
Course Script
IN 5110: Specification and
Verification of Parallel Sys-
tems
IN5110, autumn 2019

Martin Steffen, Volker Stolz

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

6 Symbolic execution 1
6.1 Introduction . 1

6.1.1 Testing and path coverage . 4
6.2 Symbolic execution . 8
6.3 Concolic testing . 12

6 Symbolic execution 1

6
Symbolic execution
Chapter

What
is it

about?

Learning Targets of this Chapter
The chapter gives an not too deep
introduction to symbolic execution
and concolic execution.

Contents

6.1 Introduction 1
6.2 Symbolic execution 8
6.3 Concolic testing 12

6.1 Introduction

The material here is partly based on [2] (in particular the DART part). The slides take
inspiration also from a presentation of Marco Probst, University Freiburg, see the link here,
in particular, some of the graphs are clipped in from that presentation. More material
may be found in the survey paper [1].

Introduction

• symbolic execution: “old” technique [3]
• natural also in the context of testing
• concolic execution: extension
• used also in compilers

– code generation
– optimization

http://swt.informatik.uni-freiburg.de/teaching/WS2015-16/ProgramAnalysisSoftwareTesting/Resources/Slides/dart_seminarslides_marcoprobst.pdf

2 6 Symbolic execution
6.1 Introduction

Code example

The code does not has any particular purpose, except that it will be used to discuss testing,
symbolic execution, and a concept called concolic execution. The function has two possible
outcomes, namely success or failure, represented by calls to corresponding procedures.
Note that non-termination is not an issue, there is no loop in the procedure. In general,
loops poses challenges for symbolic execution. The problems are similar to the challenges
to bounded model checking, which was covered by one of the earlier student presentations.
BMC is a technique which shares some commonalities with symbolic execution: both are
making use of SAT/SMT solving.

How to analyse a (simple) program like that?

• testing
• “verification” (whatever that means)

– could include code review
• model-checking? Hm?
• symbolic and concolic execution (see later)

Model-checking a program like that is challenging. Model-checking methods and corre-
sponding (temporal) logics are mostly geared towards concurrent and reactive programs
anyway. In particular, standard model checking techniques are not very suitable for pro-
grams involving data calculations. The given code is a procedure with input and its
behavior is determined by the input. So, given the input, it’s a deterministic (and sequen-
tial) problem and with a concretely fixed input, there is also no “state-space explosion”.
Generally, though, the problem is infinite in size, if one assumes the mathematical integers
as input, resp., unmanagably huge, if one assumes a concrete machine-representation of
integers, i.e., for practical purposes, the state space is “basically infinite”, even though the
program is tiny.

Of course, common sense would tell that if the program would works for having x = 2345
and y = 6789, there is no reason to suspect it would fail for x = 2346 and y unchanged, for
example. In that particular tiny example, that is clear from the fact that those particular
numbers are never even mentioned in the code, they are nowhere near any corner case
where one would expect trouble.

6 Symbolic execution
6.1 Introduction 3

This way of thinking (what are corner cases) is typical for testing, and is obvious also for
unexperienced programmers (or testers). Of course it is based on the assumption that the
code is available, as the intuitive notion of “corner case” rests on the assumption one can
analyze the code and that one sees in particular which conditionals are used. For instance,
there’s no way of knowing which corner cases the complete() might have, should it have
access to those variables x and y, except perhaps some “usual suspects” like uninitialized
value, 0, MAXINT and +/- 1 of those perhaps.

There are many forms of testing, in general, with different goals, under different assump-
tions, and different artifacts being tested. The form of (software) testing where the code
is available is sometimes called white-box testing or structural testing (the terms white-box
and black-box testing is considered out-dated by some, but widely used anyway).

The intuitive thinking about “corner cases” basically is motivated by making sure that
all possible “ways” of executing the code or actually done. In testing that’s connected to
the notion of coverage. In the context of white-box testing, one want to cover “all the
code”. What that exactly means depends on the chosen coverage criterial. The crudest
one (which therefore is not really used) would be line coverage that every line must be
executed and covered by a test case. It would allow the tester to claim 100% line coverage
if the program would be formatted in a single line. . . That’s of course silly, so typically,
criteria are based on covering elements of the programs represented by a control-flow graph
(see the pictures later), and then one speaks about node coverage, or edge coverage, or
further refinements, depending on the set-up. For instance, if one had a language that
supports composed boolean conditions, and if one had a CFG representation that puts such
composite conditions into one node of the CFG, then covering only that node, or covering
both true and false branch of that node will not test all the individual contributions of
the parts of the formular to that true-or-false condition. If want wants more ambitious
coverage criteria, one may that those into account as well, which would be better than
simple edge coverage.

Agreeing on some coverage criterion then measuring how much coverage a test gives is
one thing. Another important and more complex thing is to figure out what test cases are
needed to achieve good coverage, and then arrange for that automatically. In the given
example, that may be simple. The example is tiny, one can see a few boolean conditions
and easily figure out inputs that cover each decision as being both true (for one test case)
and false (for another). Practically, one may choose the exact corner-cases and then one
off, since one should not forget that the real goal is not “coverage”, the real goes is to
make sure that a piece of code has no errors, or rather more realistically: testing should
have a better than random chance to detect errors, should there be some. As a matter of
fact, one common source of errors is getting the corner cases wrong (like writing < in a
conditional instead of ≤ or the other way around, especially in loops), which is sometimes
called off-by-one error. So, if the code contains a simple, non-compound condition x > 0,
choosing as input x = 700 and x = −700 may cover both cases (= 100% edge coverage for
that conditional), but practically, choosing x = 1 and x = 0 may be better.

But anyway, to achieve good “coverage” and/or good testing of corner cases, the real
question is:

How to do that systematically and automatically? How to generate necessary
input for the test-cases to achieve or approximate the chosen coverage criteria?

4 6 Symbolic execution
6.1 Introduction

That in a way a the starting point of symbolic execution, which has its origin in testing.
As coverage, it’s based typically on something more ambitious than edge coverage or some
of the refinements of that. It’s based on path coverage. Path coverage requires that each
path from the beginning of the procedure till the end is covered. If there are loops, there
are infinitely many paths, which explains the mentioned fact, that loops are problematic.
The method is called “symbolic” as it’s not about concrete values to cover all paths (if
possible). So, if one has a condition x > 0 as before, it’s not about choosing x = 700
and x = −700 (or maybe better x = 1 and x = 0). Symbolically, one has two situations:
simply x > 0 and it’s negation ¬(x > 0) (which corresponds to x ≤ 0), i.e., the two
possible outcomes of a condition with that conditions corresponds to two constraints.

Programs typically contain more control structure than just one single condition. So,
symbolic execution just takes all paths, each path involves taking a number of decisions
along its way, every one either positively or negatively, and collects all constraints in a big
conjuction.

There is much more to say about symbolic execution as a field, but that’s the core idea in
a nutshell.

6.1.1 Testing and path coverage

Testing

• maybe the most used method for ensuring software (and system) “quality”
• broad field

– many different testing goals, techniques
– also used in combination, in different phases of software engineering cycle

• here: focus on

“white-box” testing

• AKA structural testing
• program code available (resp. CFG)

• also focus: unit testing

Goals

• detect errors
• check corner cases
• provide high (“code”) coverage

6 Symbolic execution
6.1 Introduction 5

(Code) coverage

• note: typically a non-concurrent setting (unit testing)
• different coverage criteria

– nodes
– edges, conditions
– combinations thereof
– path coverage

• defined to answer the question

When have I tested “enough”?

path coverage

• ambitious to impossible (loops)
• note: still not all reachable states, i.e., not verified yet

As mentioned earlier, path coverage is often considered as too ambitious as coverage crite-
rion. Of course, sometimes tests cannot cover 100% of the simpler critera as well. Nodes
that “belong” to dead code cannot be covered, in a unit with dead code, one cannot
achieve 100% coverage. But perhaps one should, since indirectly, dead code may be a
sign of a problem as well (only one cannot test dead code in a conventional way, and in a
way, there may be no point to test it either). In the presence of loops, there are typically
infinitely many paths. That means, no matter how many test cases one comes up with,
the coverage is always 0%, so in this plain form, one cannot use path coverage to measure
if one has tested “enough”. Note also: the fact that there are infinitely many paths is
not the same as saying that the program itself is non-terminating (for some input). The
notion of paths (in the context of path coverage) refer to paths through the control flow
graph (CFG), which is an abstraction. The paths may or may not correspond to paths
through the graph done when executing the actual program. That also means, there may
be paths in the CFG that are unrealizable, and in particular, all loops in the progam may
actually terminate, but that’s something one cannot see in the CFG, where one can see
just a cycle in the graph.

Path coverage

The picture shows the control-flow graph of the program from the beginning.

6 6 Symbolic execution
6.1 Introduction

In the presentation slides, there is a number of overlays (not reproduced here) that show
different paths from the start node till one of the terminal nodes, in connection with the
program code. The path are marked red in the picture, and there are 3 path marked that
way. There are actually 4 different paths in the CFG, but one of them reaching the failure
end state via the route on the right does not correspond to a possible execution. That’s
easy to see, insofar that would imply a value for x satisfying the constraint

(x3 ≤ 0) ∧ (x > 0 ∧ y = 20) . (6.1)

The corresponding path is thus not colored in red in the picture. The constraint from
equation (6.1) is an example of a path condition or, synonymously, path constraint, namely
the one for a path, which happens to be unrealizable as the constraint is unsatisfiable.

Random testing

• perhaps most naive way of testing
• generating random inputs
• concrete input values
• dynamic executions of programs
• observe actual behavior and
• compare it against expected behavior

The slide called the approach a “naive” way of testing, but it does mean it has not been
used and is being used (and evaluated and compared to other forms, it has been refined
etc.) So it has its place.

Random testing

If one applied the randing testing approach to the program from before, one needs to
generate random input for the two inputs x and y. Two generated values for that pair
could be (700, 500) and (−700,−500), for instance. The red path in the figure shows the
path the program takes for the first choice. For the second choice, a diffent path would
be chosen, also leading to successful completion.

6 Symbolic execution
6.1 Introduction 7

One path so far missed

As mentioned, there is an unrealizable 4th path, which we should not count that one among
the ones we missed. But the realizable path shown should be covered. In particular, it’s
one that would point to an error in the program, the other two so far found no bug.

The problem with this is: to randomly hit that path has an astronomically low proba-
bility (hitting y = 10 by chance is very unlikely, indeed). Actually, this way of testing,
at least the way of selecting input, may even not even be called white box, as it ignores
information inside the body of the function, for instance that y = 10 seem a profitable
corner case.

In defense of random testing one may say: it may be easy in this particular case, to pick
more reasonable or promising input like y = 10. That’s not just because the program
is small. Note in particular, that x and y are also not updated in fancy ways (maybe
conditionally updated, maybe even using pointers and other complications). One may
have to invest heavily in complex theories that may be time-consuming to run before
one can get a decent grip on improving on the randomness of the input. And, in a way,
symbolic execution is an investment in theory (SMT solving) to find an alternative way
of testing, thereby also going from a black-box approach for selecting the inputs to a
white-box view.

To avoid a mis-conception: random testing is not synonymous with white-box testing. If
one does random input testing the way described, and then used path coverage to measure
how good the test suites have been, that’s white-box testing: to rate the path coverage, one

8 6 Symbolic execution
6.2 Symbolic execution

needs access to the code. It’s only that the available white-box information is not taken
into account for shaping the test cases in a meaningful way (except for perhaps stop test-
ing, when one feels the random input has achieved sufficient node/edge/path/whatever-
coverage).

6.2 Symbolic execution

Symbolic execution

• symbols instead of concrete values
• use of path conditions, aka path constraints
• cf. connection to SAT and SMT
• constraint solver computes real values

Basically we have introduced the core idea of symbolic execution already earlier. Perhaps
it’s worth interating that, like in BMC, it’s about SMT-solving (not just SAT solving).
We are dealing with boolean combinations of constraints over specific domains with spe-
cific theories (like integers, or arrays, etc.), that corresponds to data types used in the
programming language used for the programs we are analyzing. From the presentations
about BMC and constraint solving, we also are aware, that theories may easily lead to
undecidability of constraint solving. Integers with only addition have a decidable theory
(known as Presburger arithmetic). Add multiplication, and decidability of the theory goes
out the window. Undecidability is a real issue: how many programs use only integers and
addition? One could claim that the programs mostly never use real mathematic integers,
but just a finite portion of them (up-to MAX-INT) so one is dealing with a finite memory,
so that makes properties decidable. That’s correct, and when dealing with integers and
actual programs, one can make the argument, one should deal with the machine integers
anyway to make it more realististic. Indeed, one can work with a theory capturing those
“realistic” integer, also "IEEE floating points", etc. But all those theories are non-trivial.
So even if technically decidable (by being finite), it may be computationally too expensive
to wait for an answer when doing SMT solving. And there are more data types than just
numbers: there are dynamic data structures (linked lists, trees, etc.), and they are concep-
tually unbounded, as well. Again, one may posit that, in the real world, there is always
some upper bound (out-of-heap-space, stack-overflow), but it’s unrealistic to
capture those limitations in a decidable theory and hope the constraint solver will handle
it thereby. It would even make no sense conceptually, if one is doing “unit testing”: the
procedure under test may or may not have out-of-memory problems depending on factors
outside the unit. For instance on how much heap space is already taken away by other
data structure in the program.

Anyway, one has to face the sad fact that one will encounter constraints that are either
formally undecidable or untractable; in some way, there’s not much practical difference
either way. In some not too far-fetched situations, constraint solving may simply not
work.

We come back to that later: concolic execution is an extension of symbolic execution
that addresses exactly that problem: what can I do if my constraint problem exceeds the

http://www.lsv.fr/~haase/documents/h18.pdf

6 Symbolic execution
6.2 Symbolic execution 9

capabilities of the used SMT solver. First we finish up with symbolic execution by looking
at a super-simple example (but without adding new technical content to the material, it’s
more like rubbing it in a bit more).

Simple example

• in the code: assignments not equations (y := read())
• introduce variable s for read()
• assignments

– y := read() ⇒ y = s
– y := 2*y ⇒ y = 2s

• branching point in line 4
– right: 2s = 12
– left: 2s 6= 12

The code is even simpler than the previous one. The code uses C-like notation where
assignment are written using the =-symbol. To differentiate imperative assignment in the
programming language from declarative equations used in constraints, the slide writes :=
for the former. The difference should be clear by looking at line 2 of the code snippet:
y := 2 y is definitely not the same as the equation y = 2y. The latter is unsatisfiable
using standard numerical theories.

Which input leads to the error?

Constraint solver

Solve the path constraint 2s = 12

• child’s play: the solution is s = 6
• but: requires solver that can do “arithmetic”, including multiplication

The point about “multiplication” has been mentioned before: the theory of natural num-
bers with addition and multiplication is undecidable. In this particular example, the con-
straint is trivially solved by humans, and would pose not problem for constraint solvers.
Indeed, the constraint 2s = 12 is covered by a decidable theory, namely a restriction of the

10 6 Symbolic execution
6.2 Symbolic execution

general case of addition and multiplication, where multiplication is restricted to involve
only one variable multiplied with constants (so constraints like xy > 0 and also x×x = 23
would violate that restriction). A constraint like 2x+17y < z would still be ok: there are 2
variables but they are not multiplied with each other. Such restricted forms can be covered
by linear arithmetic, which has a decidable theory. It’s an important class of constraints.
For strange historical reason, the field dealing with such inequations (and generalizing the
question of satisfiability to the question of finding an optimal solution) is called linear
programming. It’s also know under the less strange name of linear optimization.

In summary

Symbolic execution for dummies

• take the code (resp. the CFG of the code)
• collect all paths into path conditions

– big conjunctions of all conditions along each the path
– each condition b will have

∗ one positive mention b in one continuation of the path
∗ one negated mention ¬b in the other continuation

• solve the constraints for paths leading to errors with an approriate SMT solver

• works best for loop-free program
• cf. also SSA
• but there is another problem as well (see next)

The remark about SSA may be ignored. SSA stands for static single assignment, a
widely used intermediate representation in compilers. It’s not the same as path condi-
tions, but shares some commonalities in the treatment of variables. Variables are in most
languages not single-assignment, they may be overwritten). However, the SSA format
(among other things) introduces “versions” of the source level variables which makes them
single-assignment (actually, not really dynamically single assignment, but statically single-
assignment). The differentiation betwenn static SA and “real” SA is relevant only when
deadling without loops. In loop-free programs, the SSA format transforms the code into
some version which is really single assignment. In that way variables become declarative,
like variables in a constraint system and the representation of variables for instance in
BMC. This has different advantages when it comes to optimization and analysis of the
code, which explains the wide usage of that concept. It’s outside the scope of this lecture,
though.

Complex condition x3

• non-linear constraint
• in general undecidable
• most constraint solvers throw the towel
• for instance: execution stops, no path covered

6 Symbolic execution
6.2 Symbolic execution 11

Coming back to the code example from the beginning of the chapter, we see that this time,
the numerical constraints involved are not linear anymore. So, we are definitely leaving
the safe ground of decidable theories.

What can one do?

What can one do (beyond throwing the towel and accept that SE won’t cover all paths)?

• “static analysis”: abstracting
– cover both path approximately

• theorem proving? one cannot sell that to testers

The presentation here presented SE as a way to systematically represent possible paths
via path conditions. The representation of the paths is assumed precise but collecting
exactly the boolean conditions along the way. It’s only we may run into trouble when
solving them. By “static analysis” I mean techniques like data flow analysis (or more
generally abstract interpretation). Characteristic is there, that one approximates. One
(typically) does not attempt to capture precisely which choices of values lead to which
paths. Instead, one works with approximations (of the values) but does not attempt to
tailor-make the abstractions such that they fit exactly the paths. In a way, the treatment
in symbolic execution works on abstractions, as well. The values of the input space are
carved up. As far as the values for y are concerned, they are grouped into two classes:
all the values where y = 10 and all the values y 6= 10. One can see that as having two
abstract values for y, one consisting of {10} and one of the set N \ {10}. That they are
represented “symbolically” with “formulas” or constraints is more a matter of perspective.
But SE is based on the idea that the abstraction is sculpted by the need to “steer” the
abstract execution along all possible paths (at least those which are realizable), and that
works fine as long as there are only finitely many such path.

What the analysis then does is to assume that it can go either way, but without remem-
bering which way it goes, just running the analysis approximately (the technical terms is
that the analysis is “path insensitive”). There is more that distinguishes data flow analysis
from SE. One is that often the purpose is different. In data flow analysis, the purpose is
often not to split up the input of a procedure to get good coverage for testing (though it’s
a legitimite goal as well). Instead, one analyses (often in the context of a compiler) other
aspects of the code. Therefore, even if one is as radical as representing variables like x and
y just by the knowledge that they are integers, one typically adds additional information
related to what one is interested in (for live variable analysis, some information about
when the variables is assigned to, for analysis of nil-pointer problems, when pointer vari-
ables get a proper value etc). And typically that is done also not just for input variables
of a procedure, but for all variables or other entities one is interested to analyze. In any
case, static analysis like data flow analyses are typically not path sensitive (as explained),
though it’s not fundamentally forbidden, it’s just too expensive to do in many application.
As a consequence, they are less precise, i.e., more approximative. Though problems with
undecidablity may disappear thanks to working with abstractions, and loops no longer
pose a problem, at least not as serious as for SE.

One way to see analyses like data flow analysis is not to work with abstractions that exactly
cover all combinations of “true” and “false” for all encountered conditions. The abstraction

12 6 Symbolic execution
6.3 Concolic testing

is done independent from that. In the simplest case (with the most radical abstraction),
one could completely ignore the concrete value (perhaps just abstracting it into its type,
like int). Obviously, when encountering a condition mentioning the comparison y = 10,
the analyser would not know if the run goes left or right in that case. One might also split
into 3 different abstract values, maybe {negative, 0, positive}, hoping that this is a good
choice, but the choice is independent from the conditions in the program.

The borderline between SE and static analysis is, however, not clear cut. For instance, one
could do the following: one can replace constraints beyond the capabilities of the chosen
SMT solver (like the one involving x3) but a constraints in linear arithmic. Sometimes
one can approximate non-linear constraints by linear one. That way, one can no longer
have the exact correspondance between the paths and solutions of the path constraints,
therfore it becomes a but like (other) static analyses.

So, isn’t SE not a static analysis, as well? It sure is, in that it analyses statically the code.
Why it’s presented here as being slightly different is its motivation: it’s part of a more
advanced testing approach, which is not a static analysis. Testing is run-time or dynamic
analsys. But it’s fair to see SE in the presentation here as a static analysis technique used
to improve the run-time technique of testing.

Concolic testing Concrete & Symbolic = “concolic”

6.3 Concolic testing

Concolic testing

• here following DART
• combination of two techniques

Random testing

• concrete values
• dynamic execution

Symbolic execution

• symbols, variables
• static analysis

• other name: Dynamic symbolic execution (DSE)

The slogan is

Execute dynamically & explore symbolically

6 Symbolic execution
6.3 Concolic testing 13

Figure 6.1: Dart (1)

Dart overview

The following slides show how DART combines random testing and symbolic execution
into a concolic execution framework. In the slides, different runs are shown in a series of
overlays. The script version does not show all the overlays step by step. It just shows,
for each iteration, one complete path only. The example is taken from Section 2.5 from
Godefroid et al. [2]. It shows how DART could handle the program from before, which
involves non-linear constraints. Because of that, standard SMT solvers may not not be
able to tackle it, since often one restricts to decidable theories (like linear constraints).
Also standard overapproximation techniques (“predicate abstraction”) may not be able
to precisely analyze a program like that. They would be unable to figure out that fail
state is unreachable taking the path “via the right-hand side”. The best they would
do is that it “may be reachable”, thus reporting an error that is actually not possible.
The overapprixmation thus leads to false alarms. False alarms are problematic if the user
drowns in them. The “tester” will have no patience to inspect thousands of warnings, most
of which are just false alarms. So, the tool may become unhelpful if the approximation
is too imprecise. Complex programming structures, especially wild pointer manipulations
and spaghetti code, by also dynamic aspects such as higher-order functions, dynamic or
late binding etc. confuses not just the programmer but also lead to radically approximative
(= unusable) results. Things get worse when adding concurrency to the mix . . .

For the example. Figure 6.1 shows a possible first run of the DART tool. It starts like
random testing, picking an random input, say

(x, y) = (700, 500) . (6.2)

This input leads to the path marked in red in Figure 6.1. Of course, picking exactly
those two numbers is highly improbable, but picking an x larger than 0 and y 6= 10 has a
probability of almost 50%. Of course since it’s random, DART may alternatively start off
by choosing the input that leads to the path to completions on the right-hand side, which
has a probability of likewise 50%. Only the third possible path, stumbling directly across
the error by pickig x > 0 and y = 10 is highly unlikely in the first run. Anyway, we start
as shown in Figure 6.1.

14 6 Symbolic execution
6.3 Concolic testing

Figure 6.2: Dart (2)

While doing the concrete execution with that input, 2 boolean conditions have been eval-
uated to true: x3 > 0 and y 6= 10. Those are the path conditions corresponding the path
randomly picked. Now, with the goal of path coverage in mind: one should continue with
exploring alternatives, i.e., explore paths that are behind the negation of those conditions.
The negation of the first one is x3 ≤ 0. That’s a non-linear constraint, i.e., one where a
typical SMT solver chickens out. So assume DART does not attempt to do any constraint
solving here. Remember the goal: we want to find more or less systematically all paths,
but we don’t want to overapproximate; we don’t want to include unrealizable paths as the
might result in false alarms. As we cannot find the alternative route at this point in the
chosen path by solving x3 ≤ 0. the only thing we can do at this point is to use the path we
know that exists as fall-back. That’s the path we are currently pursuing, which “solves”
the constraint x3 > 0. So we use the concrete execution as witness to find one witness
solving a constraint we cannot otherwise solve via SMT (more precisely, when we cannot
solve its negation, but that amounts generally to the same). In that particular example,
we add x1 = 700 as constraint (let’s write x1 when referring to the x in the first run). Now
we continue the run with the next conditional. With y picked as 50, the condition y¬ = 10
is true. In this case, the the negation is y = 10 which is perfectly solvable (actually: a
constraint of that form, equating a variable with a concrete, constant value is a constraint
in solved form). That’s good, so constraint “solving” gave us that y = 10 would lead to a
different path.

So sum up the first run: the randomly generated input from equation (6.2) led to the
concrete execution from Figure 6.1, and a constraint system of the form

(x1, y1) = (700, 10)

The x1 is the concrete value in this run, the constraint for y1 comes from symbolically
representing the corresponding alternative in that run (it so happens in the example that
the constraint is already in a form (y1 = 10) that has only one solution.

This is the starting point for the second run of the method, which is shown in Figure
6.2.

6 Symbolic execution
6.3 Concolic testing 15

Applying the same method as in the first run, x has the same problem as before, which
means we need to use the concrete value 700 as fall-back. That leads to the constraint

(x1 = 700) ∧ (y2 6= 10) .

However, that corresponds to a path already explored. Consequently, after the second run
(in this example), no new inputs are generated.

If we don’t have clear direction (in the form of constraints) what input to take next, we
can of course generate a new one randomly. That obviously may result in path already
explored. However, in the example, the portion of the graph not yet explored so far is
the right-hand side. Sooner or later, the random input generation will pick an input with
x ≤ 0, which explores that part. And actually, it will happen rather sooner than later,
let’s assume, at iteration n. For concreteness, let’s assume the concrete input is

(x, y) = (−700, 500) .

That leads to an execution covering the path from Figure 6.3. The symbolic part chickens
out on the first constraint which involves x3 (besides that the left-hand alternative x3

n > 0
is already explored), so we have the concrete value xn = −700.

Figure 6.3: Dart (n)

The conditional leads to the additional constraint xn > 0 ∧ y = 20, but that means we
have

xn = −700 ∧ xn > 0 ∧ y = 20 (6.3)

which is unsatisfiable. By general reasoning involving the non-linear term x3, we were
aware that this path is unrealizable for any choice of x. The SMT solver is too weak to
draw that conclusion, but at least it will never explore that path, since when the symbolic
execution does not work, it relies on concrete executions, and those never take that path.
So: no false alarms!

16 6 Symbolic execution
6.3 Concolic testing

At that point, the DART method cannot generate new paths any more, it has covered
all 3 possible path and the one unrealizable was “covered” insofar that it has been half-
symbolically and half-concretely evaluated (see equation (6.3)). So, when figuring out
that, the method stops generating new tests, having achieved (in this example) the best
possible path coverage without generating false alarms.

One can convince oneself, that even with alternative random picks, for instance starting
to explore the right-hand side instead of the left hand side as in this illustation, the result
would be the same. So with very high probablity (and in short time), the method will
achive that coverage.

Afterthoughts to the example The example, taken from [2], serves to illustrate in which
way the combination of symbolic and concrete execution improved on both plain random
testing, symbolic execution, and on approximative methods: it is highly improbably that
random testing find the bug, symbolic execution cannot handle the example, and overap-
proximation give false alarms. Hurrah for concolic execution!

But, on second thought, the example is hand-crafted with the intention to “prove” the
superiority of that methods over some competitors. But is it wholly convincing? Well, it
worked convincingly enough in the example, in particular stressing the high probablity of
covering all realizable paths in a short amount of time.

But that may depend on the (perhaps too cleverly) constructed example. There are two
integer input domains: the one for x and the one for y. The one for x is divided 50-50,
namely for x ≤ 0 and x > 0. The other domain is split in an extremely uneven way:
y = 10 vs. y 6= 10. In both cases the split of the domains correspond to different paths
that need to be covered. The SMT solver cannot tackle the even split domain for x, as
it is written in the form x3 ≤ 0 and x3 > 0. The uneven split for y, luckily, can be
represented by linear constraint and the symbolic treatment can therefore cover the two
choices very fast. The even coverage can, with high probability, be covered quite fast by
random generation.

If we would have written y2 6= 100 ∧ x > 0 instead of y = 10, the DART method would
struggle as well.

So, the example should be read as illustration, in aspects one can hope to improve of
the other approaches. Whether it in practice is a step forward can be judged only by
applying a corresponding tool to real example programs. Besides that, it also depends on
practical issued (which kind of theories should be reasonably covered by the SMT, what
data structures does the programming language support, what about external variables
and external procedure call etc). The paper [2] reports on experimental evaluation of their
approach, providing evidence that the method gives quite added value compared to pure
random testing, but they also point out problems of the method in practice

It should also be said, that DART is not the only attempt to improve “stupid random
testing” by similar ideas (also before that particular paper).

Bibliography
Bibliography 17

Bibliography
[1] Baldoni, R., Coppa, E., D’Ella, D. C., Demetrescu, C., and Finocchi, I. (2018). A

survey of symbolic execution techniques. ACM Computing Survey, 51(3).

[2] Godefroid, P., Klarlund, N., and Sen, K. (2005). Dart: Directed automated runtime
testing. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 213–223. ACM.

[3] King, J. C. (1976). Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394.

18 Index
Index

Index
coverage, 3

path condition, 6
path constraint, 6
Presburger arithmetic, 9

SSA, 10
structural testing, 3

testing
structural, 3
white-box, 3

white-box testing, 3

	Contents
	Symbolic execution
	Introduction
	Testing and path coverage

	Symbolic execution
	Concolic testing

