reduction. In Clarke, E. C., Henzinger, T. A., Veith,
H., and Bloem, R., editors, Handbook of Model Checking. Springer Verlag.

[3] Willems, B. and Wolper, P. (1996). Partial-order methods for model checking: From
linear time to branching time. In Proceedings of LICS ’96, pages 294–303. IEEE, Com-
puter Society Press.

Index
Index 29

Index

depth-first search, 7

	Contents
	Partial-order reduction
	Introduction
	Independence and invisibility
	POR for LTL-
	Calculating the ample sets

