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1
Formal methods
Chapter

What
is it

about?
Learning Targets of this Chapter

The introductory chapter gives
some motivational insight into the
field of “formal methods” (one
cannot even call it an overview).

Contents

1.1 Introduction . . . . . . . . . . 1
1.2 Motivating example . . . . . 1
1.3 How to guarantee correctness? 4
1.4 Software bugs . . . . . . . . . 7
1.5 On formal methods . . . . . . 11
1.6 Formalisms for specification

and verification . . . . . . . . 18
1.7 Summary . . . . . . . . . . . 19

1.1 Introduction

This is the “script” or “handout” version of the lecture’s slides. It basically reproduces
the slides in a more condensed way but with additional comments added. The slides used
class are kept not too full. Additional information and explanations that are perhaps said
in the classroom or when using the whiteboard, without being reproduced on the shown
slides, are shown here, as well as links and hints for further readings. In particular, sources
and bibliographic information is shown mostly only here.

It’s also best seen as “working document”, which means it will probably evolve during the
semester.

1.2 Motivating example

1.2.1 A simple computational problem

a0 = 11
2

a1 = 61
11

an+2 = 111− 1130− 3000
an

an+1

Thanks to César Muñoz (NASA, Langley) for providing the example (which is taken from
“Arithm’etique des ordinateurs” by Jean Michel Muller. See http://www.mat.unb.

http://www.mat.unb.br/ayala/EVENTS/munoz2006.pdf
http://www.mat.unb.br/ayala/EVENTS/munoz2006.pdf


2 1 Formal methods
1.2 Motivating example

br/ayala/EVENTS/munoz2006.pdf or https://hal.archives-ouvertes.fr/
ensl-00086707. The definition or specification of it seems so simple that it’s not even
a “problem”. It seems more like a first-semester task.

Real software, obviously, is mostly (immensely) more complicated. Nonetheless, certain
kinds of software may rely on subroutines which have to calculate some easy numerical
problems like the one sketched above (like for control tasks or signal processing).

You may easily try to “implement” it yourself, in your favorite programming language. If
your are not a seasoned expert in arithmetic programming with real numbers or floats,
you will come up probably with a small piece of code very similar to the one shown below
(in Java).

1.2.2 A straightforward implementation

1 public class Mya {
2

3 stat ic double a ( int n) {
4 i f (n==0)
5 return 11/2 . 0 ;
6 i f (n==1)
7 return 61/11 . 0 ;
8 return 111 − (1130 − 3000/a (n−2))/a (n−1);
9 }

10

11 public stat ic void main ( St r ing [ ] argv ) {
12 for ( int i =0; i <=20; i++)
13 System . out . p r i n t l n ( " a ( "+i+" ) = "+a ( i ) ) ;
14 }
15 }

The example is not meant as doing finger-pointing towards Java, so one can program the
same in other languages, for instance here in ocaml, a functional language.
(∗ The same example , in a d i f f e r e n t language ∗)

let rec a (n : i n t ) : f l o a t =
i f n = 0
then 11 .0 / . 2 . 0
else ( i f n = 1

then 61 .0 / . 11 .0
else ( 1 1 1 . 0 −. ( 1130 .0 −. 3000 .0 / . a (n−2)) / . a (n−1 ) ) ) ; ;

1.2.3 The solution (?)

$ java mya
a(0) = 5.5
a(2) = 5.5901639344262435
a(4) = 5.674648620514802
a(6) = 5.74912092113604
a(8) = 5.81131466923334

http://www.mat.unb.br/ayala/EVENTS/munoz2006.pdf
http://www.mat.unb.br/ayala/EVENTS/munoz2006.pdf
https://hal.archives-ouvertes.fr/ensl-00086707
https://hal.archives-ouvertes.fr/ensl-00086707
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a(10) = 5.861078484508624
a(12) = 5.935956716634138
a(14) = 15.413043180845833
a(16) = 97.13715118465481
a(18) = 99.98953968869486
a(20) = 99.99996275956511

One can easily test the program for the shown output (in the document here, every second
line is omitted). It’s also not a feature of Java. For instance, a corresponding ocaml
program shows “basically” the same behavior (the exact numbers are slightly off).

1.2.4 Should we trust software?

an for any n ≥ 0 may be computed by using the following expression:

an = 6n+1 + 5n+1

6n + 5n

Where
lim
n→∞

an = 6

We get then

a20 ≈ 6 (1.1)

The example should cause concern for various reasons. The obvious one is that a
seemingly correct program shows weird behavior. Of course, what is “seemingly” correct
may lay in the eyes of the beholder.

One could shrug it off, making the argument that even the not so experienced program-
mer should be aware that floats in a programming language is most often different from
“mathematical” real numbers and therefore the implementation is not to be expected to
be 100% correct anyway. Of course in this particular example, the numbers are not just
“a bit off” due to numerical imprecision, the implementation behaves completely different
from what one could expect, the result of the implementation for the higher numbers
seems to have nothing to do at all with the expected result.

But anyway, one conclusion to draw might be “be careful with floats” and accumulation
of rounding errors. And perhaps take an extra course or two on computer arithmetique
if you are serious about programming software that has to do with numerical calculations
(control software, etc.). That’s a valid conclusion, but this lecture will not follow the
avenue of getting a better grip on problems of floats and numerical stability, it’s a fields
of its own.

The example can also be discussed from a different angle. The slides claim that the
implementation is wrong insofar that the result should really be something like 6 (in
equation (1.1)). One can figure that out with university or even school level knowledge
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about real analysis, series, and limits, etc. However, the problem statement is really
easy. Actual problems are mostly much more complex even if we stick to situations, when
the problem may be specified by a bunch of equations, maybe describing some physical
environment that needs to be monitored and controlled. It’s unlikely to encounter a
software problem whose “correct” solution can be looked-up in a beginner’s textbook.
What’s correct anyway? In the motivational example, “math tells us the correct answer
should be approximately 6”, but what if the underlying math is too complex to have a
simple answer to what the result is supposed to be (being unknown or even unobtainable
as closed expression).

When facing a complex numerical (or computational) problem, many people nowadays
would simply say “let’s use a computer to caluclate the solution”, basically assuming
“what the computer says is the solution”. Actually, along that lines, one could even
take the standpoint that in the example, the Java program is not the solution but the
specification of the task. That’s not so unrealistic: the program uses recursion and other
things, which from some perspective can be seen as quite high-level. Then the task would
be, to implement a piece of hardware, or firmware or some controller, that “implement”
the specification, given by some high-level recursive description in Java (or some other
executable format). One can imagine that the Java program is used for testing whether
that more low-level implementation does the right thing, like comparing results or use the
Java program to monitor the results in the spirit of run-time verification. The cautioning
about “beware of numerical calculations” still applies, but the point more relevant to our
lecture would be, that sometimes specifications are not so clear either, not even if they are
“computer-aided”. Later in the introduction, we say a program is correct only relative to a
(formal) specification, but also the specifications themselves may be problematic and that
includes the checking, even the automatic one, whether the specification is satisfied.

1.3 How to guarantee correctness?

1.3.1 Correctness

• A system is correct if it meets its “requirements” (or specification)

Examples:

• System: The previous program computing an
Requirement: For any n ≥ 0, the program should be conform with the previous
equation

(incl. limn→∞ an = 6)

• System: A telephone system

• Requirement: If user A wants to call user B (and has credit), then eventually A
will manage to establish a connection

• System: An operating system
Requirement: A deadly embrace (nowaday’s aka deadlock) will never happen
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A “deadly embrace” is the original term for something that is now commonly called dead-
lock. It’s a classical error condition that occurs in concurrent programs. In particular
something that cannot occur in sequential program or in a sequential algorithm. It occurs
when two processes obtain access to two mutually dependent shared resources and each de-
cide to wait indefinitely for the other. A classical illustration is the “dining philosophers”.

The requirements, apart from the first one and except that they are unreasonable small or
simple, are characteristic for “concurrent” or “reactive” system . As such, they are typical
also for the kind of requirements we will encounter often in the lecture. The second
one uses the word “eventually” which obtains a precise meaning in temporal logics (more
accurately it depends even on what kind of temporal logic one chooses and also how the
system is modelled). Similar for the last requirement, using the word “never”.

1.3.2 How to guarantee correctness?

• not enough to show that it can meet its requirements
• show that a system cannot fail to meet its requirements

Dijkstra’s dictum

“Program testing can be used to show the presence of bugs, but never to show their
absence”

A lesser known dictum from Dijktra (1965)

On proving programs correct: “One can never guarantee that a proof is correct, the best
one can say is: ’I have not discovered any mistakes’. ”

• automatic proofs? (Halting problem, Rice’s theorem)
• any hope?

Dijksta’s well-known dictum comes from [12]. The statements of Dijkstra can, of course,
be debated, and have been debated. What about automatic proofs? It is impossible to
construct a general proof procedure for arbitrary programs. It’s a well-known fact that
as soon only programs in the most trivial “programming languages” can be automatically
analysed (i.e., if one does not allow general loops or recursion or if one assumes finite
memory). For clarity, one should perhaps be more precise, what can’t be analysed. First of
all, the undecidability of proplems refers to properties concerning the behavior or semantics
of programs. Syntactic properties or similar may well be analyzed. Questions referring
to the program text are typically decidable. A parser decides whether the source code
is syntactically correct, for instance, i.e., adheres to a given (context-free) grammar. In
most programming languages, type correctness is decidable (and the part of the compiler
that decides on that is the type checker). What is not decidable are semantics properties
of what happens when running the code. The most famous of such properties is the
question whether the program terminates or not; that’s known as the halting problem.
The halting problem (due to Alan Turing) is only one undecidable property, in fact,
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all semantical questions are undecidable: every single semantical property is undecidable,
with the exception of only two which are decidable. Those 2 decidable one are the 2 trivial
ones, known as true and false, which hold for all programs resp. for none. The general
undecidability of all non-trivial semantical properties is known as Rice’s theorem.

As second elaboration: undecidability refers to analysis programs generally. Specific pro-
grams may well be analysed, of course. For instance, one may well establish for a particular
program, that it terminates. It may even be quite easy, if one has only for-loops or perhaps
no loops at all. After all, verification is about establishing properties about programs. It’s
only that one cannot make an algorithmic analysis for all programs.

The third point is on the nature of what decidability means. A decision procedure is a
algorithm which makes a decision in a binary many: yes or no. And that implies that
the decision procedure terminates (there is no maybe, and there is no non-termination in
which case one would not know either. A procedure that can diverge in some cases is not
a decision-procedure by a semi-decision procedure and the corresponding problem is only
semi-decidable (or partially recursive).

1.3.3 Validation & verification

• In general, validation is the process of checking if something satisfies a certain
criterion

• Do not confuse validation with verification

Validation

"Are we building the right product?", i.e., does the product do what the user requires

Verification:

"Are we building the product right?", i.e., does the product conform to the specification

The terminology and the suggested distinction is not uncommon, especially in the for-
mal methods community. It’s not, however, a universal consensus. Some authors define
verification as a validation technique, others talk about validation & verification as be-
ing complementary techniques. However, it’s a working definition in the context of this
lecture, and we are concerned with verification in that sense.

1.3.4 Approaches for validation

testing • check the actual system rather than a model
• Focused on sampling executions according to some coverage criteria
• not exhaustive (“coverage”)
• often informal, formal approaches exist (MBT)



1 Formal methods
1.4 Software bugs 7

simulation • A model of the system is written in a PL, which is run with different
inputs

• not exhaustive

verification “[T]he process of applying a manual or automatic technique for establishing
whether a given system satisfies a given property or behaves in accordance to some
abstract description (specification) of the system”

The quote is from Peled’s book [27].

1.4 Software bugs

1.4.1 Sources of errors

Errors may arise at different stages of the software/hardware development:

• specification errors (incomplete or wrong specification)
• transcription from the informal to the formal specification
• modeling errors (abstraction, incompleteness, etc.)
• translation from the specification to the actual code
• handwritten proof errors
• programming errors
• errors in the implementation of (semi-)automatic tools/compilers
• wrong use of tools/programs
• . . .

The list of errors is clearly not complete, sometimes a “system” is unusable, even if it’s hard
to point with the finger to an error or a bug (is it “a bug or a feature”?). Different kinds
of validation and verification techniques address different kinds of errors. Also testing as
one (huge) subfield is divided in many different forms of testing, trying to address different
kinds of errors.
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1.4.2 Errors in the SE process

The picture borrowed from G. Holzmann’s slides. Most software is developed according to
some process with different phases or activities (and by different teams and with specific
tools); often, the institution of even the legal regulators insist on some procedures etc.
Many of such software engineering practices have more or less pronounced “top-down”
aspects (most pronounced in a rigid waterfall development, which, however, is more an
academic abstraction, less pronouced in agile processes). No matter how one organizes the
development process, “most” errors are detected quite late on the development process,
at least that’s what common wisdom, experience, and empirical results show. The figure
(perhaps unrealistically simplifying) shows a top-down process and illustrates that certain
kinds of errors (like design errors) are often detected only later. It should be clear (at
least for such kind of errors), that the later the errors are detected, the more costly they
are to repair.

http://spinroot.com/spin/Doc/course/index.html
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1.4.3 Costs of fixing defects

The book
the figures are taken from is [25] (a quite well-known source). The book itself attributes
the shown figures to different other sources.

1.4.4 Hall of shame

• July 28, 1962: Mariner I space probe
• 1985–1987: Therac-25 medical accelerator
• 1988: Buffer overflow in Berkeley Unix finger daemon
• 1993: Intel Pentium floating point divide
• June 4, 1996: Ariane 5 Flight 501
• November 2000: National Cancer Institute, Panama City
• 2016: Schiaparelli crash on Mars

The information is taken from [15]. See also the link to that article.

July 28, 1962: Mariner I space probe The Mariner I rocket diverts from its intended di-
rection and was destroyed by the mission control. A software error caused the miscal-
culation of rocket’s trajectory. Source of error : wrong transcription of a handwritten
formula into the implementation code.

1985-1987: Therac-25 medical accelerator A radiation therapy device delivers high ra-
diation doses. At least 5 patients died and many were injured. Under certain cir-
cumstances it was possible to configure the Therac-25, so the electron beam would
fire in high-power mode but with the metal X-ray target out of position. Source of
error: a “race condition”.

1988: Buffer overflow in Berkeley Unix finger daemon An Internet worm infected more
than 6000 computers in a day. The use of a C routine gets() had no limits on its
input. A large input allows the worm to take over any connected machine. Kind of
error : Language design error (Buffer overflow).

https://www.wired.com/2005/11/historys-worst-software-bugs/
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1993: Intel Pentium floating point divide A Pentium chip made mistakes when dividing
floating point numbers (errors of 0.006%). Between 3 and 5 million chips of the unit
have to be replaced (estimated cost: 475 million dollars). Kind of error: Hardware
error.

June 4, 1996: Ariane 5 Flight 501 Error in a code converting 64-bit floating-point num-
bers into 16-bit signed integer. It triggered an overflow condition which made the
rocket to disintegrate 40 seconds after launch. Error: exception handling error.

November 2000: National Cancer Institute, Panama City A therapy planning software
allowed doctors to draw some “holes” for specifying the placement of metal shields to
protect healthy tissue from radiation. The software interpreted the “hole” in different
ways depending on how it was drawn, exposing the patient to twice the necessary
radiation. 8 patients died; 20 received overdoses. Error: Incomplete specification /
wrong use.

2016: Schiaparelli crash on Mars “[..] the GNC Software [..] deduced a negative altitude
[..]. There was no check on board of the plausibility of this altitude calculation”

The errors on that list are quite known in the literature (and have been analysized and
discussed). Note, however, that in some of those cases, the cause of the error is not un-
controversial, despite of lengthy (internal) investigations and sometimes even hearings in
the US congress or other external or political institutions. The list is from 2005, other
(and newer) lists certainly exists. A well-known collection of computer-related problems,
especially those which imply societal risks and often based on insider information is Peter
Neumann’s Risk forum (now hosted by ACM), which is moderated and contains reliable
information (in particular speculations when the reasons are unclear are called specula-
tions). Not all one finds on the internet is reliable, there are many folk tales on “funny”
software glitches. Many may never see the public light or are openly analysed (especially
when concerned with security related issues, military or financial institutions). Of course,
when a space craft explodes moments after lift-off or crash-lands on Mars on live trans-
mission from Houston, it’s difficult to swipe it under the carpet. But not even then, it’s
easy to nail it down to the/a causing factor not to mention to put the blame somewhere
or find ways to avoid it the next time. For instance, if it’s determined that the ultimate
cause was a missing semicolon (as some say was the case for the failure of the Mariner
mission, but see below), then how to react? Tell all NASA programmers to double-check
semicolons next time, and that’s it? Actually, looking more closely, one should not think
of the bug as a “syntactic error”.

For instance, in the Mariner I case, the error is often attributed to a “hyphen”, sometimes
a semicolon. Other sources (who seem well-informed) speak of an overbar, see the IT world
article, which refers to a post in the risk forum. Ultimately, the statement that it was a
“false transcription” is confirmed by those sources. It should be noted that “transcription”
means that someone had to punch in patterns with a machine into punch card. The source
code (in the form of punch cards) was, obviously, hard to “read”, so code inspection or code
reviews was hard to do at that level. To mitigate the problem of erronous transcription,
machines call card verifiers where used. Bascially, it meant that two people punched in
the same program and verification meant that the result was automatically compared by
the verifier.

https://www.acm.org/about-acm/risks-forum
https://www.acm.org/about-acm/risks-forum
https://www.itworld.com/article/2717299/mariner-1-s--135-million-software-bug.html
https://www.itworld.com/article/2717299/mariner-1-s--135-million-software-bug.html
http://catless.ncl.ac.uk/Risks/8.75.html#subj1
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1.5 On formal methods

The slides are inspired by introductory material of the books by K. Schneider and the one
by D. Peled ([29, Section 1.1] and [27, Chapter 1]).

1.5.1 What are formal methods?

FM

“Formal methods are a collection of notations and techniques for describing and analyzing
systems” [27]

• Formal: based on “math” (logic, automata, graphs, type theory, set theory . . . )
• formal specification techniques: to unambiguously describe the system itself and/or

its properties
• formal analysis/verification: techniques serve to verify that a system satisfies its

specification (or to help finding out why it is not the case)

1.5.2 Terminology: Verification

The term verification: used in different ways

• Sometimes used only to refer the process of obtaining the formal correctness proof
of a system (deductive verification)

• In other cases, used to describe any action taken for finding errors in a program
(including model checking and maybe testing)

Formal verification (reminder)

Formal verification is the process of applying a manual or automatic formal technique for
establishing whether a given system satisfies a given property or behaves in accordance to
some abstract description (formal specification) of the system

Saying ’a program is correct’ is only meaningful w.r.t. a given spec.!

The term “verification” is used (by different people, in different communities) in different
ways, as we hinted at already earlier. Sometimes, for example, testing is not considered
to be a verification technique.
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1.5.3 Limitations

• Software verification methods do not guarantee, in general, the correctness of the
code itself but rather of an abstract model of it

• It cannot identify fabrication faults (e.g. in digital circuits)
• If the specification is incomplete or wrong, the verification result will also be wrong
• The implementation of verification tools may be faulty
• The bigger the system (number of possible states) more difficult is to analyze it (state

space explosion problem)

For a discussion of issues like these, one may see the papers “Seven myths of formal
methods” and “Seven more myths of formal methods” ([18] [5]).

1.5.4 Any advantage?

be modest

Formal methods are not intended to guarantee absolute reliability but to increase the
confidence on system reliability. They help minimizing the number of errors and in many
cases allow to find errors impossible to find manually.

• remember the VIPER chip

Parnas has a more dim view on formal methods. Basically he says, no one in industry is
using them and the reason for that is that they are (basically) useless (and an academic
folly). Parnas is a big name, so he’s not nobody, and his view is probably shared explicitly
by some. And implicitly perhaps shared by many, insofar that formal methods has a niche
existance in real production software.

However, the view is also a bit silly. The argument that no one uses it is certainly an
exaggeration. There are areas where formal methods are at least encouraged by regulatory
documents, for instance in the avionics industry. One could make the argument that high-
security applications (like avionics software) is a small niche, therefore formal method
efforts in that direction are a folly for most progammers. Maybe, but that does not
discount efforts in areas where one thinks it’s worth it (or is forced by regulators to do
it).

Secondly, even if really no one in industry would use such methods, that would not discount
a research effort, including academic research. The standpoint that the task of academic
research is to write papers about what practices are currently profitably employed in
mainstream industry is a folly as well.

Maybe formal methods also suffer a bit from similar bad reputation as (sometimes) ar-
tificial intelligence has (or had). Techniques as investigated by the formal method com-
munity are opposed, ridiculed and discounted as impractical until they “disappear” and
then become “common practice”. So, as long as the standard practicioner does not use
something, it’s “useless formal methods”, once incorporated in daily use it’s part of the
software process and quality assurance. Artificial intelligence perhaps suffered from a
similar phenomenon. At the very beginning of the digital age, when people talked about
“electronic brains” (which had, compared to today, ridiculously small speed and capacity),

http://www.cs.rug.nl/~roe/courses/OriInf/Parnas-Formal-Methods.pdf
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they trumpeted that the electronic brains can “think rationally” etcetc., and the promised
that soon they would beat humans in games that require strategic thinking like tic-tac-toe.
The computers very soon did just that, with “fancy artifical intelligence” techniques like
back-tracking, branch-and-bound or what not (branch-and-bound comes from operations
research). Of course the audience then said: Oh, that’s not intelligence, that’s just brute
force and depth-first search, and nowadays, depth-first seach is taught in first semester or
even school. And Tic-tac-toe is too simple, anyway, the audience said, but to play chess,
you will need “real” intelligence, so if you can come up with a computer that beats chess
champions, ok, then we could call it intelligent. So then the AI came up with much more
fancy stuff, heuristics, statistics, bigger memory, larger state spaces, faster computers, but
people would still state: a chess playing computer is not intelligent, it’s “just” complex
search. So, the “intelligence” those guys aim at is always the stuff that is not yet solved.
Maybe the situation is similar for formal methods.

Perhaps another parallel which has led to negative opinions like the one of Parnas is that
the community sometimes is too big-mouthed. Like promising an “intelligent electronic
brain” and what comes out is a tic-tac-toe playing back-tracker. . . For the formal methods,
it’s perhaps the promise to “guarantee 100% correctness” (done based on “math”) or at
least perceived as to promise that. For instance, the famous dictum of Disjktra that
testing cannot guarantee correctness in all cases is of course in a way a triviality (and
should be uncontroversial), but it’s perhaps perceived to mean (or used by some to mean)
that “unlike testing, the (formal) method can guarantee that”. Remember the Viper chip
(a “verified” chip used in the military, in the UK)
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1.5.5 Another netfind: “bitcoin” and formal methods :-)

1.5.6 Using formal methods

Used in different stages of the development process, giving a classification of formal meth-
ods

1. We describe the system giving a formal specification
2. We can then prove some properties about the specification
3. We can proceed by:

• Deriving a program from its specification (formal synthesis)
• Verifying the specification wrt. implementation

1.5.7 Formal specification

• A specification formalism must be unambiguous: it should have a precise syntax and
semantics
– Natural languages are not suitable

• A trade-off must be found between expressiveness and analysis feasibility
– More expressive the specification formalism more difficult its analysis

Do not confuse the specification of the system itself with the specification of some of its
properties
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• Both kinds of specifications may use the same formalism but not necessarily. For
example:
– the system specification can be given as a program or as a state machine
– system properties can be formalized using some logic

1.5.8 Proving properties about the specification

To gain confidence about the correctness of a specification it is useful to:

• Prove some properties of the specification to check that it really means what it is
supposed to

• Prove the equivalence of different specifications

Example

a should be true for the first two points of time, and then oscillate.

• some attempt:

a(0) ∧ a(1) ∧ ∀t. a(t+ 1) = ¬a(t)

One could say the specification is INCORRECT! and/or incomplete. The error may
be found when trying to prove some properties. Implicitly (even if not stated), is the
assumption that t is a natural number. If that is assumed, then the last conjuct should
apply also for t = 0, but that contradicts the first two conjucts.

So perhaps a correct (?) specification might be

a(0) ∧ a(1) ∧ ∀t ≥ 0.a(t+ 2) = ¬a(t+ 1)

1.5.9 Formal synthesis

• It would be helpful to automatically obtain an implementation from the specification
of a system

• Difficult since most specifications are declarative and not constructive
– They usually describe what the system should do; not how it can be achieved

Example: program extraction

• specify the operational semantics of a programming language in a constructive logic
(calculus of constructions)

• prove the correctness of a given property wrt. the operational semantics (e.g. in
Coq)

• extract (ocaml) code from the correctness proof (using Coq’s extraction mechanism)
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1.5.10 Verifying specifications w.r.t. implementations

Mainly two approaches:

• Deductive approach ((automated) theorem proving)
– Describe the specification ϕspec in a formal model (logic)
– Describe the system’s model ϕimp in the same formal model
– Prove that ϕimp =⇒ ϕspec

• Algorithmic approach
– Describe the specification ϕspec as a formula of a logic
– Describe the system as an interpretation Mimp of the given logic (e.g. as a finite

automaton)
– Prove that Mimp is a “model” (in the logical sense) of ϕspec

1.5.11 A few success stories

• Esterel Technologies (synchronous languages – Airbus, Avionics, Semiconductor &
Telecom, . . . )
– Scade/Lustre
– Esterel

• Astrée (Abstract interpretation – used in Airbus)
• Java PathFinder (model checking – find deadlocks on multi-threaded Java programs)
• verification of circuits design (model checking)
• verification of different protocols (model checking and verification of infinite-state

systems)

. . .

1.5.12 Classification of systems

Before discussing how to choose an appropriate formal method we need a classification of
systems

• Different kindd of systems and not all methodologies/techniques may be applied to
all kind of systems

• Systems may be classified depending on
– architecture
– type of interaction

The classification here follows Klaus Schneider’s book “Verification of reactive systems”
[29]. Obviously, one can classify “systems” in many other ways, as well.

1.5.13 Classification of systems: architecture

• Asynchronous vs. synchronous hardware
• Analog vs. digital hardware
• Mono- vs. multi-processor systems
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• Imperative vs. functional vs. logical vs. object-oriented software
• Concurrent vs. sequential software
• Conventional vs. real-time operating systems
• Embedded vs. local vs. distributed systems

1.5.14 Classification of systems: type of interaction

• Transformational systems: Read inputs and produce outputs – These systems
should always terminate

• Interactive systems: Idem previous, but they are not assumed to terminate (unless
explicitly required) – Environment has to wait till the system is ready

• Reactive systems: Non-terminating systems. The environment decides when to
interact with the system – These systems must be fast enough to react to an envi-
ronment action (real-time systems)

1.5.15 Taxonomy of properties

Many specification formalisms can be classified depending on the kind of properties they
are able to express/verify. Properties may be organized in the following categories

Functional correctness The program for computing the square root really computes it

Temporal behavior The answer arrives in less than 40 seconds

Safety properties (“something bad never happens”): Traffic lights of crossing streets are
never green simultaneously

Liveness properties (“something good eventually happens”): process A will eventually be
executed

Persistence properties (stabilization): For all computations there is a point where process
A is always enabled

Fairness properties (some property will hold infinitely often): No process is ignored in-
finitely often by an OS/scheduler

1.5.16 When and which formal method to use?

Examples:

• Digital circuits . . . (BDDs, model checking)
• Communication protocol with unbounded number of processes. . . . (verification of

infinite-state systems)
• Overflow in programs (static analysis and abstract interpretation)
• . . .
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Open distributed, concurrent systems ⇒ Very difficult!

Need the combination of different techniques It should be clear that the choice of method
depends on the nature of the system and what kind of properties one needs to establish.
The above lists basically states the (obvious) fact that the more complex (and unstruc-
tured) systems get, the more complex the application of formal method becomes (hand
in hand with the fact that the development becomes more complex). The most restricted
form perhaps is digital circuits and hardware. The initial successes for model checking
were on the area of hardware verification. Ultimately, one can even say: at a certain
level of abstraction, hardware is (or is supposed to be) a finite-state problem: the piece of
hardware represents a finite-state machine built up of gates etc, which work like boolean
functions. It should be noted, though, that this in itself is an abstraction: the physical
reality is not binary or digital and it’s a hard engineering problem to make physical entities
(like silicon, or earlier tubes or magnetic metals) to actually behave as if they were digital
(and to keep it stable like that, so that it still works reliably in a binary or finite-state
fashion after trillions of operations. . . ) In a way, the binary (or finite-state) abstraction of
hardware is a model of the reality, one one can check whether this model has the intended
properties. Especially useful for hardware and “finite state” situations are BDDs (binary
decision diagrams) which were very successful for certain kinds of model checkers.

1.6 Formalisms for specification and verification

1.6.1 Some formalisms for specification

• Logic-based formalisms
– Modal and temporal logics (E.g. LTL, CTL)
– Real-time temporal logics (E.g. Duration calculus, TCTL)
– Rewriting logic

• Automata-based formalisms
– Finite-state automata
– Timed and hybrid automata

• Process algebra/process calculi
– CCS (LOTOS, CSP, ..)
– π-calculus . . .

• Visual formalisms
– MSC (Message Sequence Chart)
– Statecharts (e.g. in UML)
– Petri nets

It should go without saying that the list is rather incomplete list. The formalisms here,
whether they are “logical” or “automata-like” are used for specification of more reactive
or communicative behavior (as opposed to specifying purely functional or input-output
behavior of sequential algorithms). By such behavior, we mean describing a step-wise or
temporal behavior of a system (“first this, then that. . . .”). Automata with their notions
of states and labelled transitions embody that idea. Process algebras are similar. On
a very high-level, they can partly be understood as some notation describing automata;
that’s not all to it, as they are often tailor-made to capture specific forms of interaction
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or composition, but their behavior is best understood as having states and transitions, as
automata. The mentioned logics are likewise concerned with logically describing reactive
systems. Beyond purely logical constructs (and, or), they have operators to speak about
steps being done (next, in the future . . . ). Typical are temporal logics, where “temporal”
does not directly mean refering to clocks, real-time clocks or otherwise. It’s about specify-
ing steps that occur one after the other in a system. There are then real-time extensions of
such logics (in the same way that there are real-time extensions of programming language
as well as real-time extensions of those mentioned process calculi).

Whether one should place the mentioned “visual” formalisms in a separate category may be
debated. Being visual refers just to a way of representation (after all also automata can be
(and are) visualized, resp. “visual” formalisms have often also “textual” representations.

1.6.2 Some techniques and methodologies for verification

• algorithmic verification
– Finite-state systems (model checking)
– Infinite-state systems
– Hybrid systems
– Real-time systems

• deductive verification (theorem proving)
• abstract interpretation
• formal testing (black box, white box, structural, . . . )
• static analysis
• constraint solving

1.7 Summary

1.7.1 Summary

• Formal methods are useful and needed
• which FM to use depends on the problem, the underlying system and the property

we want to prove
• un real complex systems, only part of the system may be formally proved and no

single FM can make the task
• our course will concentrate on

– temporal logic as a specification formalism
– safety, liveness and (maybe) fairness properties
– SPIN (LTL Model Checking)
– few other techniques from student presentation (e.g., abstract interpretation,

CTL model checking, timed automata)
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1.7.2 Ten Commandments of formal methods

From “Ten commandments revisited” [6]

1. Choose an appropriate notation
2. Formalize but not over-formalize
3. Estimate costs
4. Have a formal method guru on call
5. Do not abandon your traditional methods
6. Document sufficiently
7. Do not compromise your quality standards
8. Do not be dogmatic
9. Test, test, and test again
10. Do reuse

1.7.3 Further reading

Especially this part is based on many different sources. The following references have been
consulted:

• Klaus Schneider: Verification of reactive systems, 2003. Springer. Chap. 1 [29]
• G. Andrews: Foundations of Multithreaded, Parallel, and Distributed Programming,

2000. Addison Wesley. Chap. 2 [1]
• Z. Manna and A. Pnueli: Temporal Verification of Reactive Systems: Safety, Chap.

0 This chapter is also the base of lectures 3 and 4. [24]
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2.1 Introduction

Logics

What’s logic?

As discussed in the introductory part, we are concerned with formal methods, verification
and analysis of systems etc., and that is done relative to a specification of a system. The
specification lays down (the) desired properties of a system and can be used to judge
whether a system is correct or not. The requirements or properties can be given in many
different forms, including informal ones. We are dealing with formal specifications. Formal
for us means, it has not just a precise meaning, that meaning is also fixed in a mathematical
form for instance a “model”1 We will not deal with informal specifications nor with formal
specifications that are unrelated to the behavior in a broad sense of a system.

For example, a specification like

the system should cost 100 000$ or less, incl. VAT

could be seens as being formal and precise. In practice, such a statement is probably
not precise enough for a legally binding contract (what’s the exchange rate, if it’s for
Norwegian usage? Which date is taken to fix the exchange rate, the date of signing the
contract, the scheduled delivery date, or the actual delivery date? What’s the “system”

1The notion of model will be variously discussed later resp. given a more precise meaning in the lecture.
Actually, it will be given a precise mathematical meaning in different technical ways, depending on
which framework, logics, etc. we are facing; the rough idea remains the “same” though.
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anyway, the installation? The binary? Training? etc.) All of that would be “formalized”
in a legal contract readable not even for mathematicians, but only for lawyers, but that’s
not the kind of formalization we are dealing with.

For us, properties are expressed in “logics”. That is a very broad term, as well, and we
will encounter various different logics and “classes” of logics.

This course is not about fundamentals of logics, like “is logic as discipline a subfield of
math, or is it the other way around”, like “math is about drawing conclusions about some
abstract notions and proving things about those, and in order to draw conclusions in a
rigourous manner, one should use logical systems (as opposed to hand-waving . . . )”. We
are also mostly not much concerned with fundamental questions of meta-theory. If one
has agreed on a logic (including notation and meaning), one can use that to fix some
“theory” which is expressed inside the logic. For example, if one is interested in formally
deriving things about natural numbers, one could first choose first-order logic as general
framework, then select symbols proper for the task at hand (getting some grip on the
natural numbers), and then try to axiomatize them and formally derive theorems inside
the chosen logical system. As the name implies meta-theory is not about things like that,
it’s about what can be said about the chosen logic itself (Is the logic decidable? How
efficient can it be used for making arguments? How does its expressivity compares to
that of other logics? . . . ). Such questions will pop up from time to time, but are not at
the center of the course. For us, logic is more of a tool for validating programs, and for
different kind of properties or systemd, we will see what kind of logics fits.

Still, we will introduce basic vocabulary and terminology needed when talking about a
logic (on the meta-level, so to say). That will include notions like formulas, satisfaction,
validity, correctness, completeness, consistency, substitution . . . , or at least a subset of
those notions.

When talking about “math” and “logics” and what there relationship is: some may have
the impression that math as discipline is a formal enterprise and formal methods is kind
of like an invasion of math into computer science or programming. It’s probably fair to
say, however, that for the working mathematician, math is not a formal discipline in the
sense the formal methods people or computer scientists do their business. Sure, math is
about drawing conclusions and doing proofs. But most mathematicians would balk at the
question “what’s the logical axioms you use in your arguments?” or “what exact syntax
do you use?”. That only bothers mathematicans (to some extent) who prove things about
logical systems, i.e., who take logics as object of their study. But even those will probably
not write their arguments about a formally defined logic inside a(nother?) logical system.
That formal-method people are more obsessed with such nit-picking questions has perhaps
two reasons. For one is that they want not just clear, elegant and convincing arguments,
they want that the computer makes the argument or at least assist in making the argu-
ment. To have a computer program do that, one needs to be 100% explicit what the syntax
of a formal system is and what it means, how to draw arguments or check satisfaction of
a formula etc. Another reason is that the objects of study for formal-method people are,
mathematically seen, “dirty stuff”. One tries to argue for the corrrectness of a program,
an algorithm, maybe even an implementation. That often means one does not deal with
any elegant mathematical structure but some specific artifact. It’s not about “in principle,
the idea of the algorithm is correct”; whether the code is correct or not not depends also
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on special corner cases, uncovered conditions, or other circumstances. There is no such
argument like “the remaining cases work analogously. . . ”: A mathematician might get
away with that, but a formalistic argument covering really all cases would not. (Addi-
tionally, in making proofs about software, it’s often not about “the remaining 5 analogous
cases”. Especially, in concurrent program or algorithms, one has to cover a huge amount
of possible interleavings (combinations of orderings of executions), and a incorrectness,
like a race condition, may occur only in some very seldom specific interleavings. Proving
that a few exemplary interleavings are correct (or test a few) will simply not do the job.

General aspects of logics

• truth vs. provability
– when does a formula hold, is true, is satisfied
– valid
– satisfiable

• syntax vs. semantics/models
• model theory vs. proof theory

We will encounter different logics. They differ in their syntax and their semantics (i.e., the
way particular formulas are given meaning), but they share some commonalities. Actually,
the fact that one distinguishes between the syntax of a logics and a way to fix the meaning
of formulas is common to all the encountered approaches. The term “formula” refers in in
general to a syntactic logical expression (details depend on the particular logic, of course,
and sometimes there are alternative or more finegrained terminology, like proposition, or
predicate or sentence or statements, or even in related contexts names like assertion or
constraint). For the time being, we just generically speak about “formulas” here and leave
terminological differentiations for later. Anyway, when it comes to the semantics, i.e.
the meaning, it’s the question of whether it’s true or not (at least in classical settings. . . ).
Alternative and equivalent formulations is whether it holds or not and whether its satisfied
or not.

That’s only a rough approximation, insofar that, given a formula, one seldomly can stip-
ulate unconditionally that it holds or not. That, generally, has to do with the fact that
formulas typically has fixed parts and “movable” parts, i.e., parts for which an “inter-
pretation” has to be chosen before one can judge the truth-ness of the formula. What
exactly is fixed and what is to be chosen depends on the logic, but also on the setting or
approach.

To make it more concrete in two logics one may be familiar with (but the lecture will cover
them to some extent). For the rather basic boolean logic (or propositional logic), one deals
with formulas of the form p1 ∧ p2, where ∧ is a logical connective and the p’s here are
atomic propositions (or propositional variables, propositional constants, or propositional
symbols, depending on your preferred terminology). No matter how it’s called, the ∧ part
is fixed (it’s always “and”), the two p’s is the “movable part” (it’s for good reasons why
they are sometimes called propositional variables. . . ). Anyway, it should be clear that
asking whether p1 ∧ p2 is true or holds cannot be asked per se, if one does not know about
p1 and p2, the truth or falsehood is relative to the choice of truth or falsehood of the
propositional variables: choosing both p1 and p2 as “true” makes p1 ∧ p2 true.
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There are then different ways of notationally write that. Let’s abbreviate the mapping
[p1 7→ >, p2 7→ >] as σ, then all of the formulations (and notations) are equivalent

• σ |= ϕ (or |=σ ϕ):
– σ satisfies ϕ
– σ models ϕ (σ is a model of ϕ)

• [[ϕ]]σ = >:
– with σ as propositional variable assignment, ϕ is true or ϕ holds
– the semantics of ϕ under σ is > (“true”)

Of course, there are formulas whose truth-ness does not depend on particular choices,
being unconditionally true (or other unconditionally false). They deserve a particular
name like (propositional) “tautology” (or “contradiction” in the negative case).

Another name for a generally true formula or a formula which is true under all circum-
stances is to say it’s valid. For propositional logic, the two notions (valid formula and
tautology) coincide.

If we got to more complex logics like first-order logics, things get more subtle (and the
same for modal logics later). In those cases, there are more “ingredients” in the logic
that are potentially “non-fixed”, but “movable”. For example, in first-order logic, one
can distinguish two “movable parts”. First-order logic is defined relative to a so-called
signature (to distinguish them form other forms of signatures, it’s sometimes called first-
order signature). It’s the “alphabet” one agrees upon to work with. It contains functional
and relational symbols (with fixed arity or sorts). Those operators define the “domain(s)
of interest” one intends to talk about and their syntactic operators. For example, one
could fix a signature containing operators zero, succ, and plus on a single domain
(a single-sorted setting) where the chosen names indicate that one plans to interpret the
single domain as natural numbers. We use in the discussion here typewriter font to
remind that the signature and their operators are intended as syntax, not as the semantical
interpretation (presumably representing the known mathematical entities 0, the successor
function, and +, i.e., addition). There are also syntactic operators which constitute the
logic itself (like the binary operator ∧, or maybe we should write and. . . ), which are
treated as really and absolutely fixed (once one has agreed on doing classical first-order
logic or similar).

The symbols of a chosen signature, however, are generally not fixed, at least when doing
“logic” and meta-arguments about logics. When doing program verification, typically one
is not bothered about that, one assumes a fixed interpretation of a given signature. Any-
way, the elements of the signature are not typically thought of as variables, but choosing a
semantics for them is one of the non-fixed, variable parts when talking about the semantics
of a first-order formula. That part, fixing the functional and relational symbols of a given
signature is called often an interpretation. There is, however, a second level of “non-fixed”
syntax in a first-order formula, on which the truthness of a formula depends: those are
(free) variables. For instance, assuming that we have fixed the interpretation of succ,
zero, leq (for less-or-equal) and so on, by the standard meaning implied by their name,
the truth of the formula leq(succ x, y) depends on the choices for the free variables
x and y.
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To judge, whether a formula with free variables holds or not, one this needs to fix two
parts, the interpretation of the symbols of the alphabet (often called the interpretation), as
well as the choice of values for the free variables. Now that the situation is more involved,
with two levels of choices, the terminolgy becomes also a bit non-uniform (depending on
the text-book, one might encouter slightly contradicting use of words).

One common interpretation is to call the choice of symbols the interpretation or alsomodel.
To make a distinction one sometimes say, the model (let’s call it M is the mathematic
structure to part

2.2 Propositional logic

A very basic form of logic is known as propositional or also boolean (in honor of George
Boole).2 It’s also underlying binary hardware, binary meaning “two-valued”. The two-
valuedness is the core of classical logics in general, the assumption that there is some truth
which is either the case or else not (true or else false, nothing in between or “tertium-non-
datur”). This is embodied the classical propositional logic.

In the following, we introduce the three ingredients of a mathematical logics, its syntax,
its semantics (or notion of models, its semantics, its interpretation, its model theory . . . )
and its proof theory. For now, we don’t go too deep into any of those, especially not
proof theory. Model theory is concerned with the question of when formulas are “true”
what satisfies a formula (its model). Proof theory is about when formulas are “provable”
(by a formal procedure or derivation system). Those questions are not independent. A
“provable” formula should ideally be “true” as well formula (a question of soundness) and
vice versa: all formulas which are actually “true” should ideally be provably true as well
(a question of completeness). Notationally, one often uses the symbol ` when referring to
proof-theoretical notions and |= for model-theoretical, mathematical ones. ` ϕ thus would
represent ϕ is derivable or probable, and |= ϕ for the formula being “true” (or valid etc.)
in a model.

Syntax

ϕ ::= P | > | ⊥ atomic formula
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . formulas

As it is common (at least in computer science), the syntax is given by a grammar. More
precisely here, a context-free grammar using a variant of BNF-notation. It’s a common
compact and precise format to describe (abstract) syntax, basically syntax trees. The word
“abstract” refers to the fact that we are not really interested in details of actual concrete
syntax as used in a text file used in a computer. There, more details would have to be
fixed to lay down a presise computer-parseable format. Also things like associativity of
the operators and their relative precedences and other specifics would have to be clarified.
But that is “noise” for the purpose of a written text. A context-free grammar is precise,

2Like later for first-order logic and other logics, there are variations of that, not only syntactical, some also
essential. We are dealing with classical propositional logics. One can also study intuitistic versions. One
of such logic is known as minimal intuitionistic logic, that has implication → as the only constructor.
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if understood as describing trees, and following standard convention we allow parentheses
to disambiguate formulas if necessary or helpful. That allows to write p1 ∧ (p2 ∨ p3), even
if parentheses are not mentioned in the grammar. Also we sometimes rely in a common
understanding of precedences, for instance writing p1 ∧ p2 ∨ p3 instead of (p1 ∧ p2) ∨ p3,
relying on the convention that ∧ binds stronger than ∨. We are not overly obsessed with
syntactic details, we treat logic formal and precise but not formalistic. Tools like theorem
provers or model-checkers would rely on more explicit conventions and concrete syntax.

Semantics

• truth values
• σ
• different “notations”

– σ |= ϕ
– evaluate ϕ, given σ [[ϕ]]σ

The semantics or meaning of a boolean formula is fixed by defining when it holds. More
precisely: a formula typically contains propositional symbols p1, q′, etc, whose value need
to be fixed (to true or false for each of them). Assuming that we have such a set AP of
propositional variables , then a choice of truth values can be called a variable assignment.
We use the symbol σ for those, i.e.

σ : AP → B

Proof theory

• decidable, so a “trivial problem” in that sense
• truth tables (brute force)
• one can try to do better, different derivation strategies (resolution, refutation, . . . )
• SAT is NP-complete

Truth tables are probably known: it’s an explicit enumeration (often in tabular presenta-
tion) of the result of a formula when fixing all boolean inputs as either true or false. That
obviously leads to a table of size 2n, when n is the number of atomic propositions (the
“input”). That’s “brute force”, but it’s a viable way to calculate the intended function,
since there are only finately many inputs.

SAT is a closely related, but different problem. It ask whether there exists an satisfying te
SAT is not a model checking problem. If we see σ as model, then model checking σ |= ϕ
is complexity-wise linear (compositional, divide-and-conquer).

2.3 Algebraic and first-order signatures

Signature

• fixes the “syntactic playground”
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• selection of
– functional and
– relational

symbols, together with “arity” or sort-information

Sorts

• Sort
– name of a domain (like Nat)
– restricted form of type

• single-sorted vs. multi-sorted case
• single-sorted

– one sort only
– “degenerated”
– arity = number of arguments (also for relations)

Terms

• given: signature Σ
• set of variables X (with typical elements x, y′, . . . )

t ::= x variable
| f(t1, . . . , tn) f of arity n

(2.1)

• TΣ(X)
• terms without variables (from TΣ(∅) or short TΣ): ground terms

The definition here makes use of the simple single-sorted case. The terms must be “well-
typed” or “well-sorted” in that a function symbol that expects a certain number of argu-
ments (as fixed by the signature in the form of the symbol’s arity) must be a applied on
exactly that number of arguments. The number n can be 0, in which case the function
symbol is also called a constant symbol.

As a simple example: with the standard interpretation in mind, a symbol zero would be
of arity 0, i.e., represents a constant, succ would be of arity 1 and plus of arity 2.

For clarity we used here (at least for a while) typewriter font to refer to the symbols of
the signature, i.e., the syntax, to distinguish them from their semantic meaning. Often,
as in textbooks, one might relax that, and just also write in conventional situations like
here + and 0 for the symbols as well.

The multi-sorted setting is not really different, it does not pose fundamentally more com-
plex challenges (neither syntactically nor also what proof theory or models or other ques-
tions are concerned).

In practical situations (i.e., tools), one could allow overloading, or other “type-related”
complications (sub-sorts for examples). Also, in concrete syntax supported by tools, there
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might be questions of associativity or precedence or whether one uses infix or prefix nota-
tions. For us, we are more interested in other questions, and allow ourselves notations like
x plus y or x+ y instead and similar things, even if the grammar seems to indicate that
it should be plus x y. Basically, we understand the grammars as abstract syntax (i.e.,
as describing trees) an assume that educated readers know what is meant if we use more
conventional concrete notations.

Substutition

• Substitution = replacement, namely of variables by terms
• notation t[s/x]

Other notations for substitution exist in the literature. Here, substitution is defined on
terms. We will later use (mutatis mutandis) substution also on first-order formulas (actu-
ally, one can use it everywhere if one has “syntactic expression” with “variables”): formulas
will contain, besides logical constructs and relational symbols also variables and terms.
The substitution will work the same as here, with one technical thing to consider (which is
not covered right now): Later, variables can occur bound by quantifiers. That will have two
consequences: the substitution will apply only to not-bound occurrences of variables (also
called free occurrences). Secondly, one has to be careful: a naive replacement could suffer
from so-called variable-capture, which is to be avoided (but it’s easy enough anyway).

First-order signature (with relations)

So far we have covered standard signatures for terms (also known as algebraic signatures).
In first-order logic, one also adds a second kind of syntactic material to the signatures,
besides function symbols, those are relational symbols. Those are intended to be inter-
preted “logically”. For instance, in a one-sorted case, if one plans to deal with natural
numbers, one needs relational symbols on natural numbers, like the binary relation leq
(less-or-equal, representing ≤) or the unary relation even. One can call those relations
also predicates and the form later then the atomic formulas of the first-order logic (also
called (first-order) predicate logic).

• add relational symbols to Σ
• typical elements P , Q
• relation symbols with fixed arity n-ary predicates or relations)
• standard binary symbol: .= (equality)

Multi-sorted case and a sort for booleans The above presentation is for the single-sorted
case again. The multi-sorted one, as mentioned, does not make fundamental trouble.

In the hope of not being confusing, I would like to point out the following in that context. If
we assumed a many-sorted case (maybe again for illustration dealing with natural numbers
and a sort nat), one can of course add a second sort intended to represent the booleans,
maybe call it bool. Easy enough. Also one could then could think of relations as boolean
valued function. I.e., instead of thinking of leq as relation-symbol, one could attempt to
think of it as a function symbol namely of sort nat × nat → bool. Nothing wrong with
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that, but one has to be careful not confuse oneself. In that case, leq is a function symbol,
and leq(5,7) (or 5 leq 8) is a term of type bool, presumably interpreted same as
term true, but it’s not a predicate as far as the logic is concerned. One has chosen to use
the surrounding logic (FOL) to speak about a domain intended to represent booleans. One
can also add operator like and and or on the so-defined booleans, but those are internal
inside the formalization, they are not the logical operators ∧ and ∨ that part part of the
logic itself.

0-arity relation symbols In principle, in the same way that one can have 0-arity function
symbols (which are understood as constants), one can have 0-arity relation symbols or
predicates. When later, we attach meaning to the symbols, like attaching the meaning
≤ to leq, then there are basically only two possible interpretations for 0-arity relation
symbols: either “to be the case” i.e., true or else not, i.e., false. And actually there’s no
need for 0-arity relations, one has fixed syntax for those to cases, namely "true" and "false"
or similar which are reserved words for the two only such trivial “relations” and their
interpretation is fixed as well (so there is no need to add more alternative such symbols
in the signature).

Anyway, that discussion shows how one can think of propositional logic as a special case
of first-order logic. However, in boolean logic we assume many propositional symbols,
which then are treated as propositional variables (with values true an false). In first order
logics, the relational symbols are not thought of as variables, buy fixed by choosing an
interpretation, and the variable part are the variables inside the term as members of the
underlying domain (or domains in the multi-sorted case).

Equality symbol The equality symbol (we use .=) plays a special role (in general in math,
in logics, and also here). One could say (and some do) that the equality symbol is one
particular binary symbol. Being intended as equality, it may be captured by certain laws
or axioms, for instance, along the following lines: similar like requiring x leq x and
with the intention that leq represents ≤, this relation is reflexive, one could do the same
thing for equality, stating among other things x eq x with eq intended to represent
equality. Fair enough, but equality is so central that, no matter what one tries to capture
by a theory, equality is at least also part of the theory: if one cannot even state that two
things are equal (or not equal), one cannot express anything at all. Since one likes to
have equality anyway (and since it’s not even so easy/possible to axiomatise it in that
it’s really the identity and not just some equivalence), one simply says, a special binary
symbol is “reserved” for equality and not only that: it’s agreed upon that it’s interpreted
semantically as equality. In the same way that one always interprets the logical ∧ on
predicates as conjuction, one always interprets the .= as equality.

As a side remark: the status of equality, identity, equivalence etc is challenging from the
standpoint of foundational logic or maths. For us, those questions are not really important.
We typically are not even interested in alternative interpretations of other stuff like plus.
When “working with” logics using them for specifications, as opposed to investigate meta-
properties of a logic like its general expressivity, we just work in a framework where the
symbol plus is interpreted as +, end of story. Logicians may ponder the question, whether
first order logic is expressive enough that one can write axioms in such a way that the
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only possible interpretation of the symbols correspond to the “real” natural numbers and
plus thereby is really +. Can one get an axiomatization that characterizes the natural
numbers as the only model (the answer is: no) but we don’t care much about questions
like that.

2.4 First-order logic

2.4.1 Syntax

Syntax

• given: first-order signature Σ

ϕ ::= P (t, . . . , t) | > | ⊥ atomic formula
| ϕ ∧ ϕ | ¬ϕ | ϕ→ ϕ | . . . formulas
| ∀x.ϕ | ∃x.ϕ

The grammar shows the syntax for first-order logic. We are not overly obsessed with
concrete syntax (here), i.e., we treat the syntax as abstract syntax. We silently assume
proper priorities and associativities (for instance, ¬ binds by convention stronger than
∧, which in turn binds stronger than ∨ etc.) In case of need or convenience, we use
parentheses for disambiguation.

The grammar, choice of symbols, and presentation (even terminology) exists in variations,
depending on the textbook.

Minimal representation and syntactic variations The above presentation, as in the
proposition or boolean case, is a bit generous wrt. the offered syntax. One can be more
economic in that one restricts oneself to a minimal selection of constructs (there are dif-
ferent possible choices for that). For instance, in the presence of (classical) negation, one
does not need both ∧ and ∨ (and also→ can be defined as syntactic sugar). Likewise, one
would need only one of the two quantification operators, not both. Of course, in the pres-
ence of negation, true can be defined using false, and vice versa. In the case of the boolean
constants true and false, one could even go a step further and define them as P ∨¬P and
P ∧ ¬P (but actually it seems less forced to have at least one as native construct). One
could also explain true and false as propositions or relations with arity 0 and a fixed inter-
pretation. All of that representation can be found here and there, but they are inessential
for the nature of first-order logic and as a master-level course we are not over-obsessed
with representational questions like that. Of course, if one had to interact with a tool that
“supports” for instance first-order logics (like a theorem prover or constraint solver) or if
one wanted to implement such a tool oneself, syntactial questions would of course matter
and one would have to adhere to stricter standards of that particular tool.
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2.4.2 Semantics

First-order structures and models

• given Σ
• assume single-sorted case

first-order model model M

M = (A, I)

• A some domain/set
• interpretation I, respecting arity

– [[f ]]I : An → A
– [[P ]]I : An

• cf. first-order structure

First-order structure (left out from the slide)

• single-sorted case here
• domain A together with functions and relations
• NB: without relations: algebraic structure
• many-sorted case: analogously (interpretation respecting sorts)

A model here is a pair, namely a domain of interpretation together with I, that associates
functions and relations appropriately to the corresponding syntactic vocabulary from the
signature. A set, equipped with functions and relations is also called a first-order structure.
Often, the structure itself is also called the model (leaving the association between syntax
and its interpretation implicit, as it’s obvious in many cases anyway). For instance,

(N; 0, λx.x+ 1,+, ∗,≤,≥)

is a structure, whose domain are the natural numbers and which is equipped with 4
functions (one of which is 0, which is of zero arity and this called usually a constant
rather than function) and two binary relations ≤ and ≥. That can be a “model” of a
signature Σ with one sort say Nat and function symbols zero, succ, plus and times
and relational symbols leq and geq. Technically, though the model is the mapping I.
Strictly speaking, nothing would forbid us to interpret the syntax differently in the same
structure, for instance setting [[times]]I = + or [[leq]]I = ≥.

In this (and similar) cases the association is obvious, thereby sometimes left implicit, and
some people also call the structure a model of a signature (but for preciseness sake, it
should be the structure and making clear which elements of the structure belong to what
syntax).

That may sound nitpicking, but probably it’s due to the fact that when dealing with
“foundational” questions like model theory, etc. one should be clear what a model actu-
ally is (at least at the beginning). But also practically, one should not forget that the
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illustration here, the natural numbers, may be deceivingly simple. If one deals with more
mundane stuff, like capturing real world things as for instance is done in ontologies, there
may be hundreds or thougsands of symbols, predicates, functions etc. and one should
be clear about what means what. Ontologies are related to “semantics techniques” that
try to capture and describe things and then query about it (which basically means, ask-
ing questions and draw conclusions from the “data base” of collected knowledge) and the
underlying language is often (some fragment of) first-order logic.

Giving meaning to variables

Variable assignment

• given Σ and model

σ : X → A

• other names: valuation, state

(E)valuation of terms

• σ “straightforwardly extended/lifted to terms”
• how would one define that (or write it down, or implement)?

Given a signature Σ and a corresponding model M = (A, I), the value of term t from
TΣ(X), with variable assignment σ : X → A (written [[ϕ]]Iσ) is given inductively as follows

[[ϕ]]Iσ

Free and bound occurrences of variables

• quantifiers bind variables
• scope
• other binding, scoping mechanisms
• variables can occur free or not (= bound) in a formula
• careful with substitution
• how could one define it?

Substitution

• basically:
– generalize substitution from terms to formulas
– careful about binders especially don’t let substitution lead to variables being

“captured” by binders
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Example
ϕ = ∃x.x+ 1 .= y θ = [x/y]

Satisfaction

|= M,σ |= ϕ

• Σ fixed
• in model M and with variable assignment σ formula ϕ is true (holds)
• M and σ satisfy ϕ
• minority terminology: M,σ model of ϕ

In seldom cases, some books call the pair of (M,ϕ) a model (and the part M then called
interpretation or something else). It is a terminology question (thus not so important),
but it may lead to different views, for instance what “semantical implication” means. The
standard default answer what that means is the following (also indepdendent form the
logic). A formula ϕ1 implies semantically a formula ϕ2, if all models of ϕ1 are also models
of formula ϕ2 (the satisfaction of ϕ1 implies satisfaction of ϕ2).

Now it depends in if one applies the word “model” to M or to the pair M,σ). That
leads to different notions of semantical implications, at least if one had formulas with free
variables. For closed formulas, it does not matter, so some books avoid those finer points
but just defining semantical implication on closed formulas.

Exercises

• substitutions and variable assignments: similar/different?
• there are infinitely many primes
• there is a person with at least 2 neighbors (or exactly)
• every even number can be written as the sum of 2 primes

2.4.3 Proof theory

Proof theory

• how to infer, derive, deduce formulas (from others)
• mechanical process
• soundness and completeness
• proof = deduction (sequence or tree of steps)
• theorem

– syntactic: derivable formula
– semantical a formula which holds (in a given model)

• (fo)-theory: set of formulas which are
– derivable
– true (in a given model)

• soundness and completeness
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Deductions and proof systems

A proof system for a given logic consists of

• axioms (or axiom schemata), which are formulae assumed to be true, and

• inference rules, of approx. the form

ϕ1 . . . ϕn

ψ

• ϕ1, . . . , ϕn are premises and ψ conclusion.

A simple form of derivation

Derivation of ϕ Sequence of formulae, where each formula is

• an axiom or
• can be obtained by applying an inference rule to formulae earlier in the sequence.

• ` ϕ
• more general: set of formulas Γ

Γ ` ϕ

• proof = derivation
• theorem: derivable formula (= last formula in a proof)

A proof system is

• sound if every theorem is valid.
• complete if evey valid formula is a theorem.

We do not study soundness and completeness for validity of FOL in this course.

Proof systems and proofs: remarks

• “definitions” from the previous slides: not very formal

in general: a proof system: a “mechanical” (= formal and constructive) way of conclusions
from axioms (= “given” formulas), and other already proven formulas

• Many different “representations” of how to draw conclusions exist, the one sketched
on the previous slide
– works with “sequences”
– corresponds to the historically oldest “style” of proof systems (“Hilbert-style”),

some would say outdated . . .
– otherwise, in that naive form: impractical (but sound & complete).
– nowadays, better ways and more suitable for computer support of representation

exists (especially using trees). For instance natural deduction style system

for this course: those variations don’t matter much.
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A proof system for prop. logic

We can axiomatize a subset of propositional logic as follows.

ϕ→ (ψ → ϕ) (Ax1)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (Ax2)
((ϕ→ ⊥)→ ⊥)→ ϕ (DN)
ϕ ϕ→ ψ

ψ
(MP)

A proof system

Example 2.4.1. p→ p is a theorem of PPL:

(p→ ((p→ p)→ p))→
((p→ (p→ p))→ (p→ p)) Ax2 (2.1)

p→ ((p→ p)→ p) Ax1 (2.2)
(p→ (p→ p))→ (p→ p) MP on (1) and (2) (2.3)
p→ (p→ p) Ax1 (2.4)
p→ p MP on (3) and (4) (2.5)

A proof can be represented as a tree of inferences where the leaves are axioms.

2.5 Modal logics

2.5.1 Introduction

The roots of logics date back very long, and those of modal logic not less so (Aristotle also
hand his fingers in the origin of modal logic and discussed some kind of “paradox” that
gave food for thought for future generations thinking about modalities). Very generally, a
logic of that kind is concerned not with absolute statements (which are true or else false)
but qualified statements, i.e., statements that “depend on” something. An example for
a modal statement would be “tomorrow it rains”. It’s difficult to say in which way that
sentence is true or false, only time will tell. . . It’s an example of a statement depending
on “time”, i.e., tomorrow is a form of a temporal modality. But there are other modalities,
as well (referring to knowledge or belief like “I know it rains”, or “I believe it rains”)
or similar qualifications of absolute truth. Statements like “tomorrow it rains” or others
where long debated often with philosphical and/or even religous connotions like: is the
future deterministic (and pre-determined by God’s providence), do persons have a free
will, etc. Those questions will not enter the lecture, nonetheless: determinism vs. non-
determinism is meaningful distinction when dealing with program behavior, and we will
also encounter temporal logics that view time as linear which kind of means, there is only
one possible future, or branching, which means there are many. It’s however, not meant
as a fundamental statement of the “nature of nature”, it’s just a distinction of how we
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want to treat the system. If we want to check individual runs, which are sequences of
actions, then we are committing ourselves to a linear picture (even when dealing with
non-deterministic programs). But there are branching alternatives to that view as well,
which lead to branching temporal logics.

Different flavors of modal logic lead to different axioms. Let’s write � for the basic modal
operator (whatever its interpretation), and consider

�ϕ→ ��ϕ , (2.6)

with ϕ being some ordinary statement (in propositional logic perhaps, for first-order logic).
If we are dealing with a logic of belief, is that a valid formula: If I believe that something is
true, do I believe that I believe that the thing is? What about “I believe that you believe
that something is true”? Do I believe it myself? Not necessarily so.

As a side-remark: the latter can be seen as a formulation in multi-modal logic: it’s not
about one single modality (being believed), but “person p believes”, i.e., there’s one belief-
modality per person; thus, it’s a multi-modal logic. We start in the presentation with a
“non-multi” modal logic, where there is only one basic modality (say �). Technically, the
syntax may feature two modalities � and ♦, but to be clear: that does not yet earn the
logic the qualification of “multi”: the ♦-modality is in all considered cases expressible by
�, and vice versa. It’s analogous to the fact that (in most logics), ∀ and negation allows
to express ∃ and vice versa.

Now, coming back to various interpretations of equation (2.6): if we take a “temporal”
standpoint and interpret � as “tomorrow”, then certainly the implication should not be
valid. If we interpret � differently, but still temporally, as “in the future” then again the
interpretation seems valid.

If we take an “epistemologic” interpretation of � as “knowledge”, the left-hand of the
implication would express (if we take a multi-modal view): “I know that you know that
ϕ”. Now we may ponder whether that means that then I also know that ϕ? A question
like that may lead to philosophical reflections about what it means to “know” (maybe in
contrast with “believe” or “believe to know”, etc.).

The lecture will not dwell much on philospophical questions. The question whether equa-
tion (2.6) will be treated as mathematical question, more precisely a question of the as-
sumed underlying models or semantics.

It’s historically perhaps interesting: modal logic has attracted long interest, but the ques-
tion of “what’s the mathematics of those kind of logics” was long unclear. Long in the
sense that classical logics, in the first half of the 20th century had already super-thoroughly
been investigated and formalized from all angles with elaborate results concerning model
theory and proposed as “foundations” for math etc. But no one had yet come up with a
convincing, universally accepted answer for the question: “what the heck is a model for
modal logics?”. Until a teenager and undergrad came along and provided the now accepted
answer, his name is Saul Kripke. Models of modal logics are now called Kripke-structures
(it’s basically transition systems).
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Introduction

• Modal logic: logic of “necessity” and “possibility”, in that originally the intended
meaning of the modal operators � and ♦ was
– �ϕ: ϕ is necessarily true.
– ♦ϕ: ϕ is possibly true.

• Depending on what we intend to capture: we can interpret �ϕ differently.
temporal ϕ will always hold.
doxastic I believe ϕ.
epistemic I know ϕ.
intuitionistic ϕ is provable.
deontic It ought to be the case that ϕ.

We will restrict here the modal operators to � and ♦ (and mostly work with a temporal
“mind-set”.

2.5.2 Semantics

Kripke structures

The definition below makes use of the “classical” choice of words to give semantics to
modal logic. It’s actually quite simple, based on a relation (here written R) on some set.
The “points” on that set are called worlds which are connected by an accessibility relation.
So: a modal model is thus just a relation, or we also could call it a graph, but traditionally
it’s called a frame (a Kripke frame). That kind of semantics is also called possible world
semantics (but not graph semantics or transition system semantics, even if that would be
an ok name as well).

The Kripke frame in itself not a model yet, in that it does not contain information to
determine if a modal formula holds or not. The general picture is as follows: the elements
of the underlying set W are called “worlds”: one some world some formulas hold, and in
a different world, different ones. “Embedded” in the modal logic is an “underlying”logic.
We mostly assume propositional modal logic, but one might as well consider an extension
of first-logic with modal operators. For instance, the student presentation about runtime
verification will make use of a first-order variant of LTL, called QTL, quantified temporal
logic, but that will be later. In this propositional setting, what then is needed for giving
meaning to model formulas is an interpretation of the propositional variables, and that
has to be done per world.

In the section of propopositional logic, we introduced “propositional variable assignments”
σ : AP → B, giving a boolean value to each propositional variable from σ. What we now
call a valuation does the same for each world which we can model as a function of type

W → AP → B .
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Alternatively one often finds also the “representation” to have valuations of type W →
2AP : for each world, the valuation gives the set of atomic propositions which “hold” in
that word. Both views are, of course equivalent in being isomorphic.

Labelling The valuation function V associates a propositional valuation to each word (or
isomphically the set of all propositional atoms that are intended to hold, per world). As
mentioned, a Kripke frame may also be called a graph or also transition system. In the
latter case, the worlds may be called less pompously just states and the accessibility as
transitions. That terminolgy is perhaps more familiar in computer science. The valuation
function can also be seen to label the states with propositional information. A transition
system with attached information is also called labelled transition system. But one has to
be careful a bit with terminology. When it comes to labelled transition systems, additional
information can be attached to transitions or states (or both). Often labelled transition
systems, especially for some areas of model checking and modelling, are silently understood
as transition-labelled. For such models, an edge between two states does not just expressed
that one can go from one state to the other. It states that one can go from one state to the
other by doing such-and-such (as expressed by the label of the transition. In an abstract
setting, the transitions may be labelled just with letters from some alphabet.

As we will see later, going from a transition system with unlabelled transitions to one with
transition labels correspond to a generalization from “simple” modal logic to multi-modal
logic. But independent on whether one whether consider transitions as labelled or note,
there is a “state-labelling” at least, namely the valuation that is needed to interpret the
propsitions per world or state.

As a side remark: classical automata can be seen as labelled transitions, as well, with the
transitions being labelled. There are also variations of such automata which deal with
input and output (thereby called I/O automata). There, two classical versions that are
used in describing hardware (which is a form of propositional logic as well. . . ) label the
transitions via the input. However, one version labels the states with the output (Moore-
machines) whereas another one labels the transitions with the output (Mealy-machines),
i.e., transitions contain both input as well as output information. Both correspond to
different kinds of hardware circuitry (Moore roughly correspond to synchronous hardware,
and Mealy to asynchronous one).

We will encounter automata as well, but in the form that fits to our modal-logic needs. In
particular, we will look at Büchi-automata, which are like standard finite-state automata
except that they can deal with infinite words (and not just finite ones). Those automata
have connections, for instance, with LTL, a central temporal logic which we will cover.

Definition 2.5.1 (Kripke frame and Kripke model).

• A Kripke frame is a structure (W,R) where
– W is a non-empty set of worlds, and
– R ⊆W ×W is called the accessibility relation between worlds.

• A Kripke model M is a structure (W,R, V ) where
– (W,R) is a frame, and
– V a function of type V : W → (AP → B) (called valuation).
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isomorphically: V : W → 2AP

Kripke models are sometimes called Kripke structures. The standard textbook about
model checking Baier and Katoen [2] does not even mention the word “Kripke structure”,
they basically use the word transition systems instead of Kripke model with worlds called
states (and Kripke frame is called state graph). I say, it’s “basically” the same insofar that
there, they (sometimes) also care to consider labelled transitions, and furthermore, their
transition systems are equipped with a set of initial states. Whether one has initial states
as part of the graph does not make much of a difference.

Also the terminology concerning the set AP varies a bit (we mentioned it also in the
context of propositional logics). What we call here propositional variables, is also known
as propositional constants, propositional atoms, symbols, atomic propositions, whatever.
The usage of “variable” vs. “constant” seem two irreconcilable choices of terminology.
Perhaps the use of the word “variable” stresses that the value needs to be fixed by some
interpretation, the word “constant” focuses in the fact that those are “0-ary” constructors
(or atoms), and this “constant”, not depending on subformulas (once their meaning is
fixed). We prefer thinking of > and ⊥ as the only two propositional constants and we
don’t call propositional atoms “constants”.

Illustration

p p p

q

5
4 2

1

3

Kripke model Let AP = {p, q}. Then let M = (W,R, V ) be the Kripke model such
that

• W = {w1, w2, w3, w4, w5}
• R = {(w1, w5), (w1, w4), (w4, w1), . . . }
• V = [w1 7→ ∅, w2 7→ {p}, w3 7→ {q}, . . . ]

The graphical representation is slightly informal (and also later we allow ourselves these
kind of “informalities”, appealing to the intuitive understanding of the reader). There are
5 worlds, which are numbered for identification. In the Kripke model, they are referred to
via w1, w2, . . . (not as 1, 2, . . . as in the figure). Later, when we often call corresponding
entities states, not worlds, we tend to use s1, s2, . . . for typical states. For the valuation,
we use a notation of the form [... 7→ ...] to denote a finite mappings.

In particular, we are dealing with finites mappings of type W → 2AP , i.e., to subsets
of the list of atomic propositions AP = {p, q}. The sets are not explicitly noted in the
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graphical illustration, i.e., the set-braces {. . .} are omitted. For instance, in world w1, no
propositional letter is mentioned, i.e., the valuation maps w1 to the empty set ∅.

An isomporphic (i.e., equivalent) view on the valuation is, that it is a function of typeW →
(AP → B) which perhaps captures the intended interpretation better. Each propositional
letter mentioned in a wold or state is intended to evaluate to “true” in that world or state.
Propositional letter not mentioned are intented to be evaluate to “false” in that world.

As a side remark: we said, that we are dealing with finite mappings. For the examples,
illustrations and many applications, that is correct. However, the definition of Kripke
structure does not require that there is only a finite set of worlds, W in general is a set,
finite or not.

Satisfaction

Now we come to the semantics of modal logic, i.e., how to interpret formulas of (propo-
sitional) modal formulas. That is done by defining the corresponding “satisfaction” rela-
tion, typically written as |=. After the introduction and discussion of Kripke models or
transition systems, the satisfaction relation should be fairly obvious for the largest part,
especially the part of the underlying logic (here propositional logic): the valuation V is
made exactly so that it covers the base case of atomic propositions, namely give meaning
to the elements of AP depending on the current world of the Kripke frame. The treatment
of the propositional connectives ∧, ¬, . . . is identical to their treatment before. Remains
the treatment of the real innovation of the logic, the modal operators � and ♦.

Definition 2.5.2 (Satisfaction). A modal formula ϕ is true in the world w of a model V ,
written V,w |= ϕ, if:

V,w |= p iff V (w)(p) = >

V,w |= ¬ϕ iff V,w 6|= ϕ

V,w |= ϕ1 ∨ ϕ2 iff V,w |= ϕ1 or V,w |= ϕ2

V,w |= �ϕ iff V,w′ |= ϕ, for all w′ such that wRw′

V,w |= ♦ϕ iff V,w′ |= ϕ, for some w′ such that wRw′

As mentioned, we consider V as to be of typeW → (AP → B). If we equivalently assumed
a type W → 2AP , the base case of the definition would read p ∈ V (w), instead.

For this lecture, we prefer the former presentation (but actually, it does not matter of
course) for 2 reasons. One is, it seems to fit better with the presentation of propositional
logic, generalizing directly the concept a boolean valuation. Secondly, the picture of
“assigning boolean values to variables” fit better with seeing Kriple models more like
transition systems, for instance capturing the behavior of computer programs. There, we
are not so philosphically interested in speaking of “worlds” that are “accessible” via some
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accessibility relation R, it’s more like states in a progam, and doing some action or step
does a transition to another state, potentially changing the memory, i.e., the content of
variable, which in the easiest case may be boolean variables. So the picture that one has
a control-flow graph of a program and a couple of variables (propositional or Boolean
variables here) whose values change while the control moves inside the graph seems rather
straightforward and natural.

Sometimes, other notations or terminology is used, for instance w |=M ϕ. Sometimes, the
modelM is fixed (for the time being), indicated by the words like. “Let in the followingM
be defined as . . . ”, in which case one finds also just w |= ϕ standing for “state w satisfies
ϕ”, or “ϕ holds in state w” etc. but of course the interpretation of a modal formula
requires that there is alway a transition system relative to which it is interpreted.

Often one finds also notations using the “semantic brackets” [[_]]. Here, the meaning
(i.e., truth-ness of false-ness of a formula, depends on the Kripke model as well as the
state, which means one could define a notation like [[ϕ]]Mw as > or ⊥ depending on wether
M,w |= ϕ or not. Remember that we had similar notation in first-order logic [[ϕ]]Iσ We
discussed (perhaps uneccessarily so) two isomorphic view of the valuation function V . Even
if not relevant for the lecture, it could be noted that a third “viewpoint” and terminology
exists in the literature in that context. Instead of associating with each world or state the
set of propositions (that are intended to hold in that state), one can define a model also “the
other way around”: then one associate with each propositional variable the set of states
in which the proposition is suppoed to hold, one would have a “valuation” Ṽ : AP → 2W .
That’s of course also an equivalent and legitimate way of proceeding. It seems that this
representation is not “popular” when doing Kripke models for the purpose of capturing
systems and their transitions (as for model checking in the sense of our lecture), but for
Kripke models of intuionistic logics. Kripke also propose “Kripke-models” for that kind of
logics (for clarity, I am talking about intuitionnistic propositional logics or intuitionnistic
first-order logice etc, not (necessarily) intuitionistic modal logics). In that kind of setting,
the accessibility relation has also special properties (being a partial order), and there are
other side conditions to be aware of. As for terminology, in that context, one sometimes
does not speak of “w satisfies ϕ (in a model), for which we write “w |= p”, but says “world
w forces a formula ϕ”, for which sometimes the notation w  ϕ is favored. But those are
mainly different traditions for the same thing.

For us, we sometimes use notations like [[ϕ]]M to represent the set of all states in M that
satisfy ϕ, i.e.,

[[ϕ]]M = {w | M, s |= ϕ} .

In general (and also other logics), |=- and [[_]]-style notations are interchangable and
interdefinable.

“Box” and “diamond”

• modal operators � and ♦
• often pronounced “nessecarily” and “possibly”
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• mental picture: depends on “kind” of logic (temporal, epistemic, deontic . . . ) and
(related to that) the form of accessibility relation R

• formal definition: see previous slide

The pronounciation of �ϕ as “necessarily ϕ” and ♦ϕ as “possibly ϕ” are generic, when
dealing with specific interpretations, they might get more specific meanings and then be
called likewise: “in all futures ϕ” or “I know that ϕ” etc. Related to the intended mindset,
one imposes different restructions in the “accessibility” relation R. In a temporal setting,
if we interpret �ϕ as “tomorrow ϕ”, then it is clear that ��ϕ (“ϕ holds in the day after
tomorrow”) is not equivalent to �ϕ. If, in a different temporal mind-set, we intend to
mean �ϕ to represent “now and in the future ϕ”, then ��ϕ and �ϕ are equivalent. That
reflects common sense and reflects what one might think about the concept of “times”
and “days”. Technically, and more precisely, it’s a property of the assumed class of frames
(i.e., of the relation R). If we assume that all models are built upon frames where R is
transitive, then �ϕ→ ��ϕ is generally true.

We should be more explicit about what it means that a formula is “generally true”. We
have encountered the general terminology of a formula being “true” vs. being “valid”
already. In the context of modal logic, the truth-ness requires a model (which is a frame
with a valuation) and a state to judge the truth-ness: M,w |= ϕ. A model M is of the
form (W,R, V ), it’s a frame (= “graph”) together with a valuation V . A propositional
formula is valid if it’s true for all boolean valuation (and the notion coincided with being
a propositional tautology). Now the situation get’s more finegrained (as was the case in
first-order logics). A modal formula is valid if M,w |= ϕ for all M and w. For that one
can write

|= ϕ

So far so good. But then there is also a middle-ground, where one fixes the frame (or a
class of frames), but the formula must be true for all valuations and all states. For that
we can write

(W,R) |= ϕ

Let’s abbreviate with F a frame, i.e., a tuple (W,R). We could call that notion frame
validity and say for F |= ϕ that “ϕ is valid in frame F”. So, in other words, a formula is
valid in a frame F if it holds in all models with F as underlying frame and for all states
of the frame.

One uses that definition not just for a single frame; often the notion of frame-validity is
applied to sets of frames, in that one says F |= ϕ for all frames F such that . . . ”. For
instance, all frames where the relatiton R is transitive or reflexive or whatever. Those
restrictions of the allowed class of frames reflect then the intentions of the modal logic
(temporal, epistemic . . . ), and one could speak of a formula to be “transitivity-valid” for
instance, i.e., for all frames with a transitive accessibility relation.

It would be an ok terminology, but it’s not standard. There are (for historic reasons) more
esoteric names for some standard classes, for instance, a formula could be S4-valid. That
refers to one particular restriction of R which corresponds to a particular set of axioms
traditionally known as S4. See below for some examples.
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Further notational discussion and preview to LTL Coming back to the informal “tem-
poral” interpretation of �ϕ as either “tomorrow ϕ” vs. “now and in the future ϕ”, where
the accessibility relation refers to “tomorrow” or to “the future time, from now on”. In
the latter case, the accessibility relation would be reflexive and transitive. When thinking
about such a temporal interpretation, there may also be another assumption on the frame,
depending on how one sees the nature of time and future. A conventional way would be
to see the time as linear (a line, fittingly called a timeline, connecting the past into the
future, with “now” in the middle, perhaps measured in years or seconds etc.) With such
a linear picture in mind, it’s also clear that there is no difference between the modal oper-
ators � and ♦.3 In the informal interpretation of � as “tomorrow”, one should have been
more explicit that, what was meant is “for all tomorrows” to distinguish it from ♦ that
represent “there exist a possible tomorrow”. In the linear timeline picture, there is only one
tomorrow (we conventionally say “the next day” not “for all possible next days” or some
such complications). Consequently, if one has such a linear picture in mind (resp. works
only with such linear frames), one does not actually need two modal operators � and ♦,
one can collapse them into one. Conventionally, for that collapsed one, one takes ©. A
formula ©ϕ is interpreted as “in the next state or world, ϕ holds” and pronouced “next
ϕ” for short. The© operator will be part of LTL (linear-time temporal logic), which is an
important logic used for model checking and which will be covered later. When we (later)
deal with LTL, the operator© corresponds to the modal operators ♦ and � collapsed into
one, as explained. Besides that, LTL will have additional operators written (perhaps con-
fusingly) � and ♦, with a different interpretation (capturing “always” and “eventually”)
Those are also temporal modalities, but their interpretation in LTL is different from the
ones that we haved fixed for now, when discussing modal logics in general).

Different kinds of relations

R a binary relation on a set, say W , i.e., R ⊆W

• reflexive
• transitive
• (right) Euclidian
• total
• order relation
• . . . .

Definition 2.5.3. A binary relation R ⊆W ×W is

• reflexive if every element in W is R-related to itself.

∀a. aRa

• transitive if
∀a b c. aRb ∧ bRc→ aRc

• (right) Euclidean if
∀a b c. aRb ∧ aRc→ bRc

3Characterize as an exercise what exactly (not just roughly) the condition the accessibility relation must
have to make � and ♦ identical.
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• total if
∀a. ∃b. aRb

The following remark may be obvious, but anyway: The quantifiers like ∀ and the other
operators ∧ and ∨ are not meant here to be vocabulary of some (first-order) logic, they are
meant more as mathematical statements, which, when formulated in for instance English,
would use sentences containing words like “for all” and “and” and “implies”. One could
see if one can formalize or characterize the defined concepts making use formally of a
first-order logic, but that’s not what is meant here. We use the logical connectives just as
convenient shorthand for English words.

In that connection a word of caution: first-order logic seems like powerful, the swiss army
knife of logics, perfect for formalizing everything if one us patient or obsessive enough.
One should be careful, though, FOL has it’s limitations (and not just because theorem-
hood is undecidable). In some way, FOL is rather weak actually, for instance one cannot
even characterize the natural numbers, at least not exactly (one way of getting a feeling
for that is: Peano’s axioms, that characterize the natural numbers, are not first-order).
First-order logic is not strong enough to capture induction, and then one is left with a
notation the looks exactly like “natural numbers” but for which one cannot use induction.
And that is thereby a disappointingly useless form of “natural numbers”. . . In the chapter
about the µ-calculus, we will touch upon those issues again.

In practice, some people use “applied forms” of first-order logics. For instance, one has a
signature that captures the natural numbers, and then one assumes that the vocabulary is
interpreted by the actual natural numbers as model. The assumption is, as just mention,
not capturable by first-order logic itself, it’s an external assumption. If one would like to
capture that inside a formal logical system (and not just assuming it and explain that by
English sentences), one would have to use stronger systems than available in first-order
logics. As an example: Hoare-logic was mentioned in the second lecture, which is based
traditionally on first-order logic. Those kind of logic is used to talk about programs and
those program contain data stored in variables, like natural numbers and similar things.
However, when talking about natural numbers or other data structures in Hoare logic,
one is not concerned with “are those really expressible in pure first-order logic”, one in
interested in the program verification, so it’s often simply assumed that those are the
natural numbers as known from math etc. We may encounter not directly Hoare-logic,
but perhaps dynamic logic, which is also a form of (multi)-modal logic. Actually Hoare-
logic can be seen as a special case of dynamic logic.

Valid in frame/for a set of frames

If (W,R, V ), s |= ϕ for all s and V , we write

(W,R) |= ϕ
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Samples

• (W,R) |= �ϕ→ ϕ iff R is reflexive.
• (W,R) |= �ϕ→ ♦ϕ iff R is total.
• (W,R) |= �ϕ→ ��ϕ iff R is transitive.
• (W,R) |= ¬�ϕ→ �¬�ϕ iff R is Euclidean.

Some exercises

Prove the double implications from the slide before!

Hints By “double implications”, the iff’s (if-and-only-if) are meant. In each case there
are two directions to show.

• The forward implications are based on the fact that we quantify over all valuations
and all states. More precisely; assume an arbitrary frame (W,R) which does not have
the property (e.g., reflexive). Find a valuation and a state where the axiom does not
hold. You have now the contradiction . . .

• For the backward implication take an arbitrary frame (W,R) which has the property
(e.g., Euclidian). Take an arbitrary valuation and an arbitrary state on this frame.
Show that the axiom holds in this state under this valuation. Sometimes one may
need to use an inductive argument or to work with properties derived from the main
property on R (e.g., if R is euclidian then w1Rw2 implies w2Rw2).

2.5.3 Proof theory and axiomatic systems

We only sketch some proof theory of modal logic, basically because we are more interested
in model checking as opposed to verify that a formula is valid. There are connections
between these two questions, though. As explained in the introductory part, proof theory
is about formalizing the notion of proof. That’s done by defining a formal system (a proof
system) that allows to derive or infer formulas from others. Formulas a priori given are
also called axioms, and rules allow new formulas to be derived from previously derived
ones (or from axiom). One may also see axioms as special form of rule, namely one without
premises.

The style of presenting the proof system here is the plain old Hilbert-style presentation.
As mentioned, there are other styles of presentations, some better suited for interactive,
manual proofs and some for automatic reasoning, and in general more elegant anyway. Ac-
tually, Hilbert-style may just be around for reasons of tradition, insofar it was historically
the first or among the first. Other forms like natural deduction or sequent presentation
came later. Actually proposed with the intention to improve on the presentation of the
proof system, for instance allowing more “natural” proofs, i.e., formal proofs that resem-
ble more closely to the way, informal proofs are carried out or structured. One difference
between Hilbert-style and the natural deduction style presentations is that Hilbert’s pre-
sentation put’s more weight on the axioms, whereas the alternative downplay the role of
axioms and have more deduction rules (generally speaking). That may in itself not capture
the core of the differences, but it’s an importan aspect. As discussed, different classes of
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frames (transitive, reflexive . . . ) correspond to axioms or selection of axioms, and we have
seen some.

Since we intend (classical propositional) modal logics to encompass classical propositional
logic not just syntactically but also conceptually/semantically, we have all propositional
tautologies as derivable. Furthermore, we have the standard rule of derivation, already
present in the propositional setting, namely modus ponens.

That so far took care of the propositional aspects (but note that MP can be applied to
all formulas, of course, not just propositional ones). But we have not really taken care of
the modal operators � and ♦. Now, having lot of operators is nice for the user, but puts
more burden when formulating a proof system (or implementing one) as we have to cover
more case. So, we treat ♦ as syntactic sugar, as it can be expressed by � and ¬. Note:
“syntactic sugar” is a well-established technical term for such situations, mostly used in
the context of programming languages and compilers. Anyway, we now need to cover
only one modal operator, and conventionally, it’s �, necessitation. The corresponding
rule consequently is often called the rule of (modal) necessitation. The rule is below called
Nec, sometimes also just N or also called G (maybe historically so).

Is that all? Remember that we touched upon the issue that one can consider special
classes of frames, for instance those with transitive relation R or other special cases, that
lead them to special axioms being added to the derivation system. Currently, we do not
impose such restrictions, we want general frame validity. So does that mean, we are done?
At the current state of discussion, we have the propositional part covered including the
possibility do to propositional-style inference (with modus ponens), we have the plausible
rule of necessitation, introducing the �-modality. Apart from that, the two aspects of the
logic (the propositional part and modal part seem conceptually separated. Note: a formula
�p → �p “counts” as (an instance of a) propositional tautology, even if � is mentioned.
A question therefore is: are the two parts of the logic somehow further connected, even if
we don’t assume anything about the set of underlying frames?

The answer is, yes, and that connection is captured by the axiom stating that � distributes
over→. The axiom is known as distribution axiom or transitionally also as axiom K. In a
way, the given rules are somewhat the base line for all classical modal logics. Modal logics
with propositional part covered plus necessitation and axiom K are also called normal
modal logics.

As a side remark: there are also certain modal logics where K is dropped or replaced,
which consequently are no longer normal logics. Note that it means they no longer have
a Kripke-model interpretation either. Since our interest in Kripke-models is that we use
transition systems as representing steps of programs, Kripke-style thinking is natural in
the context of our course. Non-normal logics are more esoteric and “unconventional” and
we don’t go there.
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Base line axiomatic system (“K”)

ϕ is a propositional tautology
PL

ϕ

K
�(ϕ1 → ϕ2)→ (�ϕ1 → �ϕ2)

ϕ→ ψ ϕ
MP

ψ

ϕ
G

�ϕ

The distribution axiom K is written as “rule” without premises. The system also focuses
on the “new” part, i.e., the modal part. It’s not explicit about how the rules look like that
allow to derive propositional tautologies (which would be easy enough to do, and includes
MP anyway).

The sketched logic is is also known under the name K itself, so K is not just the name of
the axiom. The presentation here is Hilber-style, but there are different ways to make a
derivation system for the logic K. On the next slide, there are a few more axioms (with
their traditional names, some of which are just numbers, like “axiom 4” or “axiom 5”),
and in the literature, then one considers and studies “combinations” of those axioms (like
K + 5), and they are traditionally also known under special, not very transparent names
like “S4” or “S5”. See one of the next slides.

Sample axioms for different accessibility relations

�(ϕ→ ψ)→ (�ϕ→ �ψ) (K)
�ϕ→ ♦ϕ (D)
�ϕ→ ϕ (T)
�ϕ→ ��ϕ (4)
¬�ϕ→ �¬�ϕ (5)
�(�ϕ→ ψ)→ �(�ψ → ϕ) (3)
�(�(ϕ→ �ϕ)→ ϕ)→ (♦�ϕ→ ϕ)) (Dum)

The first ones are pretty common and are connected to more or less straightforward frame
conditions (except K which is, as said, generally the case for a frame-based Kripke-style
interpretation). Observe that T implies D.

The are many more different axiom studied in the literature, how they related and what
not. The axiom called Dum is more esoteric (“[among the] most bizzare formulae that
occur in the literature” [17]) and actually, there are even different versions of that (Dum1,
Dum2 . . . ).
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Different “flavors” of modal logic

Logic Axioms Interpretation Properties of R
D K D deontic total
T K T reflexive
K45 K 4 5 doxastic transitive/euclidean
S4 K T 4 reflexive/transitive
S5 K T 5 epistemic reflexive/euclidean

reflexive/symmetric/transitive
equivalence relation

Concerning the termi-

nology doxastic logic is about beliefs, deontic logic tries to capture obligations and similar
concepts. Epistemic logic is about knowledge.

2.5.4 Exercises

Some exercises

Consider the frame (W,R) with W = {1, 2, 3, 4, 5} and (i, i+ 1) ∈ R

p p, q p, q q q

1 2 3 4 5

Let the “valuation” Ṽ (p) = {2, 3} and Ṽ (q) = {1, 2, 3, 4, 5} and let the model M be
M = (W,R, V ). Which of the following statements are correct in M and why?

• M, 1 |= ♦�p

• M, 1 |= ♦�p→ p

• M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)

• M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))

• M |= �q

The answers to the above questions are

• yes
• no
• yes
• yes,
• yes. But why?
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Exercises (2): bidirectional frames

Bidirectional frame A frame (W,R) is bidirectional iffR = RF+RP s.t. ∀w,w′(wRFw′ ↔
w′RPw).

p p, q p, q q q

1 2 3 4 5

Consider M = (W,R, V ) from before. Which of the following statements are correct in M
and why?

1. M, 1 |= ♦�p
2. M, 1 |= ♦�p→ p
3. M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p)
4. M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q)))
5. M |= �q
6. M |= �q → ♦♦p

The notion of bidirectional The R can be separated into two disjoind relations RF and
RP , which one is the inverse of the other.

1. M, 1 |= ♦�p: Correct [it was wrongly mentioned as incorrect in an earlier version of
the script]

2. M, 1 |= ♦�p→ p: Correct
3. M, 3 |= ♦(q ∧ ¬p) ∧�(q ∧ ¬p): Incorrect
4. M, 1 |= q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q))): Correct
5. M |= �q: Correct . . . but is it the same explanation as before?
6. M |= �q → ♦♦p

Exercises (3): validities

Which of the following are valid in modal logic. For those that are not, argue why and
find a class of frames on which they become valid.

1. �⊥
2. ♦p→ �p
3. p→ �♦p
4. ♦�p→ �♦p

1. �⊥: Valid on frames where R = ∅.
2. ♦p→ �p: Valid on frames where R is a partial function.
3. p→ �♦p: Valid on bidirectional frames.
4. ♦�p→ �♦p: Valid on Euclidian frames.

As for further reading, [19] and [4] may be good reads.
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2.6 Dynamic logics

Introduction

Problem

• FOL: “very” expressive but undecidable. Perhaps good for mathematics but not ideal
for computers.

!! FOL can talk about the state of the system. But how to talk about change of state
in a natural way?

• modal logic: gives us the power to talk about changing of state. Modal logics is
natural when one is interested in systems that are essentially modeled as states and
transitions between states.

FOL: At least relatively. There are much more expressive logics again. FOL has also
some serious restrictions.} By far not the most expressive logic there is. We want to talk
about programs, states of programs, and change of the state of the computer via executing
programming instructions, like assignments. Modal logic can be seen as FOL with one
free variable, but we loose the “beauty” of modal logics.

2.6.1 Multi-modal logic

Multi-modal logic

“Kripke frame” (W,Ra, Rb), where Ra and Rb are two relations over W .

Syntax (2 relations) Multi-modal logic has one modality for each relation:

ϕ ::= p | ⊥ | ϕ→ ϕ | ♦aϕ | ♦bϕ (2.7)

where p is from a set of propositional constants (i.e., functional symbols of arity 0) and
the other operators are derived as usual:

ϕ ::= ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | �aϕ | �bϕ (2.8)

Rest Semantics: “natural” generalization of the “mono”-case

M,w |= ♦aϕ iff ∃w′ : wRaw′ and M,w′ |= ϕ (2.9)

• analogously for modality ♦b and relation Rb
As multi-modal logic: obvious generalization of modal logic from before

1. The relations can overlap; i.e., their intersection need not be empty
2. of course: more than 2 relations possible, for each relation one modality.
3. There may be infinitely many relations and infinitely many modalities.
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Infinitely many modalities are possible. One has to be careful then, though. Infinitely
many modalities may pose theoretical challenges (not just for the question how to deal
with them computationally). We ignore issues concerning that in this lecture. As a further
remark: later there will be PDL and mayby TLA (temporal logic of actions). There are
many actions involved, which lead to many “modalities”.

2.6.2 Dynamic logics

Dynamic logics

• different variants
• can be seen as special case of multi-modal logics
• variant of Hoare-logics
• here: PDL on regular programs
• “P” stands for “propositional”

Regular programs

DL Dynamic logic is a multi-modal logic to talk about programs.

here: dynamic logic talks about regular programs

Regular programs are formed syntactically from:

• atomic programs Π0 = {a, b, ...}, which are indivisible, single-step, basic program-
ming constructs

• sequential composition α ·β, which means that program α is executed/done first and
then β.

• nondeterministic choice α + β, which nondeterministically chooses one of α and β
and executes it.

• iteration α∗, which executes α some nondeterministically chosen finite number of
times.

• the special skip and fail programs (denoted 1 resp. 0)

Regular programs and tests

Definition 2.6.1 (Regular programs). The syntax of regular programs α, β ∈ Π is given
according to the grammar:

α ::= a ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ? . (2.10)

The clause ϕ? is called test.

Tests can be seen as special atomic programs which may have logical structure, but their
execution terminates in the same state iff the test succeeds (is true), otherwise fails if the
test is deemed false in the current state.
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Tests

• simple Boolean tests: ϕ ::= > | ⊥ | ϕ→ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ
• complex tests: ϕ? where ϕ is a logical formula in dynamic logic

Propositional Dynamic Logic: Syntax

Definition 2.6.2 (DPL syntax). The formulas ϕ of propositional dynamic logic (PDL)
over regular programs α are given as follows.

α ::= a ∈ Π0 | 1 | 0 | α · α | α+ α | α∗ | ϕ?
ϕ ::= p, q ∈ Φ0 | > | ⊥ | ϕ→ ϕ | [α]ϕ

(2.11)

where Φ0 is a set of atomic propositions.

1. programs, which we denote α... ∈ Π
2. formulas, which we denote ϕ... ∈ Φ

Propositional Dynamic Logic (PDL): because based on propositional logic, only

PDL: remarks

• Programs α interpreted as a relation Rα
⇒ multi-modal logic.
• [α]ϕ defines many modalities, one modality for each program, each interpreted over

the relation defined by the program α.
• The relations of the basic programs are just given.
• Operations on/composition of programs are interpreted as operations on relations.
• ∞ many complex programs ⇒ ∞ many relations/modalities
• But we think of a single modality [..]ϕ with programs inside.
• [..]ϕ is the universal one, with 〈..〉ϕ defined as usual.

“If program α is started in the current state, then, if it terminates, then in its final state,
ϕ holds.”

Exercises: “programs”

Define the following programming constructs in PDL:
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skip , >?
fail , ⊥?

if ϕ then α else β , (ϕ? · α) + (¬ϕ? · β)
if ϕ then α , (ϕ? · α) + (¬ϕ? · skip)

case ϕ1 then α1; . . . , (ϕ1? · α1) + . . .+ (ϕn? · αn)
case ϕn then αn

while ϕ do α , (ϕ? · α)∗ · ¬ϕ?
repeat α until ϕ , α · (¬ϕ? · α)∗ · ϕ?

(General while loop)
while ϕ1 then α1 | · · · | ϕn then αn od , (ϕ1? · α1 + . . .+ ϕn? · αn)∗·

·(¬ϕ1 ∧ . . .¬ ∧ ϕn)?

2.6.3 Semantics of PDL

Making Kripke structures “multi-modal-prepared”

Definition 2.6.3 (Labeled Kripke structures). Assume a set of labels Σ. A labeled Kripke
structure is a tuple (W,R,Σ) where

R =
⋃
l∈Σ

Rl

is the disjoint union of the relations indexed by the labels of Σ.

for us (at leat now): The labels of Σ can be thought as programs

• Σ: aka alphabet,
• alternative: R ⊆W × Σ×W
• labels l, l1 . . . but also a, b, . . . or others
• often: a−→, like w1

a−→ w2 or s1
a−→ s2

Regular Kripke structures

• “labels” now have “strucuture”
• remember regular program syntax
• interpretation of certain programs/labels fixed,

– 0: failing program
– α1 · α2: sequential composition
– . . .

• thus, relations like 0, Rα1·α2 , . . .must obey side-conditions

leaving open the interpretation of the “atoms” a, we fix the interpretation/semantics of
the constructs of regular programs
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Regular Kripke structures

Definition 2.6.4 (Regular Kripke structures). A regular Kripke structure is a Kripke
structure labeled as follows. For all basic programs a ∈ Π0, choose some relation Ra. For
the remaining syntactic constructs (except tests), the corresponding relations are defined
inductively as follows.

R1 = Id
R0 = ∅
Rα1·α2 = Rα1 ◦Rα2

Rα1+α2 = Rα1 ∪Rα2

Rα∗ = ⋃
n≥0R

n
α

In the definition, Id represents the identity relation, ◦ relational composition, and Rn and
the n-fold composition of R.

Kripke models and interpreting PDL formulas

Now: add valutions ⇒ Kripke model

Definition 2.6.5 (Semantics). A PDL formula ϕ is true in the world w of a regular Kripke
model M , i.e., we have attached a valuation V also, written M,w |= ϕ, if:

M,w |= pi iff pi ∈ V (w) for all propositional constants
M,w 6|= ⊥ and M,w |= >
M,w |= ϕ1 → ϕ2 iff whenever M,w |= ϕ1 then also M,w |= ϕ2

M,w |= [α]ϕ iff M,w′ |= ϕ for all w′ such that wRαw′

M,w |= 〈α〉ϕ iff M,w′ |= ϕ for some w′ such that wRαw′

Semantics (cont’d)

• programs and formulas: mutually dependent
• omitted so far: what relationship corresponds to

ϕ?

• remember the intuitive meaning (semantics) of tests

Test programs

Intuition: tests interpreted as subsets of the identity relation.

Rϕ? = {(w,w) | w |= ϕ} ⊆ I (2.12)

More precisely:
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• for >? the relation becomes R>? = Id
(testing > succeeds everywhere and is as the skip program)

• for ⊥? the relation becomes R⊥? = ∅
(⊥ is nowhere true and is as the fail program)

• R(ϕ1∧ϕ2)? = {(w,w) | w |= ϕ1 and w |= ϕ2}
• Testing a complex formula involving [α]ϕ is like looking into the future of the program

and then deciding on the action to take...

Axiomatic System of PDL

Take all tautologies of propositional logic (i.e., the axiom system of PL from Lecture 2)
and add

Axioms:

[α](φ1 → φ2)→ ([α]φ1 → [α]φ2) (1)
[α](φ1 ∧ φ2)↔ [α]φ1 ∧ [α]φ2 (2)
[α+ β]φ↔ [α]φ ∧ [β]φ (3)
[α · β]φ↔ [α][β]φ (4)
[φ?]ψ ↔ φ→ ψ (5)
φ ∧ [α][α∗]φ↔ [α∗]φ (6)
φ ∧ [α∗](φ→ [α]φ)→ [α∗]φ (IND)

Rules: take the (MP) modus ponens and (G) generalization of Modal Logic.

Further reading

On dynamic logic, a book nicely written, with examples and easy presentation: David
Harel, Dexter Kozen, and Jerzy Tiuryn: [19]. Chap. 3 for beginners, a general introduction
to logic concepts. This lecture is based on Chap. 5 (which has some connections with
Chap. 4 and is strongly based on mathematical notions which can be reviewed in Chap.
1)

2.6.4 Exercises

The exercises have been placed on a separate sheet.

Exercises: Play with binary relations

• Composition of relations distributes over union of relations.
R ◦ (⋃iQi) = ⋃

i(R ◦Qi) (⋃
iQi) ◦R = ⋃

i(Qi ◦R)
• R∗ , I ∪R ∪R ◦R ∪ . . . ∪Rn ∪ . . . ,

⋃
n≥0R

n

Show the following:
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1. Rn ◦Rm = Rn+m for n,m ≥ 0
2. R ◦R∗ = R∗ ◦R
3. R ◦ (Q ◦R)∗ = (R ◦Q)∗ ◦R
4. (R ∪Q)∗ = (R∗ ◦Q)∗ ◦Q∗
5. R∗ = I ∪R ◦R∗

Exercises: Play with programs in DL

• In DL we say that two programs α and β are equivalent iff they represent the same
binary relation Rα = R = Rβ.

Show:

1. Two programs α and β are equivalent iff for some arbitrary propositional constant p
the formula 〈α〉p↔ 〈β〉p.

2. The two programs below are equivalent:

while φ1 do
α;
while φ2 do β

if φ1 then
α;
while φ1 ∨ φ2 do

if φ2 then β else α
Hint: encode them in PDL and use (1) or work only with relations

Exercises: Play with programs in DL

Use a semantic argument to show that the following formula is valid:

p ∧ [a∗]((p→ [a]¬p) ∧ (¬p→ [a]p))↔ [(a · a)∗]p ∧ [a · (a · a)∗]¬p

What does the formula say (considering a as some atomic programming instruction)?
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3
LTL model checking
Chapter

What
is it

about?
Learning Targets of this Chapter

The chapter covers LTL and how to
do model checking for that logic,
using Büchi-automata.

Contents
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3.6 Final Remarks . . . . . . . . 115

3.1 Introduction

In this chapter, we leave behind a bit the “logical” treatment of logics (like asking for
validity etc., i.e., asking |= ϕ), but proceed to the question of model checking, i.e., when
does a concrete model satisfies a formula M |= ϕ. We do that for a specific modal logic,
more precisely, as specific temporal logic. It’s one of the most prominent ones and the
first one that was taken up seriously in computer science (as opposed to mathematics
or philosophy). We will also cover one central way of doing model checking of temporal
logics, namely automata-based model checking.

Temporal logic?

• Temporal logic: is the/a logic of “time”
• modal logic.
• different ways of modeling time.

– linear vs. branching time
– time instances vs. time intervals
– discrete time vs. continuous time
– past and future vs. future only
– . . .

The notion of time here, in the context of temporal logics in general and LTL in particular,
is kind of abstract. Time is handled in a similar way we have introduced modal logics,
i.e., as “relation” between states (or worlds): proceeding from one state to another via
a transition means a “temporal step” insofar that the successor state is “after” the first
state. But the time is not really measured, i.e., there is no notion of how long it takes to
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do a steps. So, the systems and correspondingly the logics talking about their behavior are
not real-time systems or real-time temporal logics. There are variants of temporal logics
which handle real-time, including versions of real-time LTL, but they won’t (probably)
occur in this lecture.

LTL

• linear time temporal logic
• one central temporal logic in CS
• supported by Spinand other model checkers
• many variations

• We have used FOL to express properties of states.
– 〈x : 21, y : 49〉 ||= x < y
– 〈x : 21, y : 7〉 6||= x < y

• A computation is a sequence of states.
• To express properties of computations, we need to extend FOL.
• This we can do using temporal logic.

3.2 LTL

LTL: speaking about “time”

In linear temporal logic (LTL), also called linear-time temporal logic, we can describe
properties as, for instance, the following: assume time is a sequence of discrete points i in
time, then: if i is now,

• p holds in i and every following point (the future)
• p holds in i and every preceding point (the past)

. . . •pi−2 •pi−1 •pi •pi+1 •pi+2 . . .

Time here is linear and discrete. One consequently just uses ordinary natural numbers (or
integers) to index the points in time. We will mostly only be concerned with the future,
i.e., we won’t go much into past-time LTL resp. versions of LTL that allow to speak about
the future and the past. Branching time is an alternative to the linear modelling of time,
and instead of having discrete point in times, one could have dense time and/or deal with
intervals.
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3.2.1 Syntax

Syntax

As before, we start with the syntax of the logic at hand, it’s given by a grammar, as
usual. We assume some underlying “core” logic, like propositional logic or first-order logic.
Focusing on the temporal part of the logic, we don’t care much about that underlying core.
Practically, when it comes to automatically checking, the choice of the underlying logic
of course has an impact. But we treat the handling of the underlying logic as orthogonal.
The first thing to extend is the syntax: we have formulas ψ of said underlying core, and
then we extend it but the temporal operators of LTL, adding �, ♦, ©, U , R, and W . So
the syntax of (a version of) LTL is given by the following grammar.

ψ propositional/first-order formula
ϕ ::= ψ formulas of the “core” logics

| ¬ϕ | ϕ ∧ ϕ | ϕ→ ϕ | . . . boolean combinations
| ©ϕ next ϕ
| �ϕ always ϕ
| ♦ϕ eventually ϕ
| ϕ U ϕ “until”
| ϕ R ϕ “release”
| ϕ W ϕ “waiting for”, “weak until”

As in earlier logics, one can ponder, whether the syntax is minimal, i.e., do we need all
the operators, or can some be expressed as syntactic sugar by using others? The answer
is: the syntax is not minimal, some operators can be left out and we will see that later.
For a robust answer to the question of minimality, we need to wait until we have clarified
the meaning, i.e., until we have defined the semantics of the operators.

3.2.2 Semantics

Fixing the meaning of LTL formulas means, to define a satisaction relation |= between
“models” and LTL formulas. In principle, we know how that works, having seen similar
definitions when discussing modal logics in general (using Kripke frames, valuations, and
Kripke models). Now, that we are dealing with a linear temporal logic, the Kripke frames
should be also of linear structure. What kind of valuations we employ would depend on
the underlying logics. For example for propositional LTL, one needs an interpretation
of the propositional atoms per world, for first-order LTL, one needs a choice of the free
variables in the terms and formulas (the signature and its interpretation does not change
when going from one world to another, only, potentially, the values of the variables).

That’s also what we do next, except that we won’t use explicitly the terminology of Kripke
frame or Kripke model. We simply assume a sequence of discrete time points, indexed by
natural numbers. So the numbers i, i + 1 etc. denote the worlds, and the accessibility
relation simply connects a “world” i with its successor world i + 1. As was done with
Kripke models, we then need a valuation per world, i.e., per time point. In the case of
propositional LTL, it’s a mapping from propositional variables to the boolean values B.
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To be consistent with common terminology, we call such a function AP → B here not a
valuation, but a state (but see also the side remarks about terminology below). Let’s use
the symbol s to represent such a state or valuation. A model then provides a state per
world, i.e., a mapping N → (AP → B). This is equivalently represented as an infinite
sequence of the form

s0s1s2 . . .

where s0 represents the state at the zero’th position in the infinite sequence, s1 at the
position or world one after that, etc. Such an infinite sequence of states is called path, and
we use letters π, π′ etc. to refer to them them. It’s important to remember that paths are
infinite. As discussed in the lecture: if we allowed finite paths, we would loose the kind of
nice duality between the ♦ and � operator (that refers to the fact that that ¬�¬ is the
same as ♦, and the other way around).

In that connection: what’s ¬©¬?

Some remarks on terminology: paths, states, and valuations

The notions of states and paths . . . are slightly differring in the literature. It’s not a
big problem as the used terminology is not incompatible, just sometimes not in complete
agreement.

For example, there is a notion of path in connection with graphs. Typically, a path in a
graph from a node n1 to a node n2 is a sequence of nodes that follows the edges of the
given graph and that starts at n1 and ends in n2. The length of the path is the number of
edges (and with this definition, the empty paths from n to n contains one node, namely n).
There maybe alternative definitions of paths in “graph theory” (like sequences of edges).
In connection with our current notion of paths, there are 3 major differences. Our paths
are ininite, whereas when dealing with graphs, a path normally is understood as a finite
sequence. There is no fundamental reason for not considering (also) infinite paths there
(and some people surely do), it’s just that the standard case there is finite sequence, and
therefore the word path is reserved for those. LTL on the other hand deals with ininite
sequences, and consequently uses the word paths for that.

The other difference is that a path here is not defined as “a sequence of nodes connected
by edges”. It’s simply an infinite sequence of valuations (and the connection is just by the
position in the sequence), there is no question of “is there a transition from state at place
i to that of at place i + 1. Later, when we connect the current notion of paths to “path
through a transition system”, then the states in that infinite sequence need to arise by
connecting transistions or edges in the underlying transition system or graph.

Finally, of course, the conventional notion of path in a graph does not speaks of valuations,
it’s just a sequence of nodes. If N is the set of nodes of a graph, and Nn the finite set
{i ∈ N | i < n}, then a traditional path (of length n) in graphs is a function Nn → N such
that it “follows the edges”.

There are other names as well, when it comes to linear sequences of “statuses” when
running a program. Those include runs, executions (also traces, logs, histories etc.).
Sometimes they correspond to sequences of edges (for instance, containing transition labels
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only). Sometimes they corrspond to sequences of “nodes” (containing “status-related”
information like here), sometimes both.

Anyway, for us right now and for propositional LTL), a path π is of type N→ (AP → B),
i.e., an infinite sequence of states (or valuations).

Paths and computations

Definition 3.2.1 (Path).

• A path is an infinite sequence

π = s0, s1, s2, . . .

of states.
• πk denotes the path sk, sk+1, sk+2, . . .
• πk denotes the state sk.

It’s intended (later) that paths represent behavior of programs resp. “going” through a
Kripke-model or transition system. A transitions system is a graph-like structure (and
may contain cycles), and a paths can be generated following the graph structure. In that
sense it corresponds to the notion of paths as known from graphs (remember that the
mathematical notions of graph corresponds to Kripke frames). Note, however, that we
have defined path independent from an underlying program or transition system. It’s not
a “path through a transition system”, but it’s simply an infinite sequence of state (maybe
caused by a transition system or maybe also not).

Now, what’s a state then? It depends on what kind of LTL we are doing, basically propo-
sitional LTL or first-order LTL. A state basically is the interpretation of the underlying
logic in the given “world”, i.e., the given point in time (where time is the index inside
the linear path). In propositional logic, the state is the interpretation of the propositional
symbols (or the set of propositional symbols that are considered to be true at that point).
For first order logic, it’s a valuation of the free variables at that point. When one thinks
of modelling programs, then that’s corresponds to the standard view that the state of an
imperative program is the value of all its variables (= state of the memory).

The satisfaction relation π |= ϕ is defined inductively over the structure of the formula.
We assume that for the formulas of the “underlying” core logic, we have an adequate
satisfaction relation |=ul available, that works on states. Note that in case of first-order
logic, a signature and its interpretation is assumed to be fixed.

Definition 3.2.2 (Satisfaction). An LTL formula ϕ is true relative to a path π, written
π |= ϕ, under the following conditions:
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π |= ψ iff π0 |=ul ψ where ψ in underlying core language
π |= ¬ϕ iff π 6|= ϕ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |=©ϕ iff π1 |= ϕ

π |= ϕ1 U ϕ2 iff πk |= ϕ2 for some k ≥ 0, and
πi |= ϕ1 for every i such that 0 ≤ i < k

The definition of |= covers © and U as the only temporal operators. It will turn out
that these two operators are “complete” insofar that one can express remaining operators
from the syntax by them. Those other operators are �, ♦, R, and W , according to the
syntax we presented earlier. That’s a common selection of operators for LTL, but there
are sometimes even more added for the sake of convenience and to capture commonly
encountered properties a user may wish to express.

We could explain those missing operators as syntactic sugar, showing how they can be
macro-exanded into the core operators. What we (additionally) do first is giving a direct
semantic definition of their satisfaction. As mentioned already earlier, the two important
temporal operators “always” and “eventually” are written symbolically like the modal
operators necessity and possibility, namely as � and ♦, but their interpretation is slightly
different from them. Their semantic definition is straightforward, referring to all resp. for
some future point in time.

The release operator is the dual to the until operator, but is also a kind of “until” only
with the roles of the two formulas exchanged. Intuitively, in a formula ϕ1 R ϕ2, the ϕ1
“releases” ϕ2’s need to hold, i.e., ϕ2 has to hold up until and including the point where
ϕ1 first holds and if ϕ1 never holds (i.e., never “realeases ϕ2), then ϕ2 has to hold forever.
If there a point where ϕ1 is first true and thus releases ϕ2, then at that “release point”
both ϕ1 and ϕ2 have to hold. Furthermore, it’s a “weak” form of a “reverse until” insofar
that it’s not required that ϕ1 ever releases ϕ2.

π |= �ϕ iff πk |= ϕ for all k ≥ 0
π |= ♦ϕ iff πk |= ϕ for some k ≥ 0

π |= ϕ1 R ϕ2 iff for every j ≥ 0,
if πi 6|= ϕ1 for every i < j then πj |= ϕ2

π |= ϕ1 W ϕ2 iff π |= ϕ1 U ϕ2 or π |= �ϕ1

Validity and semantic equivalence

Definition 3.2.3 (Validity and equivalence).
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• ϕ is (temporally) valid, written |= ϕ, if
π |= ϕ for all paths π.

• ϕ1 and ϕ2 are equivalent, written ϕ1 ∼ ϕ2, if
|= ϕ1 ↔ ϕ2 (i.e. π |= ϕ1 iff π |= ϕ2, for all π).

Example 3.2.4. � distributes over ∧, while ♦ distributes over ∨.

�(ϕ ∧ ψ) ∼ (�ϕ ∧�ψ)
♦(ϕ ∨ ψ) ∼ (♦ϕ ∨ ♦ψ)

Now that we know the semantics, we can transport other semantical notions to the setting
of LTL. Validity, as usual captures “unconditional truth-ness” of a formula. In this case,
it thus means, that a formula holds for all paths.

In a way, especially from the perspective of model checking, valid formulas are “boring”.
They express some universal truth, which may be interesting and gives insight to the
logics. But a valid formula is also trivial in the technical sense in that it does not express
any interesting properties. After all, it’s equivalent to the formula >. In other words, it’s
equally useless as a specification as a contradictory formula (one that is equivalent to ⊥),
as it holds for all systems, no matter what.

Valid formulas may still be useful. If one knows that one property implies another (resp.
that ϕ1 → ϕ2 is valid), one could model-check using formula ϕ1 (which might be easier),
and use that to establish that also ϕ2 holds for a given model. But still, unlike in logic
and theorem proving, the focus in model checking is not so much on finding methods to
derive or infer valid formulas.

However, the two problems — M |= ϕ vs. |= ϕ1 → ϕ2 — are not [. . . ]

The next illustrations are for propositional LTL, where we use p, q and similar for propo-
sitional atoms. We also indicate the states by “labelling” the corresponding places in the
infinite sequence by mentioning the propositional atoms which are assumed to hold at
that point (and leaving out those which are not). However, those are illustrations. For
instance, when illustrating π |=©p, the illustration shows that p holds at the second point
in time (the one indexed with 1). The absense of p for i = 0 in the picture is not meant to
say that it’s required that ¬p must hold at i = 0 etc. Similar remarks apply to the other
pictures.

3.2.3 Illustrations

π |= �p

•p0 •p1 •p2 •p3 •p4 . . .

π |= ♦p

•0 •1 •2 •p3 •4 . . .
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π |=©p

•0 •p1 •2 •3 •4 . . .

3.2.4 Some more illustrations

π |= p U q (sequence of p’s is finite)

•p0 •p1 •p2 •q3 •4 . . .

π |= p R q (sequence of qs may be infinite)

•q0 •q1 •q2 •p,q3 •4 . . .

π |= p W q

The sequence of ps may be infinite. (p W q ∼ p U q ∨�p).

•p0 •p1 •p2 •p3 •p4 . . .

3.2.5 The Past

The LTL presentation so far focuses on “future” behavior, and the “future” will also be
the focus when dealing with alternative logics (like CTL or the µ-calculus). In the section
we shortly touch opon switching perspective in that we use LTL to speak about the past;
similar switches could be done also for the mentioned other logics, among others. We don’t
go to deep. In a way, there is not much new here, if we just talk about the past instead of
the future. If we take a transition system (or graph or Kripke structure), in a way it’s just
“reversing the arrows” (i.e., working with the reverse graph etc.). It corresponds in a way
to “run the program in reverse”, and then future and past swap their places, obviously.
Basically, the same conceptual picture can be done for LTL, considering the linear paths
“backwards”. Of course, instead of talking about the next state, but backwards (and
using reverse paths as models), it’s probably clearer if we leave paths as model unchanged,
but speak about the previous state instead. In general, introduce past versions of other
temporal operators: eventually (in the future) becomes “sometime” earlier in the past
etc. In this way, we can also get a logic which allows to express properties that mix
requirements about the future and the past.

We focus on the past version of LTL. Doing so, it’s not true that future and past are
100% symmetric (as we perhaps implied by the above discussion about reversing the
perspective). What is asymmetric is the notion of path. It is an infinite sequence (or a
function N→ (AP → 2)), but that’s asymmetric insofar it has a start point, but no end.
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That will require a quite modest variation the way the satisfaction relation |= is defined
for the past operators. Apart from that, there is not really much new.

It can be noted: one of the student representations this year (the one about run-time
verification), will make use of a past-time LTL,

The past

Observation

• Manna and Pnueli [24] uses pairs (π, j) of paths and positions instead of just the path
π because they have past-formulas: formulas without future operators (the ones we
use) but possibly with past operators, like �−1 and ♦−1.

(π, j) |= �−1ϕ iff (π, k) |= ϕ for all k, 0 ≤ k ≤ j
(π, j) |= ♦−1ϕ iff (π, k) |= ϕ for some k, 0 ≤ k ≤ j

• However, it can be shown that for any formula ϕ, there is a future-formula (formulae
without past operators) ψ such that

(π, 0) |= ϕ iff (π, 0) |= ψ

The past: example

�(p→ ♦−1q)? (π, 0) |= �(p→ ♦−1q)

•p→♦−1q •p→♦−1q •p→♦−1q •p→♦−1q • . . .

(π, 0) |= q R (p→ q)

•p→q •p→q •p→q,q • • . . .

3.2.6 Examples

Some examples

Temporal properties

1. If ϕ holds initially, then ψ holds eventually.
2. Every ϕ-position is responded by a later ψ-position (response)
3. There are infinitely many ψ-positions.
4. Sooner or later, ϕ will hold permanently (permanence, stabilization).
5. The first ϕ-position must coincide or be preceded by a ψ-position.
6. Every ϕ-position initiates a sequence of ψ-positions, and if terminated, by a χ-

position.
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Formalization of “informal” properties

It can be difficult to correctly formalize informally stated requirements in temporal logic.

Informal statement: “ϕ implies ψ”

• ϕ→ ψ? ϕ→ ψ holds in the initial state.
• �(ϕ→ ψ)? ϕ→ ψ holds in every state.
• ϕ→ ♦ψ? ϕ holds in the initial state, ψ will hold in some state.
• �(ϕ→ ♦ψ)? “response”

It is not obvious, which one of them (if any) is necessarily what is intended.
Example 3.2.5. ϕ→ ♦ψ: If ϕ holds initially, then ψ holds eventually.

•ϕ • • •ψ • . . .

This formula will also hold in every path where ϕ does not hold initially.

•¬ϕ • • • • . . .

Example 3.2.6 (Response). �(ϕ→ ♦ψ)

Every ϕ-position coincides with or is followed by a ψ-position.

• •ϕ • •ψ • •ϕ,ψ . . .

This formula will also hold in every path where ϕ never holds.

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .

Example 3.2.7 (∞). �♦ψ

There are infinitely many ψ-positions.

•ψ • • •ψ • •ψ • . . .

• model-checking?
• run-time verification?

Note that this formula can be obtained from the previous one, �(ϕ → ♦ψ), by letting
ϕ = >: �(> → ♦ψ).
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Permanence: ♦�ϕ

Eventually ϕ will hold permanently.

• •ϕ • • •ϕ •ϕ •ϕ . . .

Equivalently: there are finitely many ¬ϕ-positions.

And another one

Example 3.2.8. (¬ϕ) W ψ

The first ϕ-position must coincide or be preceded by a ψ-position.

•¬ϕ •¬ϕ •¬ϕ •ψ •ϕ • • . . .

ϕ may never hold

•¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ •¬ϕ . . .

LTL example

Example 3.2.9. �(ϕ→ ψ W χ)

Every ϕ-position initiates a sequence of ψ-positions, and if terminated, by a χ-position.

• •ϕ,ψ •ψ •ψ •χ • •ϕ,ψ . . .

The sequence of ψ-positions need not terminate.

• •ϕ,ψ •ψ •ψ •ψ •ψ •ψ . . .
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Nested waiting-for

A nested waiting-for formula is of the form

�(ϕ→ (ψm W (ψm−1 W · · · (ψ1 W ψ0) · · · ))),

where ϕ,ψ0, . . . , ψm in the underlying logic. For convenience, we write

�(ϕ→ ψmW ψm−1W · · · W ψ1W ψ0).

. . . •ϕ,ψm •ψm •ψm •ψm−1 •ψm−1 . . .

. . . •ψ2 •ψ2 •ψ1 •ψ1 •ψ0 . . .

Explanation Every ϕ-position initiates a succession of intervals, beginning with a ψm-
interval, ending with a ψ1-interval and possibly terminated by a ψ0-position. Each interval
may be empty or extend to infinity.

Duality

Definition 3.2.10 (Duals). For binary boolean connectives ◦ and •, we say that • is the
dual of ◦ if

¬(ϕ ◦ ψ) ∼ (¬ϕ • ¬ψ).

Similarly for unary connectives: • is the dual of ◦ if ¬ ◦ ϕ ∼ •¬ϕ.

Duality is symmetric:

• If • is the dual of ◦ then
• ◦ is the dual of •, thus
• we may refer to two connectives as dual (of each other).

The ◦ and • operators are not concrete connectives or operators, they are meant as “place-
holders”. One can have a corresponding notion of duality for the unary operators ♦ and
�, and even for null-ary “operators”.



3 LTL model checking
3.2 LTL 69

Dual connectives

• ∧ and ∨ are duals:
¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ).

• ¬ is its own dual:
¬¬ϕ ∼ ¬¬ϕ.

• What is the dual of →? It’s 6←:

¬(ϕ 6← ψ) ∼ ϕ← ψ

∼ ψ → ϕ

∼ ¬ϕ→ ¬ψ

Complete sets of connectives

• A set of connectives is complete (for boolean formulae) if every other connective can
be defined in terms of them.

• Our set of connectives is complete (e.g., 6← can be defined), but also subsets of it, so
we don’t actually need all the connectives.

Example 3.2.11. {∨,¬} is complete.

• ∧ is the dual of ∨.
• ϕ→ ψ is equivalent to ¬ϕ ∨ ψ.
• ϕ↔ ψ is equivalent to (ϕ→ ψ) ∧ (ψ → ϕ).
• > is equivalent to p ∨ ¬p
• ⊥ is equivalent to p ∧ ¬p

Duals in LTL

• What is the dual of �? And of ♦?
• � and ♦ are duals.

¬�ϕ ∼ ♦¬ϕ
¬♦ϕ ∼ �¬ϕ

• Any other?
• U and R are duals.

¬(ϕ U ψ) ∼ (¬ϕ) R (¬ψ)
¬(ϕ R ψ) ∼ (¬ϕ) U (¬ψ)
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Complete set of LTL operators

Proposition 1. The set of operators ∨,¬,U ,© is complete for LTL.

We don’t need all our temporal operators either.

Proof. • ♦ϕ ∼ > U ϕ
• �ϕ ∼ ⊥ R ϕ
• ϕ R ψ ∼ ¬(¬ϕ U ¬ψ)
• ϕ W ψ ∼ �ϕ ∨ (ϕ U ψ)

3.2.7 Classification of properties

We have seen a couple of examples of specific LTL formulas, i.e., specific properties.
Specific “shapes” of formulas are particularly usefule or common, and they sometimes
get specific names. If we take © and U as a complete core of LTL, then already the
shape > U ϕ is so useful that it does not only deserve a special name, it even has a
special syntax or symbol, namely ♦. We have encountered other examples before as well
(like permanence) and in the following we will list some more. Another very important
classification or characterization of LTL formulas is the distinction between safety and
liveness. Actually, one should see it not so much as a characterization of LTL formulas, but
of properties (of paths). LTL is a specific notation to describe properties of paths (where
a property corresponds to a set of paths). Of course not all sets of paths are expressible
in LTL (why not?). The situation is pretty analogous to that of regular expressions and
regular languages. Regular expressions play the rule of the syntax and they are interpreted
as sets of finite words, i.e., as properties of words. Of course not all properties of words,
i.e. languages, are in fact regular, there are non-regular languages (context-free languages
etc.).

Coming back to the LTL setting: it’s better to see the distinction between safety and
liveness as a qualification on path properties (= sets or languages of infinite sequences
of states), but of course, we then see which kind of LTL formulas are capturing a safety
property or a liveness property.

Note (again) that “safety” or “liveness” is not property of a paths, it’s a property of path
properties, so to say. In other words, there will be no LTL formula expressing “safety”
(it makes no sense), there are LTL formulas which correspond to a safety property, i.e.,
expresse a property that belongs to the set of all safety properties.

There is a kind of “duality” between safety and liveness in that safety is kind of like the
“opposite” of liveness, but it’s not that properties fall exactly into these to categories.
There are properties (and thus LTL formulas) that are neither saferty properties nor
lifeness properties.
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Classification of properties

We can classify properties expressible in LTL. Examples:

invariant �ϕ

“liveness” ♦ϕ

obligation �ϕ ∨ ♦ψ

recurrence �♦ϕ

persistence ♦�ϕ

reactivity �♦ϕ ∨ ♦�ψ

• ϕ, ψ: non-temporal formulas

The invariant is a prominent example of a safety property. Each invariant property is
also a safety property. Some people even use the words synonymously (earlier ediitions of
the lecture), but according to the consensus or majority opinion, one should distinction
the notions. See for instance the rather authoritative textbook Baier and Katoen [2].
It’s however true that invariants are perhaps the most typical, easiest, and important
form of safety properties and they also represent the essence of them. In particular, if one
informally stipulates that safety corresponds to “never something bad happens”, then that
translates well to an invariant (namely the complete absence of the bad thing: “always
not bad”). That characterization of safety is due to Lamport.

Safety (slightly simplified)

• important basic class of properties
• relation to testing and run-time verification
• informally “nothing bad ever happens”

Definition 3.2.12 (Safety/invariant). • A invariant formula is of the form

�ϕ

for some first-order/prop. formula ϕ.
• A conditional safety formula is of the form

ϕ→ �ψ

for (first-order) formulae ϕ and ψ.

Safety formulae express invariance of some state property ϕ: that ϕ holds in every state
of the computation.
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Safety property example

Mutex Mutual exclusion is a safety property. Let Ci denote that process Pi is executing
in the critical section. Then

�¬(C1 ∧ C2)

expresses that it should always be the case that not both P1 and P2 are executing in the
critical section.

Observe: the negation of a safety formula is a liveness formula; the negation of the formula
above is the liveness formula

♦(C1 ∧ C2)

which expresses that eventually it is the case that both P1 and P2 are executing in the
critical section.

Liveness properties (simplified)

Definition 3.2.13 (Liveness). • A liveness formula is of the form

♦ϕ

for some first-order formula ϕ.
• A conditional liveness formula is of the form

ϕ→ ♦ψ

for propositional/first-order formulae ϕ and ψ.

Liveness formulae guarantee that some event ϕ eventually happens: that ϕ holds in at
least one state of the computation.

Connection to Hoare logic

• Partial correctness is a safety property. Let P be a program and ψ the post condition.

�(terminated(P )→ ψ)

• In the case of full partial correctness, where there is a precondition ϕ, we get a
conditional safety formula,

ϕ→ �(terminated(P )→ ψ),

which we can express as { ϕ } P { ψ } in Hoare Logic.
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Total correctness and liveness

• Total correctness is a liveness property. Let P be a program and ψ the post condition.

♦(terminated(P ) ∧ ψ)

• In the case of full total correctness, where there is a precondition ϕ, we get a condi-
tional liveness formula,

ϕ→ ♦(terminated(P ) ∧ ψ).

Duality of partial and total correctness

Partial and total correctness are dual.

Let

PC (ψ) , �(terminated → ψ)
TC (ψ) , ♦(terminated ∧ ψ)

Then

¬PC (ψ) ∼ PC (¬ψ)
¬TC (ψ) ∼ TC (¬ψ)

Obligation

Definition 3.2.14 (Obligation). • A simple obligation formula is of the form

�ϕ ∨ ♦ψ

for first-order formula ϕ and ψ.
• An equivalent form is

♦χ→ ♦ψ

which states that some state satisfies χ only if some state satisfies ψ.

Obligation (2)

Proposition 2. Every safety and liveness formula is also an obligation formula.

Proof. This is because of the following equivalences.

�ϕ ∼ �ϕ ∨ ♦⊥
♦ϕ ∼ �⊥ ∨ ♦ϕ

and the facts that |= ¬�⊥ and |= ¬♦⊥.
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Recurrence and Persistence

Recurrence

Definition 3.2.15 (Recurrence). • A recurrence formula is of the form

�♦ϕ

for some first-order formula ϕ.
• It states that infinitely many positions in the computation satisfies ϕ.

Observation

A response formula, of the form �(ϕ→ ♦ψ), is equivalent to a recurrence formula, of the
form �♦χ, if we allow χ to be a past-formula.

�(ϕ→ ♦ψ) ∼ �♦(¬ϕ) W−1 ψ

Recurrence

Proposition 3. Weak fairness1 can be specified as the following recurrence formula.

�♦(enabled(τ)→ taken(τ))

Observation

An equivalent form is

�(�enabled(τ)→ ♦taken(τ)),

which looks more like the first-order formula we saw last time.

Persistence

Definition 3.2.16 (Persistence). • A persistence formula is of the form

♦�ϕ

for some first-order formula ϕ.
• It states that all but finitely many positions satisfy ϕ2

• Persistence formulae are used to describe the eventual stabilization of some state
property.

1weak and strong fairness will be “recurrent” (sorry for the pun) themes. For instance they will show up
again in the TLA presentation.

2In other words: only finitely (“but”) many position satisfy ¬ϕ. So at some point onwards, it’s always ϕ.
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Recurrence and Persistence

Recurrence and persistence are duals.

¬(�♦ϕ) ∼ (♦�¬ϕ)
¬(♦�ϕ) ∼ (�♦¬ϕ)

Reactivity

Reactivity

Definition 3.2.17 (Reactivity). • A simple reactivity formula is of the form

�♦ϕ ∨ ♦�ψ

for first-order formula ϕ and ψ.
• A very general class of formulae are conjunctions of reactivity formulae.
• An equivalent form is

�♦χ→ �♦ψ,

which states that if the computation contains infinitely many χ-positions, it must
also contain infinitely many ψ-positions.

Reactivity

Proposition 4. Strong fairness can be specified as the following reactivity formula.

�♦enabled(τ)→ �♦taken(τ)

GCD Example

GCD Example

Below is a computation π of our recurring GCD program.

• a and b are fixed: π |= �(a .= 21 ∧ b .= 49).
• at(l) denotes the formulae (π .= {l}).
• terminated denotes the formula at(l8).

States are of the form 〈π, x, y, g〉.

π : 〈l1, 21, 49, 0〉 → 〈lb2, 21, 49, 0〉 → 〈l6, 21, 49, 0〉 →
〈l1, 21, 28, 0〉 → 〈lb2, 21, 28, 0〉 → 〈l6, 21, 28, 0〉 →
〈l1, 21, 7, 0〉 → 〈la2 , 21, 7, 0〉 → 〈l4, 21, 7, 0〉 →
〈l1, 14, 7, 0〉 → 〈la2 , 14, 7, 0〉 → 〈l4, 14, 7, 0〉 →
〈l1, 7, 7, 0〉 → 〈l7, 7, 7, 0〉 → 〈l8, 7, 7, 7〉 → · · ·
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GCD Example

Does the following properties hold for π? And why?

<+(1)-> �terminated (safety)
<+(2)-> at(l1)→ terminated
<+(3)-> at(l8)→ terminated
<+(4)-> at(l7)→ ♦terminated (conditional liveness)
<+(5)-> ♦at(l7)→ ♦terminated (obligation)
<+(6)-> �(gcd(x, y) .= gcd(a, b)) (safety)
<+(7)-> ♦terminated (liveness)
<+(8)-> ♦�(y .= gcd(a, b)) (persistence)
<+(9)-> �♦terminated (recurrence)

3.2.8 Exercises

Exercises

1. Show that the following formulae are (not) LTL-valid.
a) �ϕ↔ ��ϕ
b) ♦ϕ↔ ♦♦ϕ
c) ¬�ϕ→ �¬�ϕ
d) �(�ϕ→ ψ)→ �(�ψ → ϕ)
e) �(�ϕ→ ψ) ∨�(�ψ → ϕ)
f) �♦�ϕ→ ♦�ϕ
g) �♦ϕ↔ �♦�♦ϕ

2. A modality is a sequence of ¬, � and ♦, including the empty sequence ε. Two
modalities π and τ are equivalent if πϕ↔ τϕ is valid.
a) Which are the non-equivalent modalities in LTL, and
b) what are their relationship (ie. implication-wise)?

3.3 Logic model checking: What is it about?

3.3.1 The basic method

Logic model checking (1)

• a technique for verifying finite-state (concurrent) systems
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Often involves steps as follows

1. Modeling the system
• It may require the use of abstraction
• Often using some kind of automaton

2. Specifying the properties the design must satisfy
• It is impossible to determine all the properties the systems should satisfy
• Often using some kind of temporal logic

3. Verifying that the system satisfies its specification
• In case of a negative result: error trace
• An error trace may be product of a specification error

This obove list gives some ingredients, often used in connection with model checking. It’s
not to be understood as definition like “that’s model checking, end of story.”

For instance, there are techniques to model-check infinite systems, i.e., systems with infi-
nite states.

Logic model checking (2)

The application of model checking at the design stage of a system typically consists of the
following steps:

1. Choose the properties (correctness requirements) critical to the sytem you want to
build (software, hardware, protocols)

2. Build a model of the system (will use for verification) guided by the above correctness
requirements

• The model should be as small as possible (for efficiency)
• It should, however, capture everything which is relevant to the properties to be

verified
3. Select the appropriate verification method based on the model and the properties

(LTL-, CTL∗-based, probabilistic, timed, weighted . . . )
4. Refine the verification model and correctness requirements until all correctness con-

cerns are adequately satisfied

State-space explosion

Main causes of combinatorial complexity in SPIN/Promela (and in other model check-
ers.)

• The number of and size of buffered channels
• The number of asynchronous processes
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if  I is empty then  S satisfies   p

if  I is non-empty then  S can violate p

and  I will contain a counter-example that proves it

S

¬p

all possible

executions

all invalid

executions

I
executions that are

possible and invalid

The basic method

• System: L(S) (set of possible behaviors/traces/words of S)
• Property: L(P ) (the set of valid/desirable behaviors)
• Prove that L(S) ⊆ L(P ) (everything possible is valid)

– Proving language inclusion is complicated
• Method

– Let L(P ) be the language Σω \ L(P ) of words not accepted by P
– Prove L(S) ∩ L(P ) = ∅

∗ there is no accepted word by S disallowed by P

There are different model checking techniques. We will cover here the automata-theoretic
approach, which is for instance implemented in the SPIN model checker tool.

The basic method

Scope of the method

Logic model checkers (LMC) are suitable for concurrent and multi-threading finite-state
systems.

Some of the errors LMC may catch:

• Deadlocks {(two or more competing processes are waiting for the other to finish, and thus neither
ever does)}

• Livelocks {(two or more processes continually change their state in response to changes in the other
processes)}

• Starvation {(a process is perpetually denied access to necessary resources)}
• Priority and locking problems
• Race conditions {(attempting to perform two or more operations at the same time, which must be

done in the proper sequence in order to be done correctly)}
• Resource allocation problems
• Incompleteness of specification
• Dead code {(unreachable code)}
• Violation of certain system bounds
• Logic problems: e.g, temporal relations
• . . .
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1950 200419751968 19891980 1995 20001936

C C++

1976-1979: first experiments

with reachability analyzers

(e.g., Jan Hajek: ‘Approver’)

1981: Ed Clarke and

Allen Emerson

introduce the term

‘model checking’

and the logic CTL*

1980: earliest predecessor

of Spin: ‘pan’ (Bell Labs)

1993: BDDs and the

SMV model checker

(Ken McMillan, CMU)

1989: Spin version 0

verification of class of

-regular properties

1995: partial order

reduction in Spin.

LTL conversion in Spin.

(Doron Peled)

Spin
SMV

the two most popular logic model checking systems today:

Spin: an explicit state LTL model checker

based on automata theoretic verification method

targeting software verification (asynchronous systems)

SMV: a symbolic CTL model checker

targeting hardware circuit verification (synchronous systems)

(there are hundreds of other model checkers – there are also

several variants of Spin)

1986: Pierre Wolper

and Moshe Vardi

define the automata

theoretic framework

for LTL model checking

1986: Mazurkiewicz

paper on trace theory

1977: Amir Pnueli introduces

linear temporal logic for system

verification

LTL CTL

2001: support for

embedded C code in

Spin version 4.0

Spin 4.0

1968: two terms introduced:

software crisis

software engineering

1960: early work on

-automata theory,

e.g., by J.R. Buchi

2003: breadth-first

search mode added

in Spin version 4.1

Fortran

Algol

1975: Edsger Dijkstra’s paper

on Guarded Command Languages

1978: Tony Hoare’s paper on

Communicating Sequential Processes

1940-50: the first

computers are built

1955: early work on tense

logics (predecessors of LTL)

1936: first theory on

computability, e.g.,

Turing machines

key theoretical

developments

underlying Spin

pan
C

A bit of history

3.3.2 General remarks

On correctness (reminder)

• A system is correct if it meets its design requirements.

• There is no notion of “absolute” correctness: It is always wrt. a given specification
• Getting the properties (requirements) right is as important as getting the model of

the system right

Examples of correctness requirements

• A system should not deadlock
• No process should starve another
• Fairness assumptions

– E.g., an infinite often enabled process should be executed infinitely often
• Causal relations

– E.g., each time a request is send, and acknowledgment must be received (response
property)

On models and abstraction

• The use of abstraction is needed for building models (systems may be extremely big)
– A model is always an abstraction of the reality

• The choice of the model/abstractions depends on the requirements to be checked
• A good model keeps only relevant information

– A trade-off must be found: too much detail may complicate the model; too much
abstraction may oversimplify the reality

• Time and probability are usually abstracted away in LMC
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in real-life conflicts ultimately get resolved by human judgment.

computers, though, must be able to resolve it with fixed algorithms

after-you, no

after-you blocking

me-first, no

me-first blocking

Building verification models

• Statements about system design and system requirement must be separated
– One formalism for specifying behavior (system design)
– Another formalism for specifying system requirements (correctness properties)

• The two types of statements define a verification model
• A model checker can now

– Check that the behavior specification (the design) is logically consistent with
the requirement specification (the desired properties)

3.3.3 Motivating examples

Distributed algorithms

Two asynchronous processes may easily get blocked when competing for a shared re-
source

A Small multi-threaded program

Thread interleaving

A simpler example

3.4 Automata and logic

3.4.1 Finite state automata

FSA

Definition 3.4.1 (Finite-state automaton). A finite-state automaton is a tuple (Q, q0, ,Σ, F,→
), where



3 LTL model checking
3.4 Automata and logic 81

int   x,  y,  r;
int  *p, *q, *z;
int **a;

thread_1(void)      /* initialize p, q, and r */
{

p = &x;
q = &y;
z = &r;

}
thread_2(void)      /* swap contents of x and y */
{

r = *p;
*p = *q;
*q = r;

}
thread_3(void)      /* access z via a and p */
{

a = &p;
*a = z;
**a = 12;

}

3 asynchronous threads

accessing shared data

3 statements each

how many test runs are needed to

check that no data corruption can occur?

• the number of possible thread 

interleavings is...

9!      6!      3!
----- · ----- · ---- = 1,680
6!.3!   3!.3!    3!

placing 3 sets of 3 tokens in 9 slots

• are all these executions okay?

• can we check them all?  should we 

check them all?

• in classic system testing, how many 

would normally be checked?

start

1

3

2

1,680 possible executions
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• consider two 2-state automata

– representing two asynchronous processes

• one can print an arbitrary number of  ‘0’ digits, or stop

• the other can print an arbitrary number of ‘1’ digits, or stop

how many different combined executions are there?

i.e., how many different binary numbers can be printed?

how would one test that this system does what we think it does?

print ‘0’ print ‘1’

stop stop
Q: how could a model

checker deal with possibly

infinite executions?

• Q is finite set of states
• q0 ∈ Q is a distinguished initial state
• the “alphabet” Σ is a finite set of labels (symbols)
• F ⊆ Q is the (possibly empty) set of final states
• → ⊆ Q× Σ×Q is the transition relation, connecting states in Q.

What we called alphabet (with a symbol Σ) is sometimes also called label set (maybe
with symbol L) and sometimes the elements are also called actions. The terminology
“alphabet” comes from seeing automata to define words and languages, the word “action”
more when seeing the automaton as a system model that represents an (abstraction of) a
program.

The notion of finite state automata is probably known from elsewhere. It’s used directly
or in variations in many different contexts. Even in its more basic forms, the concept is
known under different names or abbreviations (FSA and NFA, finite automaton, finite-
state machine). Minor and irrelevant variations concern details like whether one has one
initial state or allows a set of initial states. Sometimes the name is also used “generically”,
for example, automata which carry more information than just labels on the transitions.
For instance, information which is interpreted as input and output on the states and/or
the transitions (also known Moore or Mealy machines). Such and similar variations are
no longer insiginificant deviations like the question whether one has one initial state or
potentially a set. Nonetheless those variations are sometimes also referred to as FSAs,
even if technically, they deviate in some more or less significant aspect from the vanilla
definition given here. They are called finite-state machines or finite-state automata simply
because they are state-based formalisms with a finite amount of states and some form of
transition relation in between (and potentially labelled or interpreted in some particular
way or with additional structuring principles).

Other names for related concepts is that of a (finite-state) transition system. And even
Kripke structures or Kripke models can be seen as a variation of the theme, though in
a more logical or philosphical context, the edges betwen the workds may not be viewed
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as tansitions or operational steps in a evolving system. In Baier and Katoen [2], they
call Kripke structure transition systems (actually without even mentioning Kripke struc-
tures).

We are not obsessed with terminology. But as preview for later: In the central construction
about model checking LTL, the system on the one hand will represented as a (finite)
transition system where the states are labelled and the LTL formula on the other hand
will be represented by an automaton whose transitions are labelled. The automaton will
be called Büchi-automaton. The definition corresponds to the one just given in Definition
3.4.1. What makes it “Büchi” is not the form or data structure of the automaton itself, it
the acceptance condition, i.e., the intepretation of the set of accepting states.

In the slides taken from Holzmann. Holzman uses the following notation notation: A.S
denotes the state S of automaton A, A.T denotes the transition relation T of A, and so
on. . . . If understood from the context, we will avoid the use of A._

Example FSA

q0 q1

q2 q4

q3

a0

a1 a2

a5

a3 a4

The automaton is given by the 6-letter alphabet (or label set) Σ = {a0, a1, . . . , a5}, by the
5 states q0, q2, . . . , q4, with initial state and one final state and the transitions as given in
the figure. “Technically”, one could enumerate the transitions by listing them as triples
or labelled edges one by one, like

→ = {(q0, a0, q1), . . . , (q2, a5, q4)} ⊆ Q× Σ×Q ,

but it does not make it more “formal” nor does it add clarity.

Example: An interpretation

The above automaton may be interpreted as a process scheduler :

If course, it’s still the “same” automaton. Using different identifiers for the states —
q0, q1, . . . vs. idle, ready, . . .— and analogously for the edge labels does not make it into
a different automaton. It’s the structure and what it does that matters, not the names
chosen to identify elements of the structure. Both automata are isomorphic which means
“essentially identical”.
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idlestart ready

executing end

waiting

start

run preempt

stop

block unblock

Determinism vs. non-determinism

Definition 3.4.2 (Determinism). A finite state automaton A = (Q, q0,Σ, F,−→) is deter-
ministic iff

q0
a→ q1 ∧ q0

a→ q2 =⇒ q1 = q2

for all q0, q1, and q2 from Q and all a in Σ.

As it came up in a discussion during the lecture: the definition of deterministic automaton
is not 100% equivalent with requiring that there is a transition function that, for each state
and for each symbol of the alphabet, yields the unique successor state. Our definition
basically requires that there is at most one successor state (by stipulating that, if there
are two successor states, they are identical). That means, the successor state, if it exists,
is defined by a partial transition function.

Sometimes, the terminology of deterministic finite-state automaton also includes the re-
quirement of totality, i.e., the transition relation is a total relation, wich makes it a total
function.

I.e., the destination state of a transition is uniquely determined by the source state and
the transition label. An automaton is called non-deterministic if it does not have this
property. We prefer to separate the issue of deterministic reaction to an input in a given
states (“no two different outcomes”) from the issue of totality.

It should also be noted that the difference betwenn deterministic (partial) automata and
deterministic total automamata is not really of huge importance. One can easily consider
a partial automaton as total by adding an extra “error” state. Absent successor states
in the partial deterministic setting are then represented by a transition to that particular
extra state. The reason why some presentations consider a deterministic automaton to
be, at the same time, also “total” or complete is, that, as mentioned, it’s not a relevant
big difference anyway. Secondly, a complete and deterministic automaton is the more
useful representation, either practically or also for other constructions, like minimizing a
deterministic automaton. But anyway, it’s mostly a matter of terminology and perspective:
every (non-total) deterministic automaton can immediately alternatively be interpreted
as total deterministic function. It’s the same in that any partial function from A to B,
sometimes written A ↪→ B can be viewed as total function A→ B⊥, where B⊥ represents
the set B extended by an extra error element ⊥.

The automaton corresponding to the process scheduler is deterministic.
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Runs

Definition 3.4.3 (Run). A run of a finite state automaton A = (Q, q0,Σ, F,→) is a
(possibly infinite) sequence

σ = q0
a0→ q1

a1→ . . .

• q
a→ q′ is meant as (q, a, q′) ∈ →

• each run corresponds to a state sequence (a word) over Q and a word over Σ

As mentioned a few times: the terminology is not “standardized” throughout. Here, on
the slides, we defined a run of a finite-state automaton as a finite or infinite sequence
of transitions. Words which more or less means the same in various contexts include
execution, path, etc. All of them are modulo details similar in that they are linear sequences
and refer to the “execution” of an automaton (or machine, or program). The definition
given contains “full information” insofar that it is a sequence of transitions. It corresponds
to the choice of words in Holzmann [20] (the “Spin-book”). The book Baier and Katoen
[2], for example, uses the word run (of a given Büchi-automaton) for an infinite state
sequence, starting in a/the initial state of the automaton.

For me, the definition of run as given here is a more “plausible” interpretation of the word.
A run or execution (for me) should fix all details that allows to reconstruct or replay what
concretely happened. Considering state sequences as run would leave out which labels are
responsible for that sequence. Not that it perfectly possible that q a→ q′ and q b→ q′ (for
two different labels a and b) even if the automaton is deterministic.

In a deterministic automaton, of course, a “word-run” determines a “state-run”.

As a not so relevant side remark: we stressed that modulo minor variations, a commonality
on different notions of runs, executions, (and histories, logs, paths, traces . . . ) is that they
are linear, i.e., they are sequences of “things” or “events” that occur when running a
program, automaton, . . . When later thinking about branching time logics (like CTL
etc), the behavior of a program is not seen as a set of linear behaviors but rather as a tree.
In that picture, one execution correspond to one tree-path starting from the root, so again,
one execution is a linear entity. There exist, however, approaches where one execution
is not seen as a linear sequence, but as something more complex. Typical would be a
partial order (a sequence corresponds to a total order). There would be different reasons
for that, mainly they have to do with modelling concurrent and distributed systems where
the total order of things might not be observable. Writing down in an execution that one
thing occurs before the other would, in such setting, just impose an artificial ordering,
just for the sake of having a linear run, which otherwise is not based on “reality”. In that
kind setting, one speaks also of partial order semantics or “true concurrency” models (two
events not ordered are considered “truely concurrent”). Also in connection with weak
memory models, such relaxations are common. Those considerations will not play a role
in the lecture: runs etc. are linear for us (total orderings).

Example run

• state sequences from runs: idle ready (execute waiting)∗
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idlestart ready

executing end

waiting

start

run preempt

stop

block unblock

• corresponding words in Σ: start run(block, unblock)∗

• A single state sequence may correspond to more than one word
• non-determinism: the same Σ-word may correspond to different state sequence

“Traditional” acceptance

Definition 3.4.4 (Acceptance). An accepting run of a finite state automatonA = (Q, q0,Σ, F,→
) is a finite run σ = q0

a0→ q1
a1→ . . .

an−1→ qn, with qn ∈ F .

In the scheduler example from before: a state sequence corresponding to an acceping run
is

idle ready executing waiting executing end .

The corresponding word of labels is

start run block unblock stop .

A accepting run (as defined here) determines both the state-sequence as well as the label-
sequence. In general, the state-sequence in isolation does not determine the label-sequence,
not even for deterministic automata. But in the case of the scheduler example, it does. The
definition of acceptance is “traditional” as it is based on 1) the existance of an accepting
sequence of steps which is 2) finite. The definition speaks of accepting runs. With that
definition in the background, it’s also obvious what it means that an automaton a word
over Σ or what it means to accept a state sequence. Later, when we come to LTL model
checking and Büchi-automata, the second assumption, that of finite-ness will be dropped,
resp. we consider only infinite sequences. The other ingredient, the (∃\)-flavor (there
exists an accepting run) will remain.

Angelic vs. daemonic choice The ∃ in the definition of acceptance is related to a point
of discussion that came up in the lecture earlier (in a slightly different context), namely
about the nature of “or”. I think it was in connection with regular expressions. Anyway,
in a logical context (like in regular expressions or in LTL), the interpretation is more or
less clear. If one takes the logic as describing behavior (the set of accepted words, the set
of paths etc.), then disjunction corresponds to union of models.
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When we come to “disjunction” or choice when describing an automaton or accepting
machine, then one has to think more carefully. The question of “choice” pops up only
for non-deterministic automata, i.e., in a situation where q0

a→ q1 and q0
a→ q2 (where

q1 6= q2). Such situations are connected to disjunctions, obviously. The above situation
would occur where q0 is supposed to accept a language described by aϕ1 ∨ aϕ2. In the
formula, ϕ1 describes the language accepted by q1 and ϕ2 the one for q2. The disjunction
∨ is an operator from LTL; if considering regular expressions instead, the notations “|” or
“+” are more commonly used, but they represent disjunction nonetheless. Declaratively,
disjunction may be clear, but when thinking operationally, the automaton in state q0 when
encountering a, must make a “choice”, going to q1 or to q2, and continue accepting. The
definition of acceptance is based on the existance of an accepting run. Therefore, the
accepting automaton must make the choice in such a way that leads to an accepting state
(for words that turn out to be accepted). Such kind of making choices are called angelic,
the support acceptance in a best possible way. Of course, they are also “prophetic” in that
choosing correctly requires foresight (but angels can do that. . . ). Of course, concretely, a
machine would either have to do backtracking in case a decision turns out to be wrong.
Alternatively one could turn the non-deterministic automaton to a deterministic one,
where there are no choices to made (angelic or otherwise). It corresponds in a way a
precomputation of all possible outcomes and exploring them at run-time all at the same
time (in which case one does not need to do backtracking). A word of warning though:
B\üchi automata may not be made deterministic. Furthermore, it’s not clear what to
make out of backtracking when facing infinite runs.

The angelic choice this proceeds successfully if there exists a successor state that allows
succesful further progress. There is also the dual interpretation of a choice situation which
is known as demonic, which corresponds to a ∀-quantification. The duality between those
two forms of non-determism shows up in connection with branching time logic (not so
much in LTL). Also the duality is visible in “open systems”, i.e., where one distinguishes
the systems from its environment. For instance for security, the envionment is often called
attacker or oppenent. This distinction is at the core also of game-theoretic accounts,
where one distinguishes between “player” (the part of the system under control) and the
“oppenent” (= the attacker), the one that is not under control (and which is assumed
to do bad things like attack the system or prevent the player from winning by winning
himself). In that context, the system can try do a good choice, angelically (∃) picking a
next step or move, such that the outcome is favorable, no matter what the attacker does,
i.e., no matter how bad the demonic choice of the opponent is (∀).

Accepted language

Definition 3.4.5 (Language). The language L(A) of automaton A = (Q, q0,Σ, F,→) is
the set of words over Σ that correspond to the set of all the accepting runs of A.

• generally: infinitely many words in a language
• remember: regular expressions etc.

For the given “scheduler automaton” from before, one can capture the language of finite
words by (for instance) the following regular expression
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start run ((preempt run)∗ | (block unblock)∗) stop .

In the context of language theory, words are finite sequences of letters from an alphabet
Σ, i.e., a word is an element from Σ∗, and languagues are sets of words, i.e., subsets of Σ∗.
For LTL and related formalisms, we are concerned with infinite words and languages over
infinite words.

Reasoning about runs

Sample correctness claim (positive formulation) If first p becomes true and afterwards
q becomes true, then afterwards, r can no longer become true

Seen negatively It’s an error if in a run, one sees first p, then q, and then r.

¬p
p

¬q
q

¬r
r

• reaching accepting state ⇒ correctness property violation
• accepting state represents error

The example illustrates one core ingredient to the automata-based approach to model
checking. One is given a property one wants to verify, like the informally given one from
above. In order to do so, one operates with its negation. In the example, that negation
can be straightforwardly represented as standard acceptance in an FSA. Being represented
by conventional automata acceptance, the detected errors are witnessed by finite words
corresponding to finite executions of a system.

As said, operating with the negated specification, that’s typical for the approach. What
is specific and atypical is that one can represent the property violation (i.e., the negated
formula) refering to finite sequences and thus capture it via conventional automata. In
the general case, that is not possible. A property (like the one above) whose violation
can be detected by a finite path is called a safety property. Safety properties form an
important class of properties. Note: safety property are not those that can be verified via
a finite trace, the definition refers to the negation or violation of the property: a safety
property can be refuted by the existance of a finite run.

That fits to the standard informal explanation of the concept, stipulating: “that never
something bad happens” (because if some bad thing happens, it means that one can detect
it in a finite amount of time). The slogan is attributed to Lamport [23]. That “bad” in
the sentence refers to the negation of the original property one wishes to establised (which
is seen thus as “good”). Note one more time: the original desired property is the safety
property, not its negation.

Still another angle to seeing it is: a safety property on path is a property has the following
(meta-)property: If the safety property holds for all finite behavior, then it holds for all
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behavior (all behavior includes inifinite behavior). For the mathematically inclined: this
is a formulation connected to a limit construction or closure or a continuity constraint,
when worked out in more detail (like: infinite traces are the limit of the finite ones etc).

Comparison to FSA in “standard” language theory

• remember classical FSA (and regular expressions)
• for instance: scanner or lexer
• (typically infinite) languages of finite words
• remember: accepting runs are finite
• in “classical” language theory: infinite words completely out of the picture

Some liveness property

“if p then eventually q.”

Seen negatively

It’s an error if one sees p and afterwards never q (i.e., forever ¬q)

¬p
p

¬q
q

• violation: only possible in an infinite run
• not expressible by conventional notion of acceptance

A moment’s thought should get the “silly” argument out of the way that says: “oh, if
checking the negation via an automaton does not work easily in a conventional manner,
why not use the original, non-negated property. One can formulate that without referring
to infinite runs and with standard acceptance.”.

Ok, that’s indeed silly in the bigger picture of things (why?). What we need (in the above
example) to capture the negation of the formula is to express that, after p, there is forever
¬q, which means for the sketched automaton, that the loop is taken forever, resp. that
the automaton stays infinitely long in the middle state (which is marked as “accepting”).
What we need, to be able to accepting infinite words is a reinterpretation of the notion
of acceptance. To be accepting is not just a “one-shot” thing, namely reaching some
accepting state. It needs to be generalized to involve a notion of visting states infinitely
often.

In the above example, it would seem that acceptance could be “stay forever in that accept-
ing state in the middle”. That indeed would capture the desired negated property. The
definition of “infinite acceptance” is a bit more general than that (“staying forever in an ac-
cepting state”), it will be based on “visiting an accepting state infinitely often” but it’s ok
to leave it in between. That will lead to the original notion of Büchi acceptance, which
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is one flavor of formalizing “infinite acceptance” and thereby capturing infinite word lan-
guages. There are alternatives to that particular definition of acceptance. In the lecture we
will encounter a slight variation called generalized Büchi acceptance. It’s a minor variation,
which does not change the power of the mechanism, i.e., generalized or non-generalized
Büchi acceptance does not really matter. However, the GBAs are more convenient when
translating LTL to a Büchi-automaton format. It may be (very roughly) compared with
regular languages and standard FSAs. For translating regular expressions to FSAs, one
uses a variation of FSAs with so-called ε-transitions (silent transitions), simply because
the construction is more straightforward (compositional). Generalizing Büchi automata
to GBAs does not involve ε-transitions but the spirit is the same: use a slight variation of
the automaton format for which the translation works more straightforwardly.

3.4.2 Büchi Automata

Büchi acceptance

• infinite run: often called ω-run (“omega run”)
• corresponding acceptance properties: ω-acceptance
• different versions: Büchi, Muller, Rabin, Streett, parity etc., acceptance conditions

– Here, for now: Büchi acceptance condition [9] [8]

Definition 3.4.6 (Büchi acceptance). An accepting ω-run of finite state automaton A =
(Q, q0,Σ, F,→) is an infinite run σ such that some qi ∈ F occurs infinitely often in σ.

Automata with this acceptance condition are called Büchi automata.

Example: “process scheduler”

idlestart ready

executing end

waiting

start

run preempt

stop

block unblock

• accepting ω-runs
• ω-language

infinite state sequence idle (ready executing)ω
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ω-word start (run preempt)ω

When describing languages over infinite words, one often uses the symbol ω to stand for
“infinity” (in other contexts, as well. Actually ω in general stands specific infinity as one
can have different forms and levels of infinities. Those mathematical fine-points may not
matter much for us. But it’s the “smallest infinity larger than all the natural numbers”,
which makes it an ordinal number in math-speak and being defined as the “smallest”
number larger than N makes this a limit or fixpoint definition. It’s connected to the
earlier, perhaps cryptic, side remark about safety and liveness, where it’s important that
infinite traces are the limit of the finite ones).

For instance, (ab)∗ stands for finite alternating sequences of a’s and b’s, including the
empty word ε, starting with an a and ending in a b. The notation (ab)ω stands for one
infinite word of alternating a’s and b’s, starting with an a (and not ending at all, of
course). Given an alphabet Σ, Σω represents all infinite words over Σ. As a side remark:
for non-trivial Σ (i.e., with more than 2 letters), the set Σω is no longer enumerable (it’s
a consequence of the simple fact that its cardinality is larger then the cardinality of the
natural numbers).

Sometimes, one finds the notation Σ∞ (or (ab)∞ . . . ) to describe infinite and finite words.
Remember in that context, that the semantics of LTL formulas is defined over infinite
sequences (paths), only.

In the above example, the “process scheduler” corresponds to one we have seen before.
Now, however, with a different state marked as accepting. The automaton is meant to
illustrate the notion of Büchi-acceptance; it’s not directly mean as some specific logical
property (or a negation thereof), nor do we typically think that transition systems repre-
senting the “program” work as language acceptors and thus have specific accepting states
they have to visit infinitely often.

Generalized Büchi automata

Definition 3.4.7 (Generalized Büchi automaton). A generalized Büchi automaton is an
automaton A = (Q, q0,Σ, F,→), where F ⊆ 2Q.

Let F = {f1, . . . , fn} and fi ⊆ Q. A run σ of A is accepting if

for each fi ∈ F, inf (σ) ∩ fi 6= ∅.

• inf (σ): states visited infinitely often in σ
• generalized Büchi automaton: multiple accepting sets instead of only one ( 6= “origi-

nal” Büchi Automata)
• generalized Büchi automata: equally expressive

As mentioned earlier, the motivation to introduce this (minor) variation of what it means
for an automaton to accept infinite words comes from the fact that it is just easier to
translate LTL into this format.

Büchi automata (generalized or not) is just one example of automata for infinite words.
Those are generally known as ω-automata. There are other acceptance conditions (Rabin,
Streett, Muller, parity . . . ), which we will probably not cover in the lecture. When allowing
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non-determinism, they are all equally expressive. It’s well-known that for finite-word
automata, non-determinism does not add power, resp. that determinism is not a restriction
for FSAs. The issue of non-determinism vs. determinism gets more tricky for ω-words.
Especially for Büchi-automata: deterministic BAs are strictly less expressive than their
non-deterministic variant! For other kinds of automata (Muller, Rabin, Street, parity),
their deterministic and non-deterministic versions are equally expressive. In some way,
Büchi-automata are thereby not really well-behaved, the other automata are nicer in that
way. The class of languages accepted by those automomata is also known as ω-regular
languages.

Stuttering

• treat finite and infinite acceptance uniformely
• finite runs as inifite ones, where, at some point, infinitely often “nothing” happens

(stuttering)
– Let ε be a predefined nil symbol
– alphabet/label set extended to Σ + {ε}
– extend a finite run to an equivalent infinite run: keep on stuttering after the end

of run. The run must end in a final state.

Definition 3.4.8 (Stutter extension). The stutter extension of a finite run σ with final
state sn, is the ω-run

σ (sn, ε, sn)ω (3.1)

Stuttering example

idlestart ready

executing end

waiting

start

run preempt

stop
ε

block unblock

The “process scheduler” example is now again used with a the “natural end state” as
accecpting. Examples of accepting state sequences resp. accepting words corresponding
to an accepting ω-run include the following:

idle ready executing waiting executing endω

and
start run block unblock stopω

So far, we have introduced the stutter extension of a (fintite) run. But runs will be
ultimately runs “through a system” or through an automaton. Of course there could be a



3 LTL model checking
3.4 Automata and logic 93

state in the automaton when it’s “stuck”. Note that we use automata or transition systems
to represent the behavior of the system we model as well as properties we like to check.
The stutter-extension on runs is concerned with the “model automaton” representing the
system. To me able to judge whether a run generated by the system satisfies an LTL
property, it needs to be an infinite run, because that’s how |= for LTL properties is
defined. The fact that in the construction of the algorithm, also the LTL formula (resp.
its negation) will be translated to an automaton is not so relevant for the stutter discussion
here.

Note also: the end-state is isolated!

It’s best, however, not to see the automaton itself as Büchi-automaton. Or all states are
accepting?

Anyway, here is the “automaton” from before again. Note that we have marked the “end”
state as accepting state again. Since the automaton represents the system, perhaps

It again should be noted that the automaton or transition system here is not such much
intended or motivated as a “language acceptor”: it’s supposed to capture (an abstraction
of) the behavior of a program or process, and in that setting one typically does not speak
of “accepting states”, it may have a end state, where the program terminates, but that’s
often not interpreted as “accepting a finite or infinite language”.

3.4.3 Something on logic and automata

From Kripke structures to Büchi automata

• LTL formulas can be interpreted on sets of infinite runs of Kripke structures
• Kripke structure/model:

– “automaton” or “transition system”
– transitions unlabelled (typically)
– states (or worlds): “labelled”, in the most basic situation: sets of propositional

variables

We have encountered different “transition-system formalisms”. One under the name Kripke
models (or Kripke structures), the other one automata (especially those with Büchi ac-
ceptance). [2] talk about transition systems instead of Kripke structures (and they allow
labels on the transitions, as well). The Kripke structures or transition systems are there to
model “the system” whereas the “automaton” is there to describe the behavior (the lan-
guage, i.e., infinite words over sets of propositions). On the one hand, those formalisms are
“basically the same”. On the other hand, there is a slight mismatch: the automaton is seen
as “transition- or edge-labelled”, the transition system is “state- or world-labelled”. The
mentioned fact that the transition systems used in [2] are additionally “transition-labelled”
is irrelevant for the discussion here, the labelling there serves mostly to be able to capture
synchronization (as mechanism for programming or describing concurrent systems) in the
parallel composition of transition systems.

As also mentioned earlier, there is aditionally slight ambiguity wrt. termonology. For
instance, we speak of states of an automaton or a state (= world) in a transition system
or Kripke structure. On the other hand, we also encountered the state-terminology as a
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mapping from (for example propositional) variables to (boolean) values. Similar ambiguity
is there for the notion of paths. It should be clear from the context what is what. Also the
notions are not contradictory. We will see that for the notion of “state” later as well.

Now, there may be different ways to deal with the slight mismatch of state-labelled transi-
tion system and edge-labelled automata on the other. The way that we are following here
is as follows. The starting point, even before we come to the question of Büchi-automata,
describes the behavior of Kripke structures in terms of statifaction per state or “world”,
not in terms of edges. For instance �♦p is true for a path which contains infinitely many
occurrence of p being true, resp. for a Kripke structure whose every run corresponds to
that condition. So, for all infinite behavior of the structure, p has to hold in infinitely
many states (not transitions); propositions in Kripke-structures hold in states, after all
(or Kripke structure are state labelled).

Remember also that we want to to check that the “language” of the system M is a
subset of the language described by a LTL-specification ϕ, like M |= ϕ corresponds to
L(M) ⊆ L(ϕ). To do that, we’d like to translate LTL-formulas (more specifically ¬ϕ)
into automata, but those are transition-labelled (as is standard for automata in general).
So, L(M) is a “language” of infinite words corresponding to sequences of “states” and
the state-attached information. On the other hand, L(ϕ) is a language containing words
referring to edge-labels of and automaton.

So there is a slight mismatch. It’s not a real problem, one could easily make a tailor-made
construction that connects the state-labelled transition systems with the edge-labelled
automaton and then define what it means that the combination is does an accepting run.
And actually, in effect, that’s what we are doing in principle. Nonetheless, it’s maybe
more pleasing to connect two “equal” formalisms. To do that, we don’t go the direct
way as sketched. We simply say how to interpret the state-labelled transition system as
edge-labelled automaton, resp. we show how in a first step, the transition system can be
transformed into an equivalent automaton (which is straighforward). This we have two
automata, and then we can define the intersection (or product) of two entities of the same
kind.

One might also do the “opposite”, like translating the automaton into a Kripke-structure,
if one wants both logical description and system desciption on equal footing. However,
the route we follow is the standard one. It’s a minor point anyway and on some level,
the details don’t matter. On some other level, they do. In particular, if one concretely
translates or represents the formula and the system in a model checking tool, one has to
be clear about what is what, and which representation is actually done.

BAs vs. KSs

• “subtle” differences
• labelled transitions vs. labelled states
• easy to transform one representation into the other
• here: from KS to BA.

– states: basically the same
– initial state: just make a unique initial one
– transition labels: all possible combinations of atomic props
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– states and transitions: transitions in A allowed if
∗ covered by accesssibility in the KS (+ initial transition added)
∗ transition labelled by the “post-state-labelling” from KS

KS to BA

Given M = (W,R,W0, V ). An automaton A = (Q, q0,Σ, F,→) can be obtained from a
Kripke structure as follows

transition labels: Σ = 2AP

states:

• Q = W + {i}
• q0 = i
• F = W + {i}

transitions:

• s
a→ s′ iff s→M s′ and a = V (s′) s, s′ ∈W

• i
a→ s ∈ T iff s ∈W0 and a = V (s)

We call the “states” here now W for worlds, to distinguish it from the states of the
automaton. We write→M the accesibility relation inM , to distinguish it from the “labelled
transitions” in the automaton.

Note: all states are accepting states (which is an ingredient of a Büchi automaton). Ba-
sically, the accepting conditions are not so “interesting” and making all states accepting
means: I am interesting in all behavior as long as it’s inifinite. The KS (and thus the
corresponding BA) is not there to “accept” or reject words. It’s there to produce infinite
runs without stopping (and in case of an end-state it means, conntinue infinitely anyway
by stuttering).

Here, the Kripke structure has initial states or initial worlds (W0), something that we did
not have when introducing the concept in the modal-logic section. At that point we were
more interested in questions of “validity” and “what kind of Kripke-frames is captured
by what kind of axioms”, things there are important in dealing with validity etc. In that
context, one has no big need in particular “initial states” (since being valid means for all
states/worlds anyway). But in the context of model checking and describing systems, it’s,
of course, important.

Note also, that the valuations V : W → (AP → B) attach to each world or “state” a
mapping, that assigns to each atomic proposition from AP a truth value from B. That
can be equivalently seen as attaching to each world a set of atomic propositions, i.e., it
can be seen as of type W → 2AP . Perhaps confusingling the assignment of (here Boolean
values) to atomic propositions, i.e., functions of type AP → B, are sometimes also called
state (more generally: a state is an association of variables to their (current) value, i.e.,
a state is a current content or snapshot of the memory). The views are not incompatible
(think of the program counter as a variable . . . )
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Example: KS to BA

A Kripke structure (whose only infinite run satisfies (for instance) �q and �♦p):

{p, q} {q}

The corresponding Büchi automaton:

i s0 s1
{p, q}

{q}

{p, q}

From logic to automata

• cf. regular expressions and FSAs
• for any LTL formula ϕ, there exists a Büchi automaton that accepts precisely those

runs for which the formula ϕ is satisfied

stabilization: “eventually always p”, ♦�p:

s0 s1

>

p

p

We will see the algorithm later . . .

(Lack of?) expressiveness of LTL

• note: analogy with regular expressions and FSAs: not 100%
• in the finite situation: “logical” specification language (regexp) correspond fully to

machine model (FSA)
• here: LTL is weaker! than BAs
• ω-regular expressions + ω-regular languages
• generalization of regular languages
• allowed to use rω (not just r∗)

Generalization of RE / FSA to infinite words ω-regular language correspond to NBAs

There exist a “crippled” form of “infinite regular expressions” that is an exact match for
LTL (but not relevant here).
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ω-regular properties strictly more expressive than LTL

Temporal property p is always false after an odd number of steps

p ∧�(p→©¬p) ∧�(¬p→©p)

start

p

¬p

∃t. t ∧�(t→©¬t) ∧�(¬t→©t) ∧�(¬t→ p)

start

true

¬p

As mentioned, there is a “mismatch” between LTL and Büchi-automata (resp. ω-regular
expressions): LTL is strictly weaker. One can live with that, of course, but both formalisms
seems kind of natural, so one can try to repair the mismatch (or at least analyze the
reason of the mismatch). The slides gives an example of an ω-regular property which is
not expressible in LTL (we don’t prove that it’s impossible, though).

To “repair” the mismatch, one could two things. One can ask, what needs to be taken away
from BAs resp. ω-regular expressions to make them fit to LTL, resp. is there an automaton
model that exactly fits LTL? Alternatively one can as: what needs to be added to LTL
to make it as expressing as BAs? The slide hints at the second approach: It’s a result
from [14] which states that allowing prefix existential quantification over one propositional
variable (the t in the example) is enough to repair the mismatch. That version if LTL is
sometimes called “existential LTL” or ∃LTL.

The Spin model checker resp. its input language Promela offers another mechanism that
gives the same expressivity to LTL as ω-regular languages. This mechanism is known as
never claims.

Spin has a translator ltl2ba and one can find translators from LTL to BA on the net as
well, for instance under http://www.lsv.fr/~gastin/ltl2ba/.

http://www.lsv.fr/~gastin/ltl2ba/
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Expressiveness

modal µ-calculus
ω-tree automata

CTL∗

CTL

ω-word automata
Büchi automata
(never claims)
∃LTL

LTL

LTL without ©

3.4.4 Implications for model checking

Core part of automata-based MC

• remember: MC checks “system against formula” S |= ϕ

Linear time approach

• ω-language of the behavior of S is contained in the language allowed by ϕ

• core idea then: instead of

L(S) ⊆ L(Pϕ)

do

L(S) ∩ L(Pϕ) = ∅

where S is a model of the system Pϕ represents the property ϕ

Compare: refutation in logic.

What’s needed for automatic MC?

L(S) ∩ L(Pϕ) = ∅
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Algorithms needed for

1. translation LTLto Büchi
2. language emptiness: are there any accepting runs?
3. language intersection: are there any runs accepted by two or more automata?
4. language complementation

• thankfully: all that is decidable

As explained earlier, a minor point is also that one prefers to bridge the mismatch between
transition systems on the one hand and Büchi-automata on the other. That’s done by
slighty massaging the state-labeld TS (or Kripke structure) into a BA representation, as
presented before. But that is a minor cosmetic thing.

How could one do it, then?

• system represented as Büchi automaton A
– The automaton corresponds to the asynchronous product of automataA1, . . . , An

(representing the asynchronous processes)

A =
n∏
i=1

Ai

• property originally given as an LTL formula ϕ
• translate ϕ into a Büchi automaton Bϕ
• check

L(A) ∩ L(B) = ∅

In this slide (and in some of the following) we from the pure “logical” aspects of model
checking (language inclusion etc.). As discussed, model checking is most profitably used
(for various reasons) when establishing or refuting properties of concurrent systems. So,
when trying to model check M |= ϕ we are often encountering a situation where the
system or model is not given as a “flat” or instructured big transition system. Instead,
it’s given by processes running in parallel or concurrently. Therefore, M consists of a
number of individual transition systems or automata, “running in parallel”. In standard
“language-theoretical” settings, like using automata modelling lexers or similar, the parallel
composition of automata plays not much of a role. In language-theoretic terms, it’s also
known as shuffle product of languages. For us, the parallel composition of processes is,
of course, important. The particular construction is called here asynchronous product
of automata. Whether that’s a good name, one may debate (later). One can see it
as exploring all possible interleavings if the steps of the parallel automata or transition
system.
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Better avoid complementation

In practice (e.g., in SPIN): avoid automata complementation:

• Assume A as before
• The negation of the property ϕ is automatically translated into a Büchi automaton
B (since L(B) ≡ L(B))

• By making the synchronous product of A and B (B ⊗A) we can check:

L(A) ∩ L(B) = ∅

• If intersection is empty: A |= ϕ, i.e., “property ϕ holds for A” or “A satisfies property
ϕ”

• else:
– A 6|= ϕ
– bonus: accepted word in the intersection counter example

3.4.5 Automata products

The section discusses two kinds of automata constructions, i.e., composition operators on
automata, called (here) synchronous and asynchronous product. In the context of LTL
model checking and the lecture, both serve two different purposes. The synchronous prod-
uct will capture language intersection, intersecting the language of automaton representing
an LTL formula (the negated property to verify). It corresponds to the standard product
construction perhaps known from standard FSAs. Only now we build the product between
Büchi-automata. Actually, we are interested in the product or intersection only between
two Büchi-automata, where one is special insofar that it comes from turning the program
into such an automaton. Thereby, one of the two automata has only accepting states
(and never gets really stuck since it’s stuttering). In that sense, the way the synchronous
product is used here is asymmetric.

The asynchnonous product here comes from the underlying compitation model. The
presentation here is based in [20] and thus influence by the choices as made in the Spin
model checker. In Spin, systems consists typically of a number of processes running in
parallel. The processes are programmed in a C-like notation. The input language of the
Spin model checker, called Promela, resembles C. Processes run concurrent, communicate
via shared variables and via channels. The semantics is a typical “interleaving” semantics.
If we ignore the channels, processes independently do their steps. That kind of behavior is
called asynchronous product here in the lecture (where we consider the system processes as
automata). As said, when thinking in terms of processes of threads, one would not use the
word “asynchronous product” but rather say, the processes run in parallel or concurrently.
However, a particular form of conccurency, namely indepedently or asynchronously. There
are other forms of concurrency, for instance for systems with a global clock, where there
processes run in lock-step. In that case, the processes run synchronlously in parallel (with
the lock as global synchronizing mechanism). In our setting here, processes run under
an interleaving model (“asynchronously”) and the composition of the system with the
“formula” is done synchronously.
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While talking about processes in Spin/Promela: as said, they don’t run under a global
clock as synchronizing mechanism. Instead, they can synchronize and communciate via
channels. In our presentation, channels won’t play a role. Nonetheless, automata equipped
with buffered channel communication between them are a well-established model for pro-
tocol specification. That’s why Spin’s “programming language” is basically processes +
channel. Formal models in that direction are known under various names and different
notations. One name is extended finite state automata where extended means “extended
by communication buffers” (mostly FIFO buffers).

Two kinds of products

• conceptually standard (but see terminating condition = definition of final states)

asynchronous

• prog’s running in parallel
• interleaving
• no synchronization!
• one automaton does something, the others not

synchronous

• together with (the automaton representing) the formula
• lock-step
• however: stuttering.

Deviating thereby from the classical notion of synchronous product.

Asychronous product

Definition 3.4.9 (Asynchronous product). The asynchronous product of two automata
A1 and A1, (written A1 ×A2, or A1 ‖ A2) is given as (Q, q0,Σ, F,−→) where

• Q = Q1 ×Q2,
• q0 = q1

0 × q2
0,

• Σ = Σ1 ∪ Σ2, and
• F = {(q1, q2) | q1 ∈ F1 or q2 ∈ F2}.

q1 →1 q
′
1 Par1

(q1, q2)→ (q′1, q2)

q2 →2 q
′
2 Par1

(q1, q2)→ (q1, q
′
2)

We define the product for the binary case, i.e., the product of two automata. The
definition is symmetric and associative, i.e. A1 × A2 = A2 × A1 and A1 × (A2 × A3) =
(A1×A2)×A3. The automata left and right of the equations are equal in the sense if being
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isomorphic. With associativity and commutativity, we can make use of $n$-ary product,
i.e., the product of n automata, for which one can write ∏

Ai. We could establish that
there is also a neutral element wrt. the product, and then the ∏n

i=1Ai is also defined
for n = 0 —the empty product should correspond to the neutral element— but let’s not
bother).

The core of the above definition is the way the steps are defined. The composed automaton
can make a step, of either the left or else the right automaton can make a step.

Other ingredients of the definition are more a matter of taste. For instance, we have based
the definition on automata with one initial state. One can easily do the “same” product
construction in case one has automata with multiple initial states.

Another point is the alphabet: here we take the union of the alphabets. Some presentations
would say one can compose only automata over the same alphabet (but also that is a non-
central point as one can always “extend” the Σ1 and Σ2 to a common alphabet, before
doing the composition).

More subtle is the definition of the final states. Remember also that the format of the
automaton does not distinguish between standard automata and Büchi automata. The
distinction is not based on the “format” or syntax of the automation, it’s based in the
interpretation of the automaton, in particular the interpretation of the acceptance set.

But for us, we don’t care here much: remember that the automata are actually transformed
from the system programs or processes. Those don’t really have accepting state, resp.
after the transformation from transition system or Kripke structure into an automaton,
all states are accepting (which is a way of saying, that acceptance does not really matter).
The good news is: if A1 and A2 are of that form that all their states are accepting, then
that also holds for A1 ×A2 in the above definition.

3n+1 inspired example

• 3n+1 problem
• Assume 2 non-terminating asynchronous processes A1 and A2:
• A1 tests whether the value of a variable x is odd, in which case updates it to 3∗x+1
• A2 tests whether the value of a variable x is even, in which case updates it to x/2

Question Does the corresponding function terminate for all inputs x?

• Let ϕ the following property: �♦(x ≥ 4) (negated ♦�(x < 4))

In the problem, “termination” is meant reaching the endless cycle 4→ 2→ 1→ 4 . . ..

The “3n + 1” problem is a long-standing open problem. It’s known under different
names (Collatz’s problem, Hasse-Collatz problem, Ulam’s conjecture, Kakutani’s prob-
lem, Thwaites conjecture, Hasse’s algorithm, or the Syracuse problem). The problem is
not intended of what model checking can do or is good at. It’s not even intended to
illustrate a typical way asynchronous products are used in practice. Remember that the
asynchronous product is intended to model concurrency. The problem, however, is not
concurrent.
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What makes it also atypical for standard model checking is that it’s an infinite problem.
The formulation makes a statement for arbitrary n, and that’s intended for infinitely
many natural numbers (the problem is not meant as saying the function terminates for
all numbers up-to MAXINT . . . ). The dependence on some input or some other parameter
makes it a parametrized problem and parametrized model checking is a sub-genre that tries
to come up with techniques dealing with parametrization. The parameter can be an input
(like for the 3n+ 1-problem), but more conventional would be to check some property for
a system P1 ‖ . . . Pn consisting of an arbitrary number n of copies of the same system,
where all the P1 are identical (perhaps up-to their process identity). Think of using model
checking mutual exclusion not for an implementation of the the 5-philophers problem but
for the n-philosophers problem.

Example: async product

The asynchronous product is given actually slightly (but not conceptually) deviating from
the mathematical definition given above. The definition given before was for automata,
but now, we are considering “processes” or Kripke structures or transition systems. But
also that is not 100% correct according to the earlier definition or at least not at first sight.
Transistion systems were introduced as “graphs” where the states give values to atomic
propositions. That’s a very low level way of seeing things.

The example make use of transition system which allow more convenience in notation (one
could call it “applied transition systems” or “symbolic”). It’s still ultimately the same,
but we allow to have programming variables (x in this case) which can be changed and
checked. We don’t have just a set of proposistional variables any more, but predicates over
the programming variables (like even(x) and odd(x)). As far as the logic is concerned,
that seems to go into the direction of “first-order LTL” (having sorts and predicates and
variables), but we are not actually doing that, for instance we don’t introduces ∀ and ∃,
which gives first-order logic it’s actual power). The extension is more to the transition-
system side of things and odd(x) is not so much seen as a predicate of the logic, but
a boolean expression or guard as used in the underlying programming languages. On
the LTL side of things, odd(x) can be seen as a proposition which is either true or not
depending on the current value of x. So the interpretation of the transition systems and
their behavior and how it connects to LTL should be fairly transparent.

The transition systems here also deviate from the mathematical core definition in that
the transitions are labelled. The labels are not meant as being symbols from an alphabet
that the LTL speaks about. LTL speaks about the states. The transition labels are here
represent actions that help to specify what the (“symbolic”) transition system does when
taking the edge. The interpretation of the label x := 3x+ 1 is fairly obvious, the intension
is that the value of x is accoringly modified when going from the source-state to the target
state. The other kind of transition is marked by a boolean condition or guard (odd(x)
or even(x)). The intension is that it’s a “conditional transition” that can be taken if the
guard is true in the source state.

Spin, resp. Promela allows that kind of “statements”. The language is Promela resembles
quite C, but that’s a point where the semantics of Spin deviates significantly from C.
Writing in C the sequence
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( x%2); x = 3x+1; . . .

simply calculates the remainder of x modulo 2, then forgets the outcome and updates the
value of x according to the expression on the right-hand side of the assignemt. In other
words, the above snippet can be simplified to x = 3x+1. Now, in Spin, the first expression
is interpeted as guard: in the tradition of C, the expression x%2 is calculated. In case the
outcome is 0, it’s interpeted as false if different from 0, it’s seen as true. That means
x%2 corresponds (in a C-typical formulation) to the predicate or guard odd(x). In case the
guard evaluates to true, it does not do anything (as in C), in case it evaluates to false, it
blocks and prevent the rest of the process from proceeding. So, it acts as a synchronizing
construct insofar, the transition is enabled or not depending on the “circumstances”). Of
course, the circumcstances, i.e., the value of x, can change (by interference from a second
process), at which point the transition becomes enabled and the process can thereby
proceed.

The explanation should be enough to understand the example. A few words on “guards”
in concurrent programs might still be of more general interest. Syntactically, the solution
in Spin is a bit obscure one may say. It basically says, if one uses an expression in place of a
statement, then the expression has synchronizing powers (like stopping the execution of the
process). That’s a truly radical change of interpretation of expressions! Synchronization
is at the core of concurrent programming; hence it’s probably a bad idea to hide some
key ingredient, conditional guards, in reinterpreting expressions (“BTW, expressions now
mean sometimes something really novel and powerfull compared to C, even if they look
the same”). in defense one could say, a decent C programmer would probably not use
expressions as assignments anyway, bit still.

Other languages would make the special nature of guards more obvious, namely by intro-
ducing special syntax for it. If b is a boolean expression, then if one wants to use it with
synchronizing power, the programmer would have to write special syntax, writing perhaps
~await(b)$ or similar, making that transparent.

For people experienced in concurrenty programming there is another concerning issue wrt.
to guards odd or similar. The previous discussion concentrated on “syntactical” issues or
language pragmatic (like questioning the wisdom of avoiding special syntax). The point
here may be even more serious. In the transition systems below (and in the code snippet
above), there are two steps, namely first the guard is check, for instance odd(x) and, in case
the guard had evaluated to true and after taking the guard-labelled transition, then the
assignment is done. The problem is: the guard itself has no effect (guards and expression
are supposed to be side-effect free); it intended to enable (or not) the subsequent effect.
The problem is: whether or not the guard is true is checked but that may change after the
odd transition and before taking the subsequent x := 3x+1 transition. In other words, the
two transitions are not atomic which may in general lead to problems. On a related note:
it’s also questionably whether the assignment x := 3x+ 1 is guaranteed to be atomic.

To be useful as concurrent programming languare or language, Spin offers the possibility
enforce atomicity (there are slightly different ways which don’t concern us here). Basically
one can group the two steps togther, [odd(x);x := 3x + 1] where we use brackets [ and
] to denote that the execution should be atomic resp., without interleaving (Spin would
use keywords like atomic{...} or d_step{...}. In any case: the shown pattern
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is rather common: in an atomic section, the first one is the guard, and the rest is the
effect. It is not so comming (and a bit tricky) to use guards in the middle of an atomic
section. Since that pattern is so common, other languages would offer specially syntax for
it await(b){statements}) and there are different names for it (conditional crictical
region etc). Also related in the notion of guarded commands. In transition systems, instead
of having two separate transation, one would cound then have labels of the general formal
g.a→ , where g is the guard and a the action or effect. In our case, one label could be
odd(x) . x := 3x+ 1.

Anyway, atomicity is not really a problem in our particular (not very typical) example, as
the 3n+ 1-problem is not really concurrent anyway.

A1 and A2

s0start s1

s0start s1

odd(x)

x := 3x+ 1

even(x)

x := x/2

A1 ×A2

s00start s01

s10start s11

odd(x)

x := 3x+ 1

even(x)x := x/2

odd(x)

x := 3x+ 1

even(x)x := x/2

In the product automaton, the state s11 is unreachable. When starting at the initial state,
the dotted arrows can never be taken.

Tests or guards on transitions

• guarded commands (thanks to Dijsktra)
• conditional transitions, predicated on a guard
• Promela semantics, an expression statement has to evaluate to non-zero to be exe-

cutable (enabled). So to test whether a variable x is even, we write !(x%2) and x%2
for checking whether x is odd.
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E.g.: given x=4, !(4%2) evaluates to !(0) or written more clearly as !(false) which
is (true).

Example: Pure automaton

We have made use of the more user-friendly version of the transition systems, referring
to variables like x and transitions with labels that have a “semantics”. Besides that, the
transition system description as “symbolic”, not concrete as it referred to x and not a
concrete value of x. So, the description was still a “parametrized problem”. We are here
not looking into parametrized problems. We can only model check concrete (non-abstract,
non-symbolic) models. So we need to pick a concrete initial value for x. The picture below
chooses x = 4. This leads to what Holzmann calls a “pure” transition system. Now, the
value of x becomes part of the “transition-system state”. So the “state” now consists of
the “control-flow state” (for instance (s0, s0) written also s00) together with the state of
the memory, i.e., the value of x. In the pure transition system, there are 3 states whose
control-flow state, which can be seen as the value of the program-counter(s) is s00, namely
for x = 4, x = 2 and x = 1.

In the states, s00 is supposed to represent a starte where both of the original automata
A1 and A2 are in their respective initial state s0 and where x has the value 4.

The labelling of the edges can be ignored; they are needed only for the non-pure repre-
sentation, in the pure transition system they are just kept for clarity. In particular: the
LTL formula specifying termination does not speak about those labels.

We make “short labels” where e and o stands for even(x) and odd(x) in case of the
transitions corresponding to guards, and the action labels are similarly shortened. As
said, the labels are not really part of the pure transition system anyway. For example,
even(x) is true in state (for instance) s004 anyway (with x understood as carrying the
even value 4). So that fact is just capture by a transition s004 → s014 (and the label
is more a reminder for the ready why there is that transition). Since, in that state, the
guard odd(x) is false, there are no outgoing transitions marked with odd(x): true guards
are represented by transitions in the pure representation, false guards represented by the
absence of a transition.

s00, 4start s01, 4 s00, 2

s01, 1 s00, 2

s10, 1

e /2

e

/2
o

3_ + 1

Remarks

• Not all the states in the product necessarily reachable from q0. TTheir reachability
depends on the semantics given to the labels in A.L The interpretation of the labels
depends on Promela semantics as we’ll see in a future lecture)
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• The transitions in the asyc. product automaton are the transitions from the compo-
nent automata arranged such that only one of the components automata can execute
at a time ⇒ interleaving

• Promela has also rendez-vous synchronization (A special global variable has to be
set)

• Some transitions may synchronize by sending and receiving a message
• For hardware verification, the asynchronous product is defined differently: each of

the components with enabled transitions is making a transition (simultaneously).
And, in my humble opinion, should then better not be called asynchronous product,
but synchronous.

From Holzmann pp.554. see also Peled pp. 90

Synchronous product

In the following we define the synchronous product for 2 Büchi-automata in a special case.
The special case is that for one of the automata, all its states are accepting. That the
case we are interested in here, where one of the BAs, the one describing the “system”, is
translated from the transition system or Kripke structure. In that translation, all states
are marked as accepting, so we can focus on that special case.

Actually, the general case for two arbitrary BAs is slightly more complex. The slightly
tricky part is how to define the accepting states of the product. In principle, part from that,
the definition is straightforward. The general intention of such a “product” construction is
that he composed machine accepts the intersection of the languages of its two constituents.
That’s conceptually achieved that both automata run “in lock-step”. For standard (non-
Büchi) FSA, a commong word is accepted, if both A1 and A2 reach a respective accepting
state. That is easy. Now that we have “repeated” reachability of accepting states, it
becomes more tricky: each A1 and A2 has to reach at least one of its accepting states
infinitely often. But it’s not that re-visit they resp. accepting state always at the same
time! That makes the general construction a bit more tricky (but not really challenging;
one can figure it out oneself). If one of the automata, say A1, has only accepting states,
things get more easy: one can basically ignore A1, and base acceptance of the product
construction in the accepting states of A2 alone. That’s also intuitively what we want to
do in model checking. The acceptance condition of A2 represents a LTL requirement we
want to check. The other automaton just “executes”, there are no good runs or bad run
in A1 as such, the goodness/badness of the runs is judged by the acceptance conditions in
A2.

It should be noted that in Holzmann [20] the product automaton for NBAs is defined
incorrectly (and in previous years, that error showed up also in our slides). As another
side remark: for generalized BAs, the construction of the accepting conditions for the
sychronous product is slightly more elegant compared to standard BAs.

Definition 3.4.10 (Synchonous product (special case)). The synchronous product of two
finite automata A1 and A2 (written A1 ⊗ A2), for the special case where F1 = Q1, is
defined as finite state automaton A = (Q, q0,Σ, F,→) where:

• Q = Q1 ×Q1
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• q0 = (q01, q02)
• Σ = Σ1 × Σ2.
• −→ = −→1 × −→2
• (q1, q2) ∈ F if q2 ∈ F2

(finish later) Let the system automaton stutter

• asymmetric situation
• one automaton: “system”
• second one:

– “recognizer”
– automaton that represents the logical LTL formula

• for system automating: add stuttering
• stutter: a self-loop labeled with ε at every every state in without outgoing transitions

Definition 3.4.11 (Stuttering synchonous product). The synchronous product of two
finite automata P and B (written P ⊗ B is defined as finite state automaton A =
(Q, q0,Σ, F,→) where:

• Q = Q′1 ×Q1, where P ′ is the stutter closure of P
– A self-loop labeled with ε is attached to every state in P without outgoing

transitions in P.T )
• A.s0 is the pair (P.s0, B.s0)
• A.L is the set of pairs (l1, l2) such that l1 ∈ P ′.L and l2 ∈ B.L
• A.T is the set of pairs (t1, t2) such that t1 ∈ P ′.T and t2 ∈ B.T
• A.F is the set of pairs (s1, s2) such that s1 ∈ P ′.F or s2 ∈ B.F

Example: synch. product for 3n+ 1 system and property

the example: B ⊗ Π Ai

s0

s1

true

x<4

x<4

B

all paths with
accept states
dead-end here;
not stutter possible

are there any
accepting cycles?

if not, then the
property <>[](x<4)
cannot be satisfied
and its negation holds

!<>[](x<4)
[]![](x<4)
[]<>!(x<4)
[]<>(x>=4)

⊗⊗⊗⊗

s0,s0,
4,s0

s0,s1
4,s0

s0,s0
2,s0

s0,s1
2,s0

s1,s0
1,s0

s0,s0
1,s0

!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1
x=x/2

(x%2)

s1,s0
1,s1

s0,s0
1,s1

s0,s1
2,s1

s0,s0
4,s1s0,s0

4

s0,s1
4

s0,s0
2

s0,s1
2

s1,s0
1

s0,s0
1

!(x%2)

x=x/2

!(x%2)

x=x/2

(x%2)

x=3x+1

i=1

2

• We require the stutter-closure of P (as P is a finite state automaton (the asyn-
chronous product of the processes automata) and B is a standard Büchi automaton
obtained form a LTL formula

• Not all states necessarily reachable from q0
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s0
++ s1kk //

��

s2

��
s3 // s4 //

]]

s5

Figure 3.1: Strongly connected component

• Main difference between asynchronous and synchronous products: labels and transi-
tions. for synchronous product:
– joint transitions of the component automata
– labels are pairs: the combination of the two labels of the original transitions in

the component automata
• In general here P ⊗ B 6≡ B ⊗ P , but given that in SPIN B is particular kind of

automaton (labels are state properties, not actions), we have then P ⊗B ≡ B ⊗ P

3.5 Model checking algorithm

3.5.1 Preliminaries

Algorithmic checking for emptyness

• for FSA: emptyness checking is easy: reachability
• For Büchi:

– more complex acceptence (namely ω-often)
– simple, one time reachability not enough

⇒ “repeated” reachability
⇒ from initial state, reach an accepting state, and then again, and then again . . .
• cf. “lasso” picture
• technically done with the help of SCCs.

Strongly-connected components

Definition 3.5.1 (SCC). A subset S′ ⊆ S in a directed graph is strongly connected if
there is a path between any pair of nodes in S′, passing only through nodes in S′.
A strongly-connected component (SCC) is amaximal set of such nodes, i.e. it is not possible
to add any node to that set and still maintain strong connectivity.

maximality.

SCC example

• Strongly-connected subsets: S = {s0, s1}, S′ = {s1, s3, s4}, S′′ = {s0, s1, s3, s4}
• Strongly-connected components: Only S′′ = {s0, s1, s3, s4}
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Checking emptiness

Büchi automaton A = (Q, s0,Σ,→, F ) with accepting run σ

As Q is finite, there is some suffix σ′ of σ s.t. every state on σ′ is reachable from any other
state on σ′

• I.a.w: those set of states is strongly connected.
• This set is reachable from an initial state and contains an accepting state

Checking non-emptiness of L(A) is equivalent to finding a SCC in the graph of A that is
reachable from an initial state and contains an accepting state

Emptyness checking and counter example

• different algos for SCC. E.g.:
– Tarjan’s version of the depth-first search (DFS) algorithm
– SPIN nested depth-first search algorithm

• If the language L(A) is non-empty, then there is a counterexample which can be
represented in a finite way
– It is ultimately periodic, i.e., it is of the form σ1σω2 , where σ1 and σ2 are finite

sequences

3.5.2 The algorithm

Model checking algorithm

• Let A be the automaton specifying the system and B the automaton corresponding
to the negation of the property ϕ

1. Construct the intersection automaton C = A ∩B
2. Apply an algorithm to find SCCs reachable from the initial states of C
3. If none of the SCCs found contains an accepting state

• The model A satisfies the property/specification ϕ
4. Otherwise,

a) Take one strongly-connected component SC of C
b) Construct a path σ1 from an initial state of C to some accepting state s of SC
c) Construct a cycle from s and back to itself (such cycle exists since SC is a

strongly-connected component)
d) Let σ2 be such cycle, excluding its first state s
e) Announce that σ1σω2 is a counterexample that is accepted by A, but it is not

allowed by the property/specification ϕ



3 LTL model checking
3.5 Model checking algorithm 111

3.5.3 LTL to Büchi

LTL to Büchi

• translation to Generalized Büchi GBA
• cf. Thompson’s construction
• structural translation
• crucial idea: connect semantics to the syntax.
• compare Hintikka-sets or similar constructions for FOL

Source and terminology: Baier and Katoen [2]

• transition systems TS:
– corresponds to Kripke systems
– state-labelled (transition labels irrelevant)
– labelled by sets of atomic props: Σ = 2AP

– “language” or behavior of the TS: (traces): infinite sequences over Σ

Illustrative examples (5.32)

1. �♦green
2. �(request → ♦response)
3. ♦�a

�♦green

¬green green green

¬green

�(request → ♦response)

¬a ∨ b a ∧ ¬b ¬b

b
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♦�a

>
a

a

¬a
>

Reminder: Generalized NBA

• equi-expressive than NBA
• used in the construction
• different way of defining acceptance

– acceptance: set of acceptance sets = set of sets of elements of Q.
– acceptance: each acceptance set Fi must be “hit” infinitely often

Basic idea for Gϕ

• not the construction yet, but: “insightful” property
• find a mental picture:

– what are the states of the automaton
– (and how are they connected by transitions)

• Ai ∈ Σ, sets of atomic props
• Bi : “extended” (by sub-formulas of ϕ), i.e., Bi ⊇ Ai.

Namely those that are intended to be in the “language of that state”. I.e., the Bi’s form
the states of Gϕ.

Given σ = A0A1A2 . . . ∈ L(ϕ).

Extension to σ̂ = B0B1B2 . . .

ψ ∈ Bi iff Ai, Ai+1Ai+2 . . .︸ ︷︷ ︸
σi

|= ψ

σ̂ = run (ultimately: state-sequence) in Gϕ

Rest

Cf. FSAs

• states as “sets” of “words” (language resp. set of ltl formulas)
• cf. Myhill-Nerode
• a bit different, (equivalence on languages of finite words)
• represent states by equivence classes of words
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Closure of ϕ

• related to Fisher-Ladner closure
• See page 276
• “states” Ai from the mental picture
• what’s a “closure” in general?
• Extending Ai to Bi not by all true formulas, but only those that could conceivably

play a role in an automaton checking ϕ
• ⇒ achieving “finiteness” of the construction

How to extend Ai’s

• not by irrelevant stuff (closure of ϕ).
• two other conditions:

– avoid contradictions (consistency)
– include logical consequences3 (maximality)

• maximally consistent sets! (here called elementary)
• in one state: local perspective only (but don’t forget U )
• Cf: KS has an interpretation for each AP, here now (in the intended BA),

“interpretation” for all relevant formulas “in” each state (subformulas of ϕ and their
negation)

Elementary sets/maximally consistent sets

• given ϕ
• elementary: “maximally consistent set of subsets (of the closure of ϕ)”
• consistent: “no obvious contradictions”
• maximally consistent: sets for formulas ψ in the closure of ϕ s.t., there exists some

path π s.t. π |= ψ.
– wrt. propositional logic
– locally consistent wrt. until

• “maximal”

Example: ϕ = a U (¬a ∧ b)

{a, b} ⊆ closure(ϕ)

{a, b,¬a,¬b,¬(¬a ∧ b),¬a ∧ b, ϕ,¬ϕ}?

page 276/277
3hence the notion of “closure”
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Example: ϕ = a U (¬a ∧ b)

σ = {a}{a, b}{b} . . . = A0A1A2 . . .

• Extending (for example): A0 to B0
• extending σ to σ̂

Construction of GNBA: general

• given AP and ϕ
• given ϕ, construct an GNBA such that

L(B) = words(ϕ)

• 3 core ingredients
1. states = sets of formulas which (are suppsed to) “hold” in that state
2. transition relation: connect the states appropriately,
3. transitions labelled by sets of AP.

• labeled transition connected states to match the semantics: for ©ϕ:
go from a state containing©ϕ to a state containing ϕ. Label the transition with the
APs from the start state.

Transition relation

δ : Q× 2AP → 2Q

• if A 6= B ∩AP: δ(B,A) = ∅
• if A = B ∩AP, then δ(B,A) is the set B′ such that

– for every ©ψ ∈ closure(ϕ):

©ψ ∈ B iff ψ ∈ B′

– for every ϕ1 U ϕ2 ∈ closure(ϕ):

ϕ1 U ϕ2 ∈ B iff ϕ2 ∈ B or
(ϕ1 ∈ B and ϕ1 U ϕ2 ∈ B′)

Accepting states

Fϕ1Uϕ2 = {B ∈ Q | ϕ2 ∈ B or ϕ1 U ϕ2 /∈ B} .
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3.5.4 Rest

3.6 Final Remarks

3.6.1 Something on Automata

Kripke Structures and Büchi Automata

Observation

• In Peled’s book “Software Reliability Methods” Peled [27] the definition of a Büchi
automaton is very similar to our Kripke structure, with the addition of acceptance
states
– There is a labeling of the states associating to each state a set of subsets of

propositions (instead of having the propositions as transition labels)
• We have chosen to define Büchi Automata in the way we did since this definition is

compatible with the implementation of SPIN
– It was taken from Holzmann’s book “The SPIN Model Checker” Holzmann [20]

Automata Products

Observation

• We have defined synchronous and asynchronous automata products with the aim of
using SPIN (based on Holzmann’s book)
– The definition of asynchronous product is intended to capture the idea of (soft-

ware) asynchronous processes running concurrently
– The synchronous product is defined between an automaton specifying the con-

current asynchronous processes and an automaton obtained from an LTL formula
(or obtained from a Promela never claim)

– The purpose for adding the stutter closure (in the definition of the synchronous
product) is to make it possible to verify both properties of finite and infinite
sequences with the same algorithm

• I.e., you might find different definitions in the literature!
– In particular, in Peled’s book the automata product is defined differently, since

the definition of Büchi automata is different

Further reading

Further reading

• The first two parts of this lecture were mainly based on Chap. 6 of Holzmann’s book
“The SPIN Model Checker”
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– Automata products: Appendix A
• The 3rd part was taken from Peled’s book

For next lecture: Read Chap. 6 of Peled’s book, mainly section 6.8 on translating LTL
into Automata

• We will see how to apply the algorithm to an example
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4
µ-calculus model checking
Chapter

What
is it

about?Learning Targets of this Chapter
The chapter covers an short intro to
the (resp. one variant) of the
µ-calculus and model-checking it.
We focus on the most prominent
version of the µ-calculus for model
checking known as modal
µ-calculus, with a “branching time”
interpretation. The logic can be
understood as the “prototypical”
logic with fixpoints, so we’ll have
to talk about fixpoints, as well. For
model checking, we look at a bit of
“game theory” (parity games).

Contents

4.1 Introduction . . . . . . . . . . 117
4.2 Propositional µ-calculus:

syntax and semantics . . . . . 124
4.3 Model checking . . . . . . . . 134

4.1 Introduction

The presentation takes information from the handbook article Bradfield and Walukiewicz
[7], but cannot cover all of the theoretical background in there (and there’s a lot, due to
the rather fundamental nature of the µ-calculus). There are many starting points that
have led to what here is called µ-calculus. In computer science, one important reference
point is the article Kozen [22].

Intro remarks

• rather fundamental logic
• central to µ-calculus: fixpoints
• many variations (and names)

– propositional µ-calculus
– modal µ-calculus
– Hennessy-Milner logic with recursion
– . . . .
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For the lecture: vanilla µ-calculus a plain, propositional modal logic + fixpoints

It’s not an exaggeration to say, “the” µ-calculus is “fixpoint logic” as it’s all about fixpoints.
Depending on the starting point, one can (and some did) add fixpoints to, for example,
first-order logic and what not. For the model checking lecture, we take as a starting
point a modal logic (like the ones we discussed in the respective chapter). Actually, we
are going for a multi-modal logic. The intuition behind the logic is that the modalities
talk about transitions (labelled transitions in fact, as we have a multi-modal logics), not
about “knowlege” or “beliefs” etc. One can for sure also think of adding fixpoints with
such more philosophical interpretations in mind. However, we focus on Kripke structures
resp. transitition system representing steps in the executions of programs or systems. Like
we mostly did for LTL (and CTL etc. covered by student representation), the starting
point is also a propositional core logic, underneath the modal part (but that also is a
bit orthogonal: there will be a student talk about QTL, quantified temporal logic, which
allows first-order quantification. One could also turn that into a µ-calculus-like formalism).
This set-up here is kind of the vanilla propositional µ-calculus. We start by recalling what,
very generally, a fix-point of a function is. That’s actually pretty simple.

What’s a fixpoint?

f : A→ A

f(a) = a

A fixpoint of a function f is is thus defined quite simple (the a from set A in the above
example is a fixpoint if f). The next part of the lecture is more a warm-up, as a reminder
that there are actually fixpoints “everywhere”. It’s not always explicitly stated, like “let
such-and-such be defined as fixpoint in the following way . . . ”, there are other formula-
tions used, and we have encountered such formulations in the lecture already (perhaps
without being aware that underlying the respective definition, there was actually a fix-
point construction. The definitions were all on the “meta-level” not as part of a logic, i.e.,
fixpoints were mostly used (implicitly) to define or talk about a logic, we did not intro-
duce fixpoints as part of the logics (that what the µ-calculusdoes). Actually, it’s not 100%
correct when saying that so far the logics did not allow to express fixpoints. It will turn
out that temporal operators such as “eventually”, “always”, “until” are effectively fixpoint
constructors. Only that there are no explicit fix-point constructors, so their nature as
fixpoints is hidden.

Fixpoints are everywhere

A pedestrian definition of syntax The set Φ of propositional formulas is given as fol-
lows

• all propositional constants from AP are formulas
• if ϕ is a formula, then so is ¬ϕ
• if ϕ1 is a formula and ϕ2 is a formula, then so is ϕ1 ∧ ϕ2
• if ϕ1 is a formula and ϕ2 is a formula, then so is ϕ1 ∨ ϕ2
• . . . [more constructs if wished] . . .
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Is that even a definition?

Fixpoints are everywhere

A pedestrian definition of syntax (reformulated) The set Φ of propositional formulas
is given as follows

• AP ⊆ Φ
• if ϕ ∈ Φ, the ¬ϕ ∈ Φ
• if ϕ1 ∈ Φ and ϕ2 ∈ Φ, then ϕ1 ∧ ϕ2 ∈ Φ
• if ϕ1 ∈ Φ and ϕ2 ∈ Φ, then ϕ1 ∨ ϕ2 ∈ Φ
• . . . [more constructs if wished] . . .

What about that?

Φ = {p, q, ..., p ∧ p, p ∧ q, p ∧ (p ∨ q) . . .} ∪ {5, p#q,¬5, 5 ∧ (q#q) . . .}

The point of that example is that the set Φ of formulas given at the end satisfies the
conditions, but it’s not the one one had in mind. Basically, it means, the sentences as
given are not a definition: they don’t precisely fix the set of formulas, they just spell out
conditions or constraints on Φ. Those constraints corresponds to closure conditions.
For a condition like “if it so happens that ϕ ∈ Φ for some ϕ, then it’s neccessary that also
¬ϕ in Φ”, one says more shorter that the set of formulas is closed under ¬, which is an
unary operation or constructor.

How to fix(-point) it?

Depending to the style of writing or conventions in the field, one finds different ways of
removing this ambiguity.

• . . . No other entities are formulas, i.e. elements of Φ
• Φ is the smallest set such that 1) AP ⊆ Φ, 2) . . .
• Φ is inductively given by the following conditions: 1) . . .

“Mu” F (S) = AP ∪ {¬φ | φ ∈ S} ∪ {ϕ1 ∧ ϕ1 | ϕ1 ∈ S, ϕ2 ∈ S} ∪ . . .

Φ = µF

The last “fix”, the one labelled “Mu”, approaches a definition based on explicit fixpoints.
A function F is defined, which takes a set (the formal parameter S) and produces another
set, by adding more elements (actually formulas). The the intended set Φ is given as the
smallest fixpoint of that function F , i.e., the smallest set Φ such that Φ = F (Φ). The
traditional symbol that represents the smallest fixpoint is µ, i.e., Φ = µF . As a side
remark: the “mu” is a reference to some very famous popular science book GEB (Gödel,
Escher, Bach. An Eternal Golden Braid), which in an deep, broad, and entertaining
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way builds connections between art and logic, and where recursion (i.e., fixpoints) play a
central role, and the book also contains something called MU-puzzle).

Fixpoints are everywhere, indeed

• grammars (with special syntax)

ϕ ::= AP | ¬ϕ | ϕ1 ∧ ϕ2 | . . .

• Kleene star and regular expressions:
– finite words over Σ: written Σ∗
– a(b+ c)∗

• semantics of programming language
– while-loop: make single steps, until termination (but not more!)

• data structures
– the natural numbers are given (“constructed”) by 0 and succ as constructor (and

not more!)
• proof (and proof trees): a proof is given (“constructed”) from axioms and application

of rules (but not more!)

The list contains some examples which can be interpreted as involving fixpoints. A com-
mon denominator of the list is: all of them correspond to smallest fixpoints; it always
about “the smallest collection closed unter something”. The µ-calculus later allows two
kinds of fixpoints, smallest ones with “µ” as binder and largest fixpoints (“ν”). It’s prob-
ably fair to say, that one is used more to smallest fixpoints constructions, generally seen:
One is very much used to list as data structure, which corresponds to a smallest fix-point.
In some sense (that can be made precise, but is not relevant for the lecture), a correspon-
dent largest fix-point data structure is their “infinite” counterpart, i.e., streams. As said,
it’s fair to say, that lists are a more common (and simpler?) data structure than streams.
As a side remark, as came up during the lecture: infinite data structures, such as streams,
can be seen as “lazy” data structure (as in Haskell). Lazy refers to the fact that, obviously,
an infinite list (= stream) cannot be kept in memory in its infinite entirety, i.e., treated
eagerly. What can be done is treating such an “infinite list” lazily, i.e., handing out the
head of the last resp. the rest or tail of the streap piecewise and on demand.

Thinking about those kinds of examples (lists vs. streams, proofs as finite derivation
trees vs. infinite proofs using infinite trees?. . . ), the smallest fix-point indeed seems more
common and less scary. In the µ-calculus later, however, the two fixpoints are completely
symmetric. Actually, they are duals in a technical sense (like “¬µ¬ = ν” and vice
versa). What will be analogous is that smallest fixpoint formulas intuitively talk about
finite “iterations” and largest fixpoints about infinite ones (we will see examples for that).
Since the situation is symmetric in that sense, it’s also misleading to think that µ-fixpoint
necessarily are easier to understand compared to ν)-fixpoints. Arguably, the simplest
useful temporal properties one might want to model-check are invariants. In LTL-notation,
one can write �p (for “always p holds). The proposition p must always hold, in all infinity,
and that may give a hint that it corresponds to an ν-fixpoint. The dual formula “eventually
q” (or ♦q in LTL) is not harder or easier to understand and corresponds dually to a smallest
fixpoint: the satisfaction of q is requestion within a finite time!
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Connection to induction

Previously, the presentation stressed that “fixpoints are everywhere” (by giving examples
mostly of data structures and constructions involving smallest fixpoints). As mentioned
in that context: in textbooks one not often finds an explicit mention of the fixpoints,
often other “keywords” are used (“the smallest set such that . . . ”). One keyword in
that context is: “inductively”, like: the natural numbers are given inductively by the
constant 0 and the unary function (symbol) succ. The use of the word “inductively” is
no coincidence: inductively given structures are equipped with a proof principle called
induction. One presumably is most used to that principle in the context of natural
numbers, so much so that induction in that setting is also called mathematical induction or
natural induction. The latter word just means induction over natural numbers. The rather
grandiose qualification as being the principle of “mathematical” induction perhaps is meant
to differentiate that from “philosophical” induction, the principle to draw conclusions from
special cases or instances to a general case. By way of mentioning: the latter interpretation
is also connected to what the machine learning people mostly understand when they talk
about induction. In that kind of interpretation of induction, is often positioned as opposite
to deduction.

Anyway, we are here only interested in the mathematical proof principle of induction which
roughly says (in the case of the natural numbers):

if you need to prove some propery for all natural numbers, then the way to go
for it is:

1. prove that the property holds for 0, and prove that,
2. if it holds for n, that implies that it also holds for n+ 1.

Note that there are infinitely many numbers, each of which is finitely constructed though.
The two parts of that proof principle are known, of course, as the base case and the induc-
tion case or induction step, and the assumption in the induction step that the property
holds for n (which is arbitrary) is also called induction hypothesis.

So far, so familiar (hopefully). Now, the slide contains one well-known and early “for-
malization” of natural numbers. It’s known as Peano’s axioms or postulates (or Peano-
Dedekind). Depending on the source, there may be addition axioms (for instance, stating
properties of the equality symbol "=). We are interested not in that part, we are interested
in the natural numbers alone. Relevant for us are in particular axioms 1. and 2. from the
slide. Axiom 3. and 4. are not really too relevant for us (they have to do with the fact
that the historical axioms also formalized axioms about = as part of the logic and being
very explicit about that).

Anyway, the really interesting one is axiom number 5 (here listed in equation (4.1)). It’s
often mentioned with this epithet (the famous fifth axiom of Peano. . . Whether it was in
his own original writings numbered as the fifth, I have not checked). What it effectively
does is another way of stating that the natural numbers (closed under 0 and successor)
is the smallest set closed under those. It does so slightly indirectly, referring to another
S is, and it stipulates that any other set closed in 0 and successor must be the natural
numbers already. Actually, reading the sentence carefully, it states that for each set S,
closed under 0 and successor
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N ⊆ S

not N = S. Effectivly, it does not make a difference (see a bit further down below), after
we have discussed the formulation of Peano’s axiom in the form of equation (4.2).

remember: one way of formulation “Φ is inductively given as follows . . .

Natural numbers

1. 0 is a natural number
2. if n is a natural number, then so is succ(n) (written also n+ 1)
3. n+ 1 = m+ 1, then n = m
4. there is no natural number n with n+ 1 = 0

Peano Nr. 5
If a set S contains 0 and is closed under successor,
then all natural numbers are in S.

(4.1)

Peano Nr. 5: natural induction

∀ϕ.ϕ(0) ∧ (∀n.ϕ(n)→ ϕ(n+ 1))→ ∀n.ϕ(n) . (4.2)

Peano’s 5th axiom is also called the induction axiom. That is more clearly felt in the
second formulation of that principle, the one from equation (4.2). Instead of talking about
subsets S of N, that one speaks about a property ϕ of natural numbers. Both views are
equivalent: a subset of N can be interpreted as a property and vice versa. Like: the even
numbers correspond to the property of “being even” and “being even” characterizes the
subset of N containing the even numbers.

Before wrapping up the discussion of the slide with some conclusions, let’s have a closer
look at the first definition of Peano’s 5th postulate from equation (4.1), which is insofar
informal that it’s an English sentence. Apart from that it’s actually unambiguous and in
that sense formal. Anyway, let’s be more explicit, in particular trying to shed light on the
notion of closure.

For that, let’s define the following function (on sets)

F (S) = {0}+ succ(S) (4.3)

It’s meant as follows: Take set S and build succ(S) (which is defined as {succ(s) | s ∈
S}) and add 0 to the resulting set (the + stands for “disjoint union”, i.e., ∪ in case
there are no common elements). As an example: If S = {•, 6, a, 0}, then F (S) =
{0, succ(•), succ(6), succ(a), succ(0)}. The 0 and succ are best thought of as construc-
turs (i.e., “syntax”), so succ(6) is just the constructor succ applied not to the element 6.
We have no reason to say succ(0) is 1, thought that might be our intention (and then:
what is succ(•) supposed to mean, anyhow), Of course arabic numerals in a decimal po-
sitional system are a well-suited notation or convention to refer to natural numbers, but
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that requires extra overhead, here we are concerned about “what are natural numbers”
not so much “what’s an efficient way of writing then and working with them”. Now, the
English formulation of (4.1) formulates (about the mentioned S) that S contains 0 and is
closed under successor. One can also see that as as requiring that S is closed under the
nullary constructor 0 (which is a “constant” symbol) and the unary constructor of succes-
sor. With this alternative (but equivalent) wording in mind, we can write the postulate
from (4.1) a bit more formulaic as follows. A set S is closed under F , if

F (S) ⊆ S (4.4)

Note that S plays the role of a “variable” in the condition or constraint from equation
(4.4), as the sub-set “equation” formulates a condition on S. Furthermore, equation (4.4)
is almost an equation: it almost requires F (S) = S, but not quite. If one had this equation
instead of the in-equation or subset requirement from (4.4), one has another example of
a fixpoint: F (S) = S means that S has to be a fixpoint of S. The slight weakening
for the closure formulation from equation (4.4), specifies “almost” fixpoint, but not quite.
Solutions of such subset inequations in the form of (4.4) are called pre-fixpoints, so an
S, satisfying the requirement is a pre-fixpoint of F . In other words: being a pre-fixpoint
of F and being closed under F means exactly the same.

Now, as we illustrated with the “grammar example” and the “natural numbers” example:
being closed is not good enough for definining uniquely the set; what is missing is the
“nothing else” part or “the smallest such set” part. So we are after the smallest set S
satisfying the closure condition of (4.4), resp. the smallest pre-fixpoint of F . It’s obvious
that every fixpoint is also a pre-fixpoint. The convers typically does not hold, there are
strictly more pre-fixpoints than fixpoints (the ⊆ condition is just weaker than requiring
=). That’s easy enough, and not too interesting. However, we are actually not interested
in fixpoints or pre-fixpoints as such. We are interested in the smallest such things. Then,
what is interesting and relevant indeed is the following: under standard circumstances
there is no difference between smallest fixpoints and smallest pre-fixpoints for
a given F . In fact, not only that, but there is exactly one unique smallest fix-point
which at the same is the one unique smallest pre-fixpoint. This fact, which is, with
a bit of background, straightforward to establish also justifies that one speaks (under
standard circumstances) of the smallest or the least fixpoint (as opposed to some or
other “miminal” fixpoint).

Now, as argued, the two formulations of Peano’s 5th axiom, the ones from equations (4.1)
and (4.2) are equivalent and also correspond to a (smallest) fixpoint requirement and,
equivalently, allow the proof principle of mathematical induction. Looking especially at
the formulation (4.2) where it’s more visible: the formula is not a formula of first-order
logic: there is quantification over “all propositions” ϕ in (4.2). Whatever logic it is, it’s
NOT first-order. One actually should tread rather careful here, it’s slippery ground. The
natural impulse could be: Oh, well, quantifying over propositions, I know already, that’s
second-order logic. Now, what may act as a warning sign here pondering the question of
whether the above formula corresponds to a proposition itself. If so, one can have a logic
where the quantifiers quantify over propositions including the quantified formula itself
(the technical term in that connection is impredicativity). That kind of self-referential
quantification may or may not lead to a catastrophe (catastophe in the sense that the
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whole logic collapses and everything can be proven in that logic, and that mean really
everything, including the negation of everything). In other words, the logic could become
inconsistent. That form if self-referantiality is connected to the concept of whether there
is a “set of all sets”. If allows such things, one can introduce contradictions into set-theory
(like the set of all sets that don’t contain themselves).

Let’s leave it at that. The importance for us is: Peanos induction axiom corresponds to
a fix-point operator, and the discussion about the dangers of internalizing induction resp
fixpoint into some logic should be an indication that this yields are some fairly powerful
mechanism and it supports the status of the µ-calculusas an important logic.

A final remark: the discussion here centered on “natural induction”, i.e., over N, but
completely analogous principles hold for other inductively given structures. In that case,
one also speaks of stuctural induction (induction over the structure) and N is just a special
case of a particularly simple structure.

Expressivity

modal µ-calculus
ω-tree automata

CTL∗

CTL

ω-word automata
Büchi automata
(never claims)
∃LTL

LTL

LTL without ©

The picture (shown earlier as well) shows again the order of different logics that are relevant
in connection with model checking (and some automata model) with the µ-calculussitting
on top. There is also a corresponding automaton model which we will not cover in the
lecture.

4.2 Propositional µ-calculus: syntax and semantics

4.2.1 Syntax

Labelled transition systems

A transition system is a tuple

(S,−→, {Pi}i∈N)
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• AP = {p0, p1, p2, . . .}
• Act: (= Σ) actions a, b′, . . .
• −→ ⊆ S ×Act × S

– s
a−→ s′, a-transition, from s to s′

• Pi ⊆ S
• note: switch of perspective for “proposition labelling”

Basically, it’s a recap of earlier notions. The notion of (labelled) transition system here
corresponds to that what we had before called Kripke model, except that now also the
transitions are labelled by letters from an alphabet. Basically we encountered them in
connection with multi-modal logics already. That’s not surprising, insofar the flavor of
the µ-calculuswe present here is bascially adding fixpoints to a multi-modal logic. In [7],
they call the “models” just transition systems (not labelled transition systems), also what
we introduced as alphabet Σ, a finite set of “symbols” or letters, they call that action set,
the element of which are consequently called actions. Again, that’s just terminology.

Syntax

ϕ ::= p | ¬p props and their negation
| X variables
| ϕ ∧ ϕ | ϕ ∨ ϕ 2 usual boolean connectives
| [a]ϕ | 〈a〉ϕ (multi)-modal operators
| µX.ϕ | νX.ϕ fix-points

• true and false: p ∧ ¬p resp. p ∨ ¬p
• variables X,Y . . . ∈ Var
• actions a, b′... ∈ Act

Remarks on the syntax

• general negation: missing
– especially ¬X not part of the syntax
– but: ¬ϕ definable

• µ and ν (or σ when unspecific): binding operators
– free and bound occurrences of variables
– renaming of bound variables (α-renaming)

• some well-formedness conditions
– don’t reuse variables
– guardedness
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We don’t go into details about those well-formedness conditions (they are important for
some technical developments, only). But the concept of free and bound occurrences of
variables should be familiar. Guardedness, just to given an impression, wants to avoid
“immediate recursions” like µX.X or also νX.X ∨ p (these are examples where X occurs
unguarded). Those formulas are not contradictory, they have a meaning, but one tries to
keep them out as they make some troubles in exstablishing results. Fortunately, some have
proved that one can ignore them (insofar that one can always transform a formula into an
equivalent one that avoids such situations; that particular transformation is not obvious,
though. . . ). Anyway, whereas µX.X is not meaningless per se (just not nice to handle in
establishing some results), formulas like µX.¬X are meaningless in that it cannot be
given an interpretation in a manner that “makes sense”. The cause of the problem is, that
the body of the fixpoint construction, the formula ¬X in that case, does not represent a
monotone function. By monotone we understand monotoneously increasing.

During the lecture there had been comments that in some fields, the terminology of
mononote functions capture both monotoneously increasing and monotoneously decreas-
ing functions. For us, monotone refers to the increasing case (or at least not-decreasing),
only. The “decreasing” situation, we would call antitone. Now, fixpoints are guaranteed
to exists only in case the involved function is monotone, and that’s the same for µ and
for ν (it’s not like: for µ, the function need to be mononote, for ν, on the other hand,
antitone). Non-monotonic functions are out of the picture for us. That’s why the syntax
does not allow free-form negation, as there would be a danger to write formulas that act
non-monotone. The syntax as given results in monotone functions, only. The (small) price
to pay is that the syntax becomes slighty less compact than it would be otherwise: for
each constructor, one also has to include its dual.

What about the variables?

• propositional µ-calculus
• X,Y . . . different from first-order logic variables
• variables here represent

– formulas (from µ-calculus), resp.
– semantically: sets of states

⇒ second-order flavor!

By “second-order” flavor we mean that we have variables that represent formulas (resp.
sets of states captured by formulas). And we also (in some way) “quantify” over them, only
not by existential or universal quantification ∃ and ∀, but by the fix-point binders µ and
ν. At any rate, the variables X,Y ′ . . . are of quite a different nature from a setting if we
had not the propositional µ-calculus, but had a first-order logic setting as underlying logic
(with term variables x, y′). We see that also in the notion of valuation (when discussing the
semantics). A valuation (or variable assignment) maps values or “semantics” to variables.
Now, valuations will map variables from Var to set of states.

Preview on the semantics

• given transition systemM
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Satisfaction relation
s |=M ϕ

s |=VM ϕ (4.5)

Equivalently: semantic function semantics of ϕ in transition systemM and with valu-
ation V:

[[ϕ]]MV ∈ 2S (4.6)

V : Var → 2S

There is not much “new” on the slides, compared to what we had in earlier chapters.
Instead of the satisfaction relation |=, we define the semantics as “semantic function”,
traditionally written like [[_]]. That’s just more convenient when later talking about fix-
points. The fixpoints will be built over functions (as usual), and therefore, writing down
the semantics using the “semantical function” formulation comes in more handy.

Formulas are interpreted over a given transition systemM, i.e., the semantics of a formula
ϕ is a set of states in that givenM. Since formulas may contain variables, the interpre-
tation is additionally relative to choosing values for those free variables. So we assume a
valuation V for those, with V : Var → 2S , which assigns “semantics” (= sets of states)
to each variable. That’s why the semantic function from (4.6) or the satisfaction relation
from (4.5) mentions V (besidesM).

Semantics (no fix-points)

The semantics for the logic without fixpoints is rather straightforward. That fragment is
sometimes also called Hennessy-Milner logic (without recursion). It’s basically the multi-
modal logic we have encountered earlier (in preparation of dynamic logic.)

ϕ ::= pi | ¬pi | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | 〈a〉ϕ

[[true]]MV = S [[false]]MV = ∅
[[pi]]MV = Pi [[¬pi]]MV = S − Pi

[[ϕ1 ∧ ϕ2]]MV = [[ϕ1]]MV ∩ [[ϕ2]]MV [[ϕ1 ∨ ϕ2]]MV = [[ϕ1]]MV ∪ [[ϕ2]]MV
[[[a]ϕ]]MV = {s ∈ S | ∀s′.s a−→ s′ ⇒ s′ ∈ [[ϕ]]MV }
[[〈a〉ϕ]]MV = {s ∈ S | ∃s′.s a−→ s′ ∧ s′ ∈ [[ϕ]]MV }
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Fixpoints in LTL

• �p?
• ♦p
• p U q

Earlier, we made a big story around the fact that there are “fixpoints everywhere”. Exam-
ples where mostly drawn from some constructions in “math” but not as integral part of
a logic. Of course, the µ-calculusis kind of a the prototypical logic which offers fixpoints
inside the logic, not just externally on the meta-level. But what about the other temporal
logic we covered, LTL? On the next slide, we have a look at, for example, the “always”
operator, �.

Reconsider for instance �p?

• fix-point equation for “always”?

�p = p ∧©�p. (4.7)

choose �p = false
false = p ∧©false (4.8)

Let’s take � for illustration. We are currently using LTL, which is a linear logic. The
µ-calculusis in its general form a branching logic, but the arugments or illustrations work
equally for a linear logic. Actually, one can also interpret the µ-calculusover linear tran-
sitions sytems, only. Anyway, “always p” can be intutively explained as

“always p” means p now and, after one step “always p”.

That’s of course a recursive “definition” in that the thing one tries to define, “always p”
is define in terms of itself (we should thought be careful with the word definition, as there
may be more than one solution to that equation; and indeed there are). It also corresponds
to the unrolling feature of �p, as given in equation (4.7). Seeing it this way means, we
have been given �p already. The chapter about LTL gave a definition of the semantics
of �p; maybe it was given indirectly, in that we focused on U alone, but anyway, it was
somehow defined, and the definition would state that a path satisfies �p, if ∀i, the suffix
of the path starting at i satisfies p. So far, so familiar. Point being, equation (4.7) states
a fact about �p whose definition is given already.

However, we can try to use the equation also as defining �p. In that case we should
probably write better

”�p” = p ∧©”�p” ,

to make clear that ”�p” is something that we want to define and which we intend to
satisfy the stated (recursive) equation. Since we want to “solve” that equation (to define
�p), it’s probably even better to write
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X = p ∧©X (4.9)

i.e., to use a variableX (as opposed to ”�p”) to represent the (yet to define) thing for which
we want the equation to hold. That, of course, can be seen as a fix-point equation (in the
discussion here, we dispense with the distinction of fixpoints (using =) and pre-fixpoints
(using ⊆ or implication).

Now, we can try to solve it. We have heared about the importance of smallest fix-points
extensively. The smallest imaginable solution (in terms of sets of states) would be the
empty set. That corresponds alternatively to the proposition false. So, let’s fill in false
for the unknown X (or interpreting semantically X as ∅), checking if false =? p ∧©false
(equation (4.8) from the slide). Well, ©false is equal to false, which means false is indeed
a solution to the fixpoint equation (4.9). And, being the empty set, it’s definitely the
smallest fixpoint.

That’s a disappoinment, since we set out to give a fixpoint definition of �p, not of false.
Now, since the smallest fixpoint was a failure, the only hope is the largest fixpoint (nobody
needs fixpoints somewhere in the middle. . . ) As it turns out, the largest fixpoint is what
we are after, it corresponds to �p. So we can define

�p = νX.p ∧©X . (4.10)

That’s all fine and good, but one may feel uneasy, for instance by the obvious “failure”
of µX.p ∧©X. Maybe in this case it’s clear that it can’t be the smallest fixpoint (as it’s
false), so it must in all plausibility the largest. But maybe there are situations where the
smallest fixpoint does not collapse to false but makes some form of sense, it’s only not the
one we planned for. How do we know that the definition from equation (4.10) is what we
want? At least it is a definition, because we know that in the given circumstances, the
greatest fixpoint is unique (as is the smallest fixpoint which turned out to be false). We
could leave it like that: we defined �p by (4.10) and that just it. However, we already had
an independent definition of “always p” not involving µ in an apparent way, and beside
that we have an intuition what “always p” is supposed to mean. How can we make sure
that our intention is captured by the definition from (4.10)? Or in general: what the
intiution, when should one choose µ and when ν?

Now, it’s tricky to communicate “intiution”, intuition builds up by doing things and
exercising and repeating things. After a while things seem “natural” and intuitively clear,
and one forgets that one had been struggling with the concept in the beginning. That’s
also when it becomes hard to communicate the idea, because stating “it’s intuitively clear
that . . . ” is not helpful. But many things in math are like that and for many things we
have forgotten that they may not seem clear at the beginning. Notions about “infinity” are
notoriously “unclear” (and philosophically debated, like in which sense does the “infinite”
exist, etc). In some sense we get used to it: N = {0, succ(0), succ(succ(0))...} (or more
commonly {0, 1, 2, ...}, and no one looses sleep about the “. . . ”, we all know that there
“are” infinitely many natural numbers (maybe on a computer only up to MAXINT, but,
well, in priciple, you know. . . ). We are just used to deal conceptually with infinite sets
without breaking a swet (like natural numbers, the set of propositional formulas as give
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by a grammar, the set Σ∗ and those examples from before). It may be noted that even
other mathematical facts needed time “to get used to” (historically). One is 0. There
had been a time where people had scruples to “have” or work with 0, like: “how can
there be or should there be there be a symbol for the absense of something”. Zero stands
for “nothing” and one cannot meaningfully compute with nothing (there was a time also
where the people had the concept of 0 but did not use a symbol for it, like leaving the
place empty. That did not help readability much. And it took time to “get used to it”
and have the courage to write 0 for something that “actually” (?) does not exists. Same
with the imaginary numbers (numbers like

√
−1 that do not really exist, or do they?)

The examples about inifinite sets (N, Σ∗ . . . ) correspond perhaps not coinicidentally
to smallest fixpoints. It’s about infinite sets build up by using finite constructions for
each elements. a∗ = {ε, a, aa, aaa, . . .} = {an | n ∈ N} which we understand as the set
containing words using a, where the words are of arbitrary length n. Implicit in the
word “arbitrary length” is that it not really “arbitrary” in the sense “n = infinite length”.
Not arbitrary in this radical sense, just ordinary arbitraryness please, like n ∈ N. N is
infinite, that’s fine, but n please not (because infinite numbers don’t really exist, or do
they?. . . ).

This discussion is meant less historical, but more of giving intution about µ and ν. The
smallest fixpoints are of the form as in an with n ∈ N. They may describe a infinite
collection of entities (like words or numbers) each of which is finite. ν-based definition
corresponds to constructions where the single elements are conceptually infinite (or at
least include infinite elements). One example we have actually seen was Σω, the set of
infinite words over Σ.

4.2.2 Background: Fixpoints

Orders, lattices, etc.

as a reminder:

• partial order (L,v)
• upper bound l of Y ⊆ L:
• least upper bound (lub): ⊔

Y (or join)
• dually: lower bounds and greatest lower bounds:

d
Y (or meet

• complete lattice L = (L,v) = (L,v,
d
,
⊔
,⊥,>): a partially ordered set where

meets and joins exist for all subsets, furthermore > =
d
∅ and ⊥ = ⊔

∅.

There are also other forms of lattices, for instance, if one only needs joins, but not meets,
one can get away with a semi-lattice, and there are many more variations. For the lecture,
we generally simply assume complete lattices and thus, the montone framework is happy.
In particular, if we are dealing with finite lattices, which is an important case, we don’t
need to consider infinite sets, and “standard” lattices with binary meets and joins (and
least and largest elements) are complete already.
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Fixpoints

given complete lattice L and monotone f : L→ L.

• fixpoint: f(l) = l

Fix(f) = {l | f(l) = l}

• f reductive at l, l is a pre-fixpoint of f : f(l) v l:

Red(f) = {l | f(l) v l}

• f extensive at l, l is a post-fixpoint of f : f(l) w l:

Ext(f) = {l | f(l) w l}

Define “lfp” / “gfp”

lfp(f) ,
l

Fix(f) and gfp(f) ,
⊔

Fix(f)

The last display just gives the names to the two elements of the lattice defined by the
corresponding right-hand sides. We know that those elements are existing thanks to the
fact that L is a complete lattice (and it’s very easy to see that meets and joins are unique,
that means the lfp(f) and gfpf are well-defined elements of the lattice). The chosen
names somehow suggest that the two thusly defined elements are the least fixpoint, resp.
the greatest fixpoint of the monotone function f .

But, so far lfp and gfp is just a suggestive choice of name. It requires a separate argument
that the elements are actually fixpoints, and the least, resp. the largest fixpoint as that
as well. Finally, if we take it really serious, an argument should be found that allows
to speaking of the least fixpoint. If there is more than one least fixpoint, one should
avoid talking about “the least fixpoint” (same for the largest fixpoint). The argument
for uniquess of least fixpoints (or for greatest fixpoint) is very simple though, similar to
arguing for the uniqueness of “the least upper bound” etc.

If one would carry out the argument, i.e., the proof, that all fits together in the sense that
the lfp(f) and gfp(f) defined above are actually the least fixpoint and the largest fixpoint,
and if one would carefully keep track of what is actually needed to make the proof go
through step by step, then one would see that every single condition for being a complete
lattice is needed (plus the fact that f is monotone). If one removes one condition, the
argument fails! Conversely that means the following: We are interested in uniquely “best
approximations” (least or greatest fixpoints depending in whether it’s a may or a must
analysis),

and, having a monotone f , a complete lattices is exactly what guarantees
that those fixpoints exists. Exactly that, nothing less and nothing more, If
your framework has monotone functions and is based on a complete lattice, it
works. If not, it does not work, very simple.
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That explains the importance of lattices and monotone function. Also, I would guess that
historically, the need to assure existance of fixpoints has led Tarski (the mathematician
whose concepts we are currently covering) exactly to the definition of lattice, not the other
way around (“oh, someone defined some lattice, let’s see what I can find out about them,
perhaps I could define some lfp(f) like above and see if I could prove something iteresting
about it, perhaps it’s a fixpoint?”. But as said, that is speculation.

Having stressed the importance of complete lattices, for fairness sake it should be said
that there’s also a place for analyses which fail to meet those conditions. In that case,
one might not have a (unique) best solution. Perhaps even worse (and related to that),
one might need combinatorial techniques (like backtracking), i.e., checking all possible
solutions to find an acceptable one. If that happens, the cost of the analysis may explode.
To avoid that one may give up to look for a “best solution” and settle for a “good enough”
one and heuristics that hopefully find an acceptable one efficiently, or even throw the towel
and give up “soundness”. Anyway and fortunately, plenty of important analyses fit well
into the monotone framework with its lattices, its unique best solution and —perhaps best
of all– its efficient solving techniques. Therefore this lecture will cover only those here.
Those are called classical data flow analyses.

Tarski’s theorem

Core Perhaps core insight of the whole lattice/fixpoint business: not only does the
d

of
all pre-fixpoints uniquely exist (that’s what the lattice is for), but —and that’s the trick—
it’s a pre-fixpoint itself (ultimately due to montonicity of f).

Theorem 4.2.1. L: complete lattice, f : L→ L monotone.

lfp(f) ,
d

Red(f) ∈ Fix(f)
gfp(f) , ⊔

Ext(f) ∈ Fix(f)
(4.11)

• Note: lfp (despite the name) is defined as glb of all pre-fixpoints
• The theorem (more or less directly) implies lfp is the least fixpoint

Fixpoint iteration

• often: iterate, approximate least fixed point from below (fn(⊥))n:

⊥ v f(⊥) v f2(⊥) v . . .

• not assured that we “reach” the fixpoint (“within” ω)

⊥ v fn(⊥) v ⊔
n f

n(⊥) v lfp(f)
gfp(f) v

d
n f

n(>) v fn(>) v (>)

• additional requirement: continuity on f for all ascending chains (ln)n

f(
⊔
n

(ln)) =
⊔

(f(ln))
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4.2.3 Semantics

Semantics of formulas with free variables

• apply the FP theorem (Knaster-Tarski)
• assume µX.ϕ(X) or νX.ϕ(X)
• M with state set S: fixed
• consider semantics of body ϕ(X),

– assume (for simplicity), only one free variable X

[[ϕ(X)]]M : 2S → 2S

• 2 welcome facts
1. 2S a complete lattice
2. the function is monotone (and also continuous, under reasonable assump-

tions)

• general case: ϕ may have more variables than just X

f(S′) = [[ϕ]]MV[X 7→S′] : 2S → 2S

with S′ ⊆ S

Semantics of the fixpoints

[[µX.ϕ]]MV =
l
{S′ ⊆ S | [[ϕ]]MV[X 7→S′] ⊆ S

′} (lfp)

=
l
{S′ ⊆ S | f(S′) ⊆ S′}

[[νX.ϕ]]MV =
⊔
{S′ ⊆ S | S′ ⊆ [[ϕ]]MV[X 7→S′]} (gfp)

=
⊔
{S′ ⊆ S | S′ ⊆ f(S′)}

where f(S′) = [[ϕ]]MV[X 7→S′]

Alternation of fixpoints

• expressivity of µ-calculus: due to fix-points
• more precisely: “nesting” of fix.points
• even more precisely: alternation-depth of nested fixpoints.
• compare: direct recursion vs. mutual recursion
• similarly: “µ2 = µ”
• technical definition of nesting: not 100% immediate

1. (µX.ϕ) ∧ (νX.ϕ2): no nesting
2. µX.µY ϕ(X,Y ): no alternation
3. νX.((µY.p ∨ 〈b〉Y ) ∧ [a]X): ??
4. ???
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The definition is not 100% obvious. In particular, the formula number 3 is not nested in
the way covered by the definition. Naively it is: the µ fixpoint is inside the ν fixpoint, so
there seems to be nesting. Also there is alternation. But: as said, the definition is slightly
more complex. The sitution in formula 3 does not count as proper nesting, in that the two
“loops” are somehow “independent”. The inner loop is completely enclosed in the outer
loop. Why that may be called a form of nesting, but it’s not the “proper” nesting that
gives the µ-calculusits power.

4.3 Model checking

Game

Definition 4.3.1 (Game). A game is a triple G = (V, T,Acc) where

1. V are nodes partitioned between two players, Adam and Eve: V = VA + VE .
2. T ⊆ V × V is a transition relation determining the possible successors of each node,

and
3. Acc ⊆ V ω is a set defining the winning condition

• node: aka position
• Acc: winning condition

Playing a game like this

• two-player game
• two kinds of nodes (Eve’s and Adam’s)
• game “moves” through positions

– in one of Eve’s nodes: Eve chooses
– analogous for Adam

• winning:
– winning condition: from the perspective of Eve

∗ ininite path through G: if Acc satisfied, Eve wins, otherwise Adam
– a player “stuck”: looses as well
– no draw possible

• winning node: ∃ winning strategy

strategy θ (for Eve) Given G. For each sequence of nodes ~v, ending in a node v ∈ VE :
choose θ(~v) = v′, such that v → v′

Games as general framework

• “game theory”: broad field with many applications
• here: game used for

– semantics, logics, model-checking
• situation often: open systems
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– enviroment context ↔ program
– attacker ↔ system
– controllable ↔ non-controllable parts

Game Different, players with own “goals” (conflicting or at least different) and local
“influence” or control.

Rest

• many variations
– 2-player, multi-player
– zero-sum games (no win/win situation in those. . . )
– restricted information
– probabilistic (“mixed”) strategies (Nash-equilibrium!)
– . . .

Game example

• nodes or positions in the graph
– Eve: “diamond”-shaped
– Adam: “box”-shaped

• winning condition (here): Eve wins, if the game passes through “2” infinitely many
times

• numbers in the nodes: “ranks” (see later)

Eve (in this example) has only one node, where she can choose going up or down. If she
chooses uniformely each time to go down, she wins, as she passes infinitely often through
the node marked with 2. This condition is, in this example, the winning condition Acc
(which is formulated from the perspective of Eve). If she goes up, Adam then get’s a
choice. He could actually prevent Eve from ever reaching 2 again, but in doing so, and
going down, he will be stuck, and thereby loose immediately (getting stuck means loosing).
Therefore, he is forced to take the loop back.

Note: even if Eve cannot control or know what Adam does, she can rely on the fact that
he acts “rational” in the sense that he wants to make moves with the goal of winning (or
not loosing)

BTW: not loosing is actually the same thing as winning since in the games we are looking
at, the outcome is binary or “boolean”: either Adam wins and Eve looses, or the other
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way around. We use a game formulation to determine if a property holds in a state or
not, and that is either the case or not, as in classical logic.

Positional strategies

• stategy in general θ(~vv) = v′

• in the example: strategy of Eve: can be dependent on the “current node” only
⇒ memoryless or positional

θ(v) = v′

Parity games

given game G

Parity winning condition ranking: Ω : V → {0, 1, . . . , d}

Acc = {~v ∈ V ω | lim
i→∞

sup Ω(vi) is even}

Mostowski [26], Emerson and Jutla [13]

PWC theorem

• every position is winning for one of the two players
• it’s winnable by a positional strategy
• it’s decidable who wins

Model checking µ-calculus and parity games

Verification game
M, s |= ϕ ⇒ G(M, ϕ)

M, s |= ϕ iff
Eve wins from position cor-
responding to s and ϕ in
G(M, ϕ)

• V: valuation for free vars, i.e., game GV(M, ϕ)

• positions in the game

(s, ψ)

ψ: 1 formula from the closure of ϕ
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Intention of the construction Eve has winning strategy from (s, ψ) iffM,V, s |= ψ

Rules of the verification game

Ranking

• ranking positions with fp- formulas ν.ψ or µ.ψ

1. µ-formula odd.
2. ν-formula even

Rest

• additionally: subformulas should must no higher ranks than the surrounding formula
• standard way: connect to alternation depth

Rest
Γ(ψ) = 2badepth(X)/2c for ψ = νX.ψ′(X)
Γ(ψ) = 2badepth(X)/2c+ 1 for ψ = µX.ψ′(X)
Γ(ψ) = 0 otherwise
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5
Partial-order reduction
Chapter
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is it

about?
Learning Targets of this Chapter

The chapter gives an introduction
to partial order reduction, an
important optimization technique to
avoid or at least mitigate the
state-space explosion problem.
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5.1 Introduction

The material here is based on chapter 10 from the book [11] or the handbook article [28].

State space explosion problem

• model checking in general “intractable”
• fundamental limitation: combinatorial explosion
• state space: exponential in problem size

– in particular in number of processes

All analyses based on “exploration” or “searching” suffer from the fact that problems
become unmanagable when confronted with realistic problems. That’s also true for other
approaches like SAT/SMT (but there is no lack of intractable problems in all kinds of
fields). If we look as (explicit-state) model checking very naively, and perhaps even focus
on only very simple problems like checking �ϕ (“always ϕ”), the model checking problem
phrased like this and as such seems not really untractable (complexity-wise). It’s nothing
else than graph search, checking “reachability” of a state that violates the property ϕ.
Searching through a graph is tractable (it has linear complexity, measured in the size of the
graph, i.e., linear in the number of nodes and edges). So that’s far from “untractable”.

In model checking, it’s the size of the graph, that causes problems. That’s typically
exponential in the description of the program. In model checking one is often interested in
temporal properties of reactive, concurrent programs, consisting of more than one process
or thread running in parallel. Typically, the size of the global transition system “explodes”
when increasing the number of processes, due to the many interleavings of the different
local process behaviours one needs to explore.

Of course, given a program there may be other sources that make a raw state exploration
unmanagable. If the problem depends in data input (like inputting numbers), the the size
of the problem increases exponentially with the “size” of the input data. If one uses integers
with only one byte length, one already has to take 28 inputs into account. Normally, of
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course, one has (immensly) larger data to deal with, and perhaps not just with one input,
but repeated input in a reactive system. Those kind of data dependence quickly goes out
of hand. It’s also a form of “state space explosion problem”, but mostly, when talking
about the state-space explosion problem for model checking, one means the state space
explosion due to different interleavings of concurrent processes. Dealing with data is not
the strong suit of traditional model checkers, so it sometime better to deal with data with
different techniques, and/or to ignore the data. This means to abstract away from data
(that’s also known as data abstraction) and let the model checker focus on the part of the
problem it is better suited, the reactive behavior and temporal properties.

Partial-order reduction covered in this section is a technique, specially made to work well
to reduce irrelevant interleavings.

One last word about “complexity”: Before we said that model checking is linear in the
size of the transition system. That’s of course an oversimplification, insofar that the
“size” of the formula plays a role as well. For instance, in the section about the µ-
calculus it was hinted at the the alternation-depth is connected to the complexity of the
model checking problem in that contaxt. For model checking LTL, the time complexity is
actually exponential in the size of the formula. Normally, that’s not referred to as state
space explosion and also in practice, the size of the formula is not the limiting factor.
Also, if one has many properties to check, which can be seen as a big conjuction, one can
check the individual properties one by one.

Battling the state space explosion

Since it’s such major road block, it’s clear that many different techniques have be pro-
posed, investigated, and implemented to address it. The list includes some major ones,
of course also clever implementation and data representations and other programming-
related techniques are used.

• symbolic techniques
• BDDs
• abstraction
• compositional approaches
• symmetry reduction
• special data representations
• “compiler optimizations”: slicing, live variable analysis . . .
• parallelization
• here: partial order reduction

“Asynchronous” systems and interleaving

• remember: synchronous and asynchronous product (in connection with LTL model
checking)

• asynchronous: software and asynchonous HW
• synchronous: often HW, global clock
• interleaving (of steps, actions, transitions . . . )
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Partial-order reduction is most effective in asynchonous systems. The distinction is for
systems with different parts working in parallel or concurrently, and one can make that
distinction for HW or software. In HW, synchronous behavior can be achieved by a global
HW clock, that forces different components to work in lock step. The global clock is used
to synchronize the parts. Also in software, synchronous behavior has its place (one could
have protocols simulating or realizing a global clock) there are also so-called synchronous
languages, programming languages based on a synchronous execution model, they are often
used to model and describe HW, resp. software running on top of synchronous HW.

Concurrent software and programs, though, more typically behave asynchronously, i.e.,
without assuming a global clock. A good illustration are different independent processes
inside an operating system, say on a single processor. The operation system juggles the dif-
ferent processes via a scheduler. The scheduler allocates “time slices” to processes, letting
a process run for a while, until it’s the turn of another process (preemptive scheduling).
In a mono-processor, it’s one process at a time, and the scheduler interleaves the steps of
different processes. That’s a prototypical asynchronous picture.

Of course, often processes or threads etc. don’t run in a completely independent or “a-
synchronous” manner. To allow coordination and communication (and perhaps to help the
scheduler), there are different ways of synchronization and constructs for synchronization
purposes (locks, fences, semaphores, barriers, channels . . . ). Very abstractly, synchro-
nization just means to restrict the completely free and independent execution. Even if
processes coordinate their actions using various means of synchronization, one still speaks
of asynchronous parallelism. If one would go so far in tie the processes together by using
a sequence of global barriers, where each processes takes part in, then that very restric-
tive mode of synchronization would effectively correspond to having a global clock and
synchronous behavior.

The two ways of compose two automata “in parallel” reflected those two ends of the
spectrum: completely asynchronous and completely synchronous. (The definition was
done for Büchi-automata, but the specifics of (Büchi-)acceptence are an orthogonal issue
that have to do with the specific “logical” needs we had for those automata (representing
LTL). The synchronous-vs.-asynchronous composition is independent from those details.

Where does the name come from?

• partial-order semantics
• what is concurrent (or parallel) execution?
• “causal” order
• “true” concurrency vs. interleaving semantics
• “math” fact: PO equivalent set of all linearizations
• “reality” fact: POR only “approximates” that math-fact
• perhaps better name for POR: “COR”:

commutativity-based reduction

The name of the technique seems to promise reductions based on “partial order”. We’ll see
about the reductions of the state space later, but why “partial order”? A partial order (or
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partial order relation) is a binary relation which is reflexive, transitive, and anti-symmetric
(we encountered it in connection with lattices when dealing with the µ-calculus).

What’s the connection? The short story is maybe the following: exploring the state
space involves exploring different interleavings of steps of different processes. Often that
means one can do steps either in one order in one exploration, and in reversed order
in a alternative exploration (and the whole trick will be to figure out situations when
the exploration of the alternative order is not needed). One will not figure out precisely
all situations where one can leave out alternatives, that would be too costly. So, one
conservatively overapproximate it: when in doubt with the available information, better
explore it.

It’s of course not always the case that one can reorder steps into an alternative order.
Steps within the same process might well be executed in the order written down; likewise,
synchronization and communication may enforce that steps are done in one particular
order or at least that they cannot be freely shuffled around (that’s, in a way, the whole
point of synchronization). Anyway, one may therefore see the actions or steps as partially
ordered, at least when considering the behavior of the system as a whole. Focusing on one
run or path, of course, presents one particular schedule and the steps in that run appear
in a linear or total order. In one particular run, it’s not represented, if two events are
ordered by necessity (one is the cause of the other for instance) or whether the order is
accidental.

That’s the short story. Based on ideas as discussed, people proposed ways to describe
concurrent behavior different from the interleaving picture, but based on partial orders.
Those kind of styles of semantics are connected to true concurrency semantics, to distin-
guish them from “interleaving semantics” (which thereby could be called a “fake concur-
rency” semantics. . . ). There is a point to it, though. Remember the informal discussion of
asynchronous processes and interleaving, referring to scheduling processes on a single-core
processor. There, clearly concurrency is an illusion maintained by the operating system’s
scheduler, that juggles the different processes so fast that, for the human, they appear
to be concurrent, whereas “in reality”, there is at most one process actually executed at
a time. Two things being concurrent, in that picture, is just a different way of saying,
they can occur in either order. True concurrency semantics takes a diffent point of view,
seeing concurrency as something different from just unordered. As simple litmus test: A
semantics that considers a ‖ b as equivalent to ab + ba is an interleaving semantics, if
the two “systems” are different, it’s a true concurrent interpretation (details may apply).
For instance, Petri-nets is a quite old “true concurrency” model (they exist also in many
flavors, and there are other true concurrency models as well). True concurrency models
make use of partial orders (and perhaps other relations as well), but we don’t go into true
concurrency models.

Independent from the true-vs-“fake” concurrency question: there is a connection between
partial order semantics and semantics based on arbitray interleavings. It’s a known math-
ematical fact that every partial order can be linearized (i.e., turned into a total order),
and more generally, that a partial order is equivalent to the set of all its linearizations.
The first statement, that partial orders are linearizable, may be known from the 2000-
course “algorithms and data structures”. In that course, a straightforward solution to the
problem is presented known as “Dijkstra’s algorithm”.
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POR here takes as starting point sets of executions or runs, which are linearizations. It
does not take as a starting point a partial-order semantics (let alone a true concurrency
semantics). While connections between partial orders and linearizations are easy, well-
known, and hold generally, i.e., for all partial orders, they are more an inspiration than
a technical basis for partial order reduction here. Nailing down a concrete partial order
semantics for concrete situations in an asynchronous setting with specific synchronization
constructs is not so easy. It’s much easier to specify what a program can do for the next
step; that leads to an operational semantics which also specifies all possible runs of a
program. Implicitly, that also contains all alternative runs, so one could say (based on the
mentioned “math fact”) that somehow indirectly one may view it as described a “partial
order” between the steps of the behavior of the program. But it’s, as said “implicit” and
for the behaviors per program.. But it’s for from easy to start upfront with a partial-order
based semantics for all programs.

POR reduction therefore is not based directly on an explicit partial order semantics. It
does not even strive to reconstruct fully the underlying partial order that is hidden in the
set of all interleavings of one given program. It does something moremodest (but also more
ambitious at the same time, as it has to be done during the model-checking run and has
to be done efficiently). Perhaps POR is inspired by the connection between partial orders
and possible linearizations and partial order semantics, but one can understand POR even
simpler: it’s intuitively clear that, under some circumstances, it does not matter in which
way steps are done and in other circumstances it does. POR tries to figure out when
alternative orders don’t matter and avoids them. That needs to be done while running
the “program”, i.e., running the model checker, and compromises need to be done as it
needs to be efficient. It also (and connected to that) needs to be “local”. One cannot first
generate all runs, then filter out duplicates, and then model check the rest, or something.
Instead, when exploring the state space during the model checker run, a “local” decision
needs to be made, like “shall I explore the next candidate edge, or can I leave it out.”
Of course, the criterion should not be trival like: I leave out an edges if I know that I
have seen the resulting state already. That’s ridiculous, as one might as well follow the
edge and then backtrack ofter discovering that I have seen the state already. Exploring
one more additional edge and then checking is probably easier compared to to make some
fancy overhead to avoid that very last step. One has to do better namely: one can leave
out an edge, if all what follows is covered already or actually what will be covered later.
At any rate, one cannot expect those estimations to be precise in recovering all of the
theoretically possible reduction (if one had a full partial-order picture, which one does not
have anyway).

The contrete details when to explore and edge and when not depend also on the language
and its constructs. For instance, if one has shared variables, and the model checker is in a
state where, in a next step, process 1 can write atomically to a variable or process 2 can
write atomically to the same variable, it’s clear that one has to explore both alternatives.
Or does one? What if they write the same value? Well, perhaps it’s not worth in checking
that, one may conservatively explore both orderings anyway, perhaps it’s not worth the
effort.

To postpone the details of more concrete language constructs for later, one abstracts away
from concrete types of actions first and introduces the concepts of dependence and inde-
pendence (for instance, two reads to the same variable may be independent, whereas two
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writes may not). The theory justifying the POR is then based on notions of independence
and when the order of execution is irrelevant and can be commuted. That is perhaps
inspired by partial-order thinking, but can be an approximation at best (for practical rea-
sons), therefore a better name of partial-order reduction may be commutativity-based
reduction (see [28] who makes that argument).

Exploiting “equivalences” Instead if checking all “situations”,

• figure which are equivalent (also wrt. to the property)
• check only one (or at least not all) representatives per equivalence class

• see also symmetry reduction
• 8 queens problem
• POR: equivalent behaviors

(Labelled) transition systems

• basically unchanged,
– assume initial states
– states labelled with sets 2AP

– state-labelling function L
– transitions are as well

• alternatively multiple transition relations: instead of α−→, we also see α as relation

(S, S0,−→, L)

Determinism and enabledness

• remember: α−→ deterministic
• in that case: also write s′ = α(s) for s α−→ s′ (or α(s, s′))

Enabledness α−→ enabled in s, if s α−→

Otherwise α−→ disabled in s.

• path π:
s0

α0−→ s1
α1−→ s2

α2−→ . . .

• not necessarily infinite

http://www.nqueens.de/sub/SearchAlgoUseSymm.en.html
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Concurrency in asynchronous systems

• independent transitions
• arbitrary orderings or linearizations (= interleavings)
• [actions themselves assumed atomic / indivisible]

• raw math calculation: n transition relations
– n! different orderings
– 2n states

Reducing the state space

• goal: pruning the state space

Super-unrealistic:

1. generate explititly the state space by DFS
2. then prune it (remove equivalent transitions & states)
3. then model check the property

unrealistic (but for presentation reasons)

1. generate explictly the reduced state space (using modified DFS)
2. then model check the property

Modified DFS: ample set

• standard DFS: basically recursion (probably with explicit stack)
• exploration: explore “successor states”, i.e.,

follow all enabled transitions

• graph exploration (not tree): check for revisits
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Modification/improvement Don’t explore all enabled transitions.

follow enough enabled transition

• ample: think “sufficient” or “enough”
• ample set of transitions in a state ⊆ set of enabled transitions in a state

Modified DFS

Ample sets

General requirements on ample

1. pruning with ample does not change the outcome of the MC run (correctness)
2. pruning should, however, cut out a significant amount
3. calculating the ample set: not too much overhead

• so far:
– quite wishy-washy, only general idea
– “unrealistic” (as mentioned)

• details also dependent on the “programming language”
• alternatives of ample sets with analogous ideas (the names are not really indicative

of how all that works):
– sleep sets
– persistent sets
– stubborn sets
– . . .
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With a little help of the programmer . . .

• for instance: Spin
• Spin: early adoptor of POR
• reduce the amount of interleavings

atomic atomic block executed indivisibly

D_step deterministic code fragment executed indivisibly.

Rest

• D_step more strict than atomic (eg. wrt. goto statements)

5.2 Independence and invisibility

2 relations between relations

• we have labelled transitions (resp. multiple relations)
• 2 important conditions for POR

– one connects two relations
– one connects one relation with the property to verify

Independence roughly: the order of 2 independent transitions does not matter.

Invisible Taking a transition does not change the satisfaction of relevant formulas

Determinism, confluence, and commuting diamond property

Determinism

a a

=

Diamond prop.

http:spinroot.com/spin/Man/atomic.html
http://spinroot.com/spin/Man/d_step.html
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Comm. d-prop.

a b

b a

“Swapping” or commuting

a b

b a

and vice versa

Independence

• assume: transition relations αi−→ deterministic
• write αi(s) for s αi−→

Definition 5.2.1 (Independence). An independence relation I ⊆−→ × −→ is a symmetric,
antireflexive relation such that the following holds, for all states s ∈ S and all ( α1−→, α2−→) ∈ I

Enabledness If α1, α2 ∈ enabled(s), then α1 ∈ enabled(α2(s))

Commutativity: if α1, α2 ∈ enabled(s), then

α1(α2(s)) = α2(α1(s))

• dependence relation: D = (−→ × −→) \ I

Is that all?

2 issues

1. The checked property might be sensitive to the choice between s1 and s2 (and not
just depend on s and r

2. s1 and s2 may have other successors not shown in the diagram.
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Visibility

• L : S → 2AP

• α−→ is invisible wrt. to a set of AP ′ ⊆ AP if for all s1
α−→ s2

L(s1) ∩AP ′ = L(s2) ∩AP ′

Blocks and stuttering

stuttering equivalent paths

• block: finite sequence of intentically labelled states
• stuttering (in this form): important for asynchronous systems

Stutter invariance An LTL formula ϕ is invariant under stuttering iff for all pairs of
paths π1 and π2 with π1 ∼st π2,

π1 |= ϕ iff π2 |= ϕ

Next-free LTL

• © breaks stutter invariance
• LTL−©: “next-free” fragment of LTL (often also LTL-X)

Stuttering

• Any LTL−©property is invariant under stuttering
• Any LTL property which is invariant under stuttering is expressible in LTL−©

5.3 POR for LTL−©

POR for LTL−©

• general useful and fuitful setting for POR
• of course: one may look more specific for specific formulas
• in that setting:
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Correctness of POR Ample sets prune the (DFS) search. Goal:

M, s |= ϕ iff M�, s |= ϕ

• note: “iff”
• mainly a condition on paths

Path representatives each path π1 inM starting in s is represented by an equivalent
path π2 inM�, starting in s

Conditions on selecting ample sets

4 conditions for selecting ample set

• each pruned path can be “reordered” to an which is explored (using independence).
include a condition covering end-states

• make sure that the reordering (pre-poning) does not change the logical status (stutting,
visibility)

• “fairness”: make use not to prune “relevant” transitions by letting the search cycle
in irrelevant ones.

The discussion is based on the presentation in [11].

C1 That’s said to be the most complex condition. It seems to have been ediscussed
(maybe even under different names) in the literature. It is furthermore stressed, that the
condition explisitly refers to the full unreduced state graph and paths throughout those.
Path here are alternating state-transition sequences. Note that unlike in “basic semantics”
for LTL, the paths are also path through the transition system or graphs. It’s important,
insofar that the states in the graph are relevant, in particular also which other actions
are alternatively enabled, resp. which alternative actions are in the ample sets at a given
state. So, a path (or execution) not a fully linear structure, it’s a bit like the picture of
“barbed wire” in the definition of bisimulation, or of resusal sets etc.

Anyway, the condition C1 states

Along every path in the full state graph that starts at S, the following condition
holds: a transition that is dependent on a transition in ample(s) cannot be
executed without a transition in ample(s) occurring first.

The choice of word “depending on” is a bit unfortunate. Dependence, which is the opposite
of independence, is symmetric. “Interdependence”, to my ears, would be a better word.
Also the status of “events” are unclear, it’s all quite abstract, but independence means: not
disablbling, therefore depenence can mean disabling (but there’s no talk about “enabling”).
Let’s postpone that a bit.

Note that the condition also does not speak about individual transitions. It talks about
“some” transitions. Timewise, there are 3 points in time relevant: now, in state s, in the
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future, and in between those 2 timepoints. But remember: the condition talks about all
paths starting in s, the condition and the 3 time points refer to all those.

As a consequence of the definition: in a state, all enabled ones but not ample are inde-
pendent from the ample ones. That’s indeed a direct consequence of the condition. If a
transition (assuming otherwise) that is dependent on one in ample would both be enabled
but not covered by the ample set, then one could simply start a path using that transition,
contradicting the condition.

The definition of “ample” has two aspects. One is the next-step condition, that’s the one
use in the algorithm. Ample transitions are the prioritized ones, the one in the focus.
For the next-step picture, it’s black and white: there is a set of enabled transitions. The
ample ones are explored, the rest not. We are talking here in the “unrealistic” setting that
we have the unrestricted graph at hand and the ample set allows to restrict the DFS in
the described manner. Choosing one element locally from the ample set may disable an
alternative, so there may be a choice inherent at a given point. Of course, we are here not
dealing with single executions or runs, but with model checking. So the DFS will come
back eventually and explore relevant alternatives as well.

Now, that was the next-step perspective on the ample sets. There is also the temporal
aspect, capture in condition C1: for all runs starting somewhere, the relevant ones takes
some form of priority as well. The condition is a bit more tricky than just having the
relevant ones in a state before the irrelevant ones. The reason is, that transitions can enable
as well as disable other transitions. However, that’s not universally true. Independent
transitions cannot disable each other (enabling is allowed). The ample set (the relevant
transitions) are closed under interdepenence. As stated above in the lemma, it’s an easy
consequence of the “definition” of the relevant and irrelevant next steps, that the two sets
are independent.

It’s straightforward to prove: 2 swappable and deterministic relations that don’t disable
each others satisfy the commuting diamond property.

This statement forbid disabling. The requirement about prohibitin enabling is used if one
wants to prove the reverse implication. But it does not seem to enter the picture here.
That sounds also a bit dubious to call two relations independent if one may enable the
other. It seems to be related to a subtle distinction on the formulation of “swappability”
and the condition of commutativity as part of the independence here. The requirement
corrending to “no-enabling” is covered by the fact that commutativity in the formulation
of [11] requires that the to relations involved for which the commutation holds are both
enabled.

Now, coming back to the definition of condition C1. The ultimate goal which one hopes
co capture with C1 is of course correctness of the modified DFS, i.e., one does not miss
out relevant paths.

The argument looks at path in the unreduced graphs (which is what C1 talks about, and
likewise in principle also C0, except that it does not even talk paths, just about states, so
in that perspective there is no difference between the reduced graph and the non-reduced
one). Alright. If we taken an arbitrary path in the non-reduced graph, starting at a point,
one is not forced to start with a relevant transition (from the ample set). That’s what the
reduced graph would do. The liberal behavior can do things outside the ample set. Of
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course, we should be aware that that it’s not “the” ample set, the one where we start the
path. After doing a step, we are in a different state, and that state may have a different
ample set (and a different set of low-priority transitions, since the set of enabled transitions
can surely change). However, by taking an irrelevant β, we know that it’s independent
(as required by C1) and therefore it cannot disable the relevant ones. In the successor
states, the situation is new, but the set of relevant transitions cannot get smaller. They
may be other irrelevant transitions, but again according to C1, those (perhaps different)
transitions are likewise subject to the independence requirement, now in the changed state.
Still, the cannot disable the “older” or “inherited” transitions, so they keep on lingering,
as long as one takes non-relevant transitions. One can also not discard them by running
into a dead end. That’s forbidden by C0. That means, for an element α of the relevent
transitions in a state. In a path starting there, there will finitely many βs followed by an
α, or there are infinitely many βs. Again, the definition is semi-fixed on the state s with
respect to the αs, but the βs are not defined relative to s.

Anyway, assume we are at state s and look at paths starting there. Now, the path can
have two forms, either it has a prefix ~βα or it’s infinite ~β..., where α is in the ample
set of s and the βi are all independent for all transitions in the ample set of s (which
includes α). Note that at this particular point the text does not require that the β are
outside ample(s) (which would also a weaker requirement than requiring that the actions
are from enabled(s) \ ample(s), of course). At that point in the text, the only requirement
is that the β are independent from ample(s) (but ample(s) may contain elements which
are among them selves independent, that means, α may actually not be the first element
from ample(s) that is being chosen in the first sequence). Similar remarks apply to the
second form of an infinite β-sequence.

The text may not require that, but either intuitively it’s assumed (because that’s the
interesting case), resp. that additional assumption is added in the further discussion.
Maybe they are just slightly sloppy. Anyway, without adding the additional requirement,
the sequence ~βα may actionally be taken by the modified DFS exploration (it’s only not
interesting). Interesting is only the case where the βs are all not from ample(s).

In that case where α is the first element from ample(s), the sequence β0, . . . , βmα is indeed
not chosen by the modified DFS (in casem > 0, which is also not mentioned in the text).

So, let’s refer to sequences written ~β and starting in s containing no members of the
relevant set ample(s).

The formulation in the book is a bit shifting with the

The sequences of the form ~βα may not be taken by the modified DFS. Technically, the
book here is imprecise, it states that sequences of that form are in fact not taken. That
seems not correct. It’s not an real error. The argument that follows states that instead
of this sequence, another one is taken. That’s true indepedent from the question wether
the original sequence ~βα is taken by the algo or not. Therefore one could say, the given
argument covers only the interesting case where the algorithm does not take that sequence.
The text also assumes that none of the elements of ample(s) are taken in ~β. Also that
does

./
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#

cycle condition Willems and Wolper [30]

1. Choice, conflict, and interdependence
Choices are covered, I think.

2. Transitions, relations, and events

Reordering conditions (C0, C1)

C0: stop at a dead end, only

ample(s) = ∅ iff enabled(s) = ∅

C1 Along every path in M starting at s, the following condition holds: a transition
dependent on a transition in ample(s) cannot be executed without a transition from
ample(s) occuring first.

• easy fact: ample(s) ./ ¬ample(s)

Form of paths in M�

• consequence of C1: two forms of paths

Blocks

1. with prefix β0β1 . . . βmα
• α ∈ ample(s)
• βi ./ ample(s)

2. without such prefix:
• infinite β0β1β2 . . .
• βi ./ ample(s)

• assume: all βi /∈ ample(s)
• same as βi ∈ ¬ample(s)?

Commutation

path ~βα in M, starting in s

• α ∈ ample(s), βi /∈ ample(s)

1. Pic
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2. Paths
• π1 = ~βα
• π2 = α~β

• π1 ∈M implies π2 ∈M (and vice versa)
• what about M�?: π1 /∈M� (m > 0) and π2 ∈M�

Explanations The assumptions of independence means that, in the original transition
system M the following holds: if (starting in s) path π1 is possible, then so is π2, both
ending in the same end state. The reason is that part of the condition of independence is
that actions can be swapped or commuted. So, as far as their existance inM is concerned,
π1 and π2 are “equivalent” (and all the “intermediate” paths as well, like β′αβ′′).

In the pruned systemM�, things change. In particular, the “upper” path π1 which puts
α at the end, does not exist (in casem > 0): we assumed that in particular, β0 /∈ ample(s),
so already the first step is not possible.

Now, as said, both paths are interchangable wrt. their existance: if one path exists, it’s
guaranteed that the other exists, and vice versa and they have the same start and end
state (s and r in the picture). But are they interchangable also wrt. to the intermediate,
visisited state, in particular, are the two paths interchangeble wrt. the property we model
check? Well, one paths visits s0, s1, . . . sm, r the other one s, r0, . . . , rm (with start and
end states coinciding, i.e., s0 = s and rm = r). So the question is: does it matter if one
passes though the states ri or the states si?

Of course, it may matter if some property holds for ri but not for si or vice versa. The ri
and si states are connected by α, i.e.

si
α−→ ri
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Now, whether π1 or π2 is taken (or one of the “intermediate mixtures) does not matter
provided that same formulas hold, comparing ri with si. That’s guaranteed if α is invisible
(with respect to the atomic propositions)

Does it make a difference how to go from s to r?

• π1 and π2 (and intermediate mixures): “interchangable”
• start and end point equal
• but: does it matter which one is taken

– wrt. the logical property, i.e.,
– does it matter which intermediate states are visited?

si
α−→ ri

Explanation The answer is clearly no, it does not matter provided that the satifaction
or “dissatisfaction” of the property does not depend on whether one is in si or ri. That
form of “invariance” has been called “invisibility”. The perspective is that the a formula
observes the transition system, it can “see” if a truth status changes (from true to false or
the other way around). Observing changes means being able to observe transitions. And,
in this picture, a transition is invisible or not observable, if taking said transition doe not
lead to change of any truth values. Actually, visibility has been defined with resp. to
atomic propositions only, more complex formulas don’t need to be considered, resp. their
non-observability follow as a consequence.

Invisibility of transitions

• remember: invisibility if transitions (by sets of atomic propositions)
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C2 (invisibility) If s is not fully expanded, then every α ∈ ample(s) is invisible.

Partial order reduction allows to ignore steps. In the way it’s presented here, locally, per
state, the (DFS) exploration focuses “ample sets” of the enabled next steps, and omits the
rest. That’s interesting only if really some elements are ignored. As shown in the above
example, we have to be careful when ignoring transitions (for instance the tsb0).

If we ignore transitions, the non-ingored transitions must all be invisible.

As for terminology on the slide: A state s is fully expanded if ample(s) = enabled(s).
That’s a situation where all enabled transitions are explored anyway, so in that case, the
ample-set at s is certainly ok, without need to require invisibility of any transitions.

Is that all?

Pics

1. Two concurrent procs

2. M andM�
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Is that all?

The previous condition insisted on invisiblity of an action α, in case one omits alternatives.
The picture shown previously illustrated that, that if α is invisble, the uncovered path (in
the picture) with α at the end can be reordered with α at the beginning without omitting
intermediate states with different logical status. That last condition about invisibility took
care about one form of paths that are required as consequence of condition C1, namely
the one with finitely many βi’s (not in the ample set of a state s) followed by one α from
the ample set of s.

The final condition C3 needed for the correctness of pruning the exploration to focus on
the ample-sets has to do with the second form of paths that follow as consequence of C4,
namely the ones with infinitely many βi, and never any α from the ample set.

Based in the intution of the ample sets we can already intuitively see that one has to be
careful there. The ample set in a state represent the transitions that should be explored,
and the rest from ¬ample(s) are the one that intended to be ignored (because one can argue
that they are equivalently covered otherwise during the exploration). Now, a transition in
the ample set of a state marks it as “the transition needs to be explored”. Postponing it
“forever” is not the way to go.

The condition C3 (like the other conditions) is not a condition on the behavor or the
form of paths (like “don’t look at paths where transitions α ∈ ample(s) are postponed
forever”), it’s a general condition on the forms of the ample set in the state that must
be designed in such a way that, when running the system, all paths have the desired
properties (in particular guaranteeing correctness, or avoiding infinite postponements of
the form sketched).

Pics

1. Two concurrent procs
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start start

α
β1

β2

β3

2. M

β1

β2

β3

β1

β2

β3

α

α
α

M�
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β1

β2

β3

The three figures serve to illustrate the previously discussed problem of “infinite post-
ponement”. To comple the example, we need to add one piece of information, namely the
“logical part”, i.e., at which states satisfy which propositions.

We make it very simple; the goal is

• α is visible
• the βis are invisible (the second process stuttering)

Intuitively it can be achieved by assuming that there is one boolean variable, initially say
“false”, and the process to the left sets it to “true” via it’s transition a−→. The “label”
a may represent the assignment p := true. The other process does not do anything
(except spinning around, cycling through its three states).

The first pc show two processes running in parallel in an asynchrous fashion, i.e., inter-
leaving their steps. The overall combined behavior is given by the transition systemM,
with 6 states. In that M with its 6 states and if we assume one propositional atom p,
then p is false in all 3 states on the top of the picture, and true in the three states on the
bottom.

For this system, we can find ample sets that satisfy all the three conditions so far, but
still fail to achieve correctness. That’s easily doable by systematically ignoring α, i.e.,
not including this transition in any of the ample sets. I.e., each state has an one element
ample set ample(s) = {βi}, and α is not included anywhere.

It’s easy to check that this choice satisfies C0 (trivally, since no ample set or enabled set is
empty), C1 (since α is assumed to be independent from the βis; remember that C1 speaks
about paths in M, not in M�). And finally C2 is satisfied as well, as the example is
constructed in such a way that the αi are all invisible, as required by C2.

Transition α is visible (it does not stutter), so taking it matters wrt. the verification.
However, the ample sets chosen as given, leads to explorations inM� ignoring α.

The last condition C3 on the next slide exclude such infinite avoidance. Seen as condition
one the graph itself, it’s a condition on a cycle (not a condition on infinite paths resp. only
indirectly so, since in finite-state systems, ininite paths must come from running through
at least one cycle). What needs to be ensure is that a situation as in the example cannot
occur. That a−→ is not included in some of the 3 states of the last picture is fine. What is
not fine is that it’s left out in all of them in the cycle. It would allow (as in the example)
to construct a path running through this cycle where the transition is constantly enabled
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but always in ¬ample(si), so no state “takes responsiblity” to at least one time, explore
that edge. In the example, the neglegted edge α is a visible one. But the requirement
stating “do not systematically neglect an edge” also applies to invisible ones as well. Even
if an edge is invible, one may reach behavior after taking it that is visible and needs to be
checked. The example is also specific insofar in that α−→ is continuously enabled (but not
taken). Condition C3 is more stringent: don’t neglect a transition α−→, what is somewhere
enabled in a cycle.

This condition is connected with the notion of fairness. It’s a notion that is relevant in
concurrent systems. In practical systems (like operating systems), it also can be under-
stood as a property of a scheduler. In our example, with two processes, a behavior that
constantly schedules the second process, with systematically ignoring the first one (despite
the fact that it could do a step, namely α−→), that’s a non-fair behair. Of course, after the
first process has done α−→, it cannot do any further (no transition is enabled, and that
will remain so as well, as the process is terminated). If, in that situation, the scheduler
“choses” only βi−→ steps from the second process, but no steps from the first, that does not
count as being unfair.

There are, though, two variations of the concept of fairness, namely strong fairness and
weak fairness. The illustrating example corresponds to the weak variant (resp. it illustrates
behavior which not weakly fear). Since it’s not even weakly fair, it also fails to be strongly
fair, though. It illustrates a situation, where α−→ is neglected despite being constantly
enable. The chose infiniten path β1β2β3β1 . . . has an inifinite sequence of points where
α is constantly enabled. Weak fairness requires that one cannot have an action (like α)
enabled infinitely long without also taking it. fairness

Strong fairness say: of an action is enabled infinitely often (but can be disabled in between
the places when it’s enabled again), then, for fairness sake, it must be taken: strong fairness
means, if an action is enabled infinitely often in an execution, it needs also to be taken
infinitely often.

Condition C3 coming up next corresponds to the strong variant of fairness.

A final side remark (to to relevant perhaps for POR): as part of the illustration example,
the chosen βi transitions are all invisible. The resulting behavior (without imposing C3)
is not just unfair in the described sense, neglecting α−→, the behavior is also doing an
infinite amout of do-nothing steps (here formulated by having the αi−→ as invisible). The
have no influence on the satisfaction of formulas. More practically, one can see then as
no-operation or skip steps (sometimes executing NOP steps, eating up processor cycles
without doing anything) or do-nothing “stutter” steps added to the model (like we did in
LTL).

Either way: infinitely many do-nothing or skip or stutter steps is seen as a simple and
discrete form of so called Zeno-behavior. That’s in honor of an old Greek philosopher
Zeno of Elea, who is remembered for some speculative paradoxes (retold by Aristotle),
often concerning infitely many (smaller and smaller time) steps. The most well-known of
those is probably the tale of Achilles and the tartoise, racing against each other.
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Cycle condition C3

C3 A cycle is not allowed if it contains a state in which some transition α is enabled but
never included in ample(s) for any state s on the cycle.

Remember the 2 issues

Repetition

1. Illustration

2. Text
a) satisfaction depends in chosing path via s1 or s2?
b) forgotten successors?

Rest

• assume: s1 is omitted (β ∈ ample(s), but not α)

1. issue 2
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2. the conditions imply
a) ss2r ∼st ss1r
b) ss1s′1 ∼st ss2rr′

5.3.1 Calculating the ample sets

Complexity

• checking conditions on-the-fly
• C0: easy
• C1: tricky

– refers toM, notM�

– checking C1: equivalent to reachability checking
• strengthen C3:

sufficient for C3

• at least one state along each cycle must be fully expanded

Rest

• since we do DFS: watch out for “back edges”: C′3: If s is not fully expanded, then
no transition in ample(s) may reach a state that is on the search stack
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General remarks on heuristics

• dependence and independence ./ “theoretical” relation between (deterministic) rela-
tions

• “use case”: capturing steps of concurrent programs
– processes with program counter (control points)
– different ways of

∗ synchronization
∗ sharing memory
∗ communication

• calculating (approx. of) ample sets: dependent on the programming model

Notions, notations, definitions

• we write now α for α−→
• fixed, finite set of procecesses i (called Pi)
• Ti: those transitions that “belong to” Pi
• some more easy definitions

– pci(s): value of program counter of i in state s
– pre(α):

∗ transition whose execution may enable α
∗ can be over-approximative

– dep(α): transitions interdependent with α
– currenti(s)
– Ti(s)

When are transitions (inter)dependent

• note: dependence is symmtetric! (good terminology?)

Shared variables pairs of transitions, that share a variables which is changed (or writ-
ten?) by at least one of them

Same process pairs of transitions belonging to the same process are interdependent. In
particular currenti(s)

Message passing

• 2 sends to the same channel or message queue
• 2 receives from the same channel
• Note send and receive indepenent (also on the same channel).
• side remark: rendezvouz is seen/ can be seen a joint step of 2 processes
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Transitions that may enable α (preα)

pre(α) ⊇ {β | α /∈ enabled(s), β ∈ enabled(s), α ∈ enabled(β(s))}

• assume α is an action from Pi
• pre(α) includes

– “local predecessor” of i (“program order”)
– shared variables: if enabling conditions of α involves shared variables: the set

contains all other transitions that can change these shared variables
– message passing: if α is a send (reps. receive), the pre(α) contains transitions

of other processes that receive (resp. send) on the channel

Ample

function ample (s) =
for a l l Pi such that Ti(s) 6= ∅ // try to f o c u s on one Pi

i f
check_C1 (s, P1 ) ∧
check_C2 (Ti(s)) ∧
check_C3 ' ( s,Ti(s))

then
return Ti(s)

i f
end for a l l // too bad , cannot f o c u s on any but
return enabled(s) // f u l l y expanded can ' t be wrong

end

Check C2

function check_C2 (X ) =
for a l l α ∈ X
do i f v i s i b l e (α)

then fa lse
else true

Check C′3

function check_C3 ' (s,X ) =
for a l l α ∈ X
do

i f on_stack (α(s))
then fa lse
else true

Check C1
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function check_C1 (s, Pi ) =
for a l l Pj 6= Pi

do
i f dep(Ti(s)) ∩ Tj 6= ∅
∨

pre(currenti(s) \ Ti(s)) ∩ Tj 6= ∅
then return fa l se

end f o r a l l ;
return true
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6
Symbolic execution
Chapter

What
is it

about?
Learning Targets of this Chapter

The chapter gives an not too deep
introduction to symbolic execution
and concolic execution.

Contents

6.1 Introduction . . . . . . . . . . 165
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6.3 Concolic testing . . . . . . . . 176

6.1 Introduction

The material here is partly based on [16] (in particular the DART part). The slides take
inspiration also from a presentation of Marco Probst, University Freiburg, see the link here,
in particular, some of the graphs are clipped in from that presentation. More material
may be found in the survey paper [3].

Introduction

• symbolic execution: “old” technique [21]
• natural also in the context of testing
• concolic execution: extension
• used also in compilers

– code generation
– optimization

Code example

http://swt.informatik.uni-freiburg.de/teaching/WS2015-16/ProgramAnalysisSoftwareTesting/Resources/Slides/dart_seminarslides_marcoprobst.pdf


166 6 Symbolic execution
6.1 Introduction

The code does not has any particular purpose, except that it will be used to discuss testing,
symbolic execution, and a concept called concolic execution. The function has two possible
outcomes, namely success or failure, represented by calls to corresponding procedures.
Note that non-termination is not an issue, there is no loop in the procedure. In general,
loops poses challenges for symbolic execution. The problems are similar to the challenges
to bounded model checking, which was covered by one of the earlier student presentations.
BMC is a technique which shares some commonalities with symbolic execution: both are
making use of SAT/SMT solving.

How to analyse a (simple) program like that?

• testing
• “verification” (whatever that means)

– could include code review
• model-checking? Hm?
• symbolic and concolic execution (see later)

Model-checking a program like that is challenging. Model-checking methods and corre-
sponding (temporal) logics are mostly geared towards concurrent and reactive programs
anyway. In particular, standard model checking techniques are not very suitable for pro-
grams involving data calculations. The given code is a procedure with input and its
behavior is determined by the input. So, given the input, it’s a deterministic (and sequen-
tial) problem and with a concretely fixed input, there is also no “state-space explosion”.
Generally, though, the problem is infinite in size, if one assumes the mathematical integers
as input, resp., unmanagably huge, if one assumes a concrete machine-representation of
integers, i.e., for practical purposes, the state space is “basically infinite”, even though the
program is tiny.

Of course, common sense would tell that if the program would works for having x = 2345
and y = 6789, there is no reason to suspect it would fail for x = 2346 and y unchanged, for
example. In that particular tiny example, that is clear from the fact that those particular
numbers are never even mentioned in the code, they are nowhere near any corner case
where one would expect trouble.

This way of thinking (what are corner cases) is typical for testing, and is obvious also for
unexperienced programmers (or testers). Of course it is based on the assumption that the
code is available, as the intuitive notion of “corner case” rests on the assumption one can
analyze the code and that one sees in particular which conditionals are used. For instance,
there’s no way of knowing which corner cases the complete() might have, should it have
access to those variables x and y, except perhaps some “usual suspects” like uninitialized
value, 0, MAXINT and +/- 1 of those perhaps.

There are many forms of testing, in general, with different goals, under different assump-
tions, and different artifacts being tested. The form of (software) testing where the code
is available is sometimes called white-box testing or structural testing (the terms white-box
and black-box testing is considered out-dated by some, but widely used anyway).

The intuitive thinking about “corner cases” basically is motivated by making sure that
all possible “ways” of executing the code or actually done. In testing that’s connected to
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the notion of coverage. In the context of white-box testing, one want to cover “all the
code”. What that exactly means depends on the chosen coverage criterial. The crudest
one (which therefore is not really used) would be line coverage that every line must be
executed and covered by a test case. It would allow the tester to claim 100% line coverage
if the program would be formatted in a single line. . . That’s of course silly, so typically,
criteria are based on covering elements of the programs represented by a control-flow graph
(see the pictures later), and then one speaks about node coverage, or edge coverage, or
further refinements, depending on the set-up. For instance, if one had a language that
supports composed boolean conditions, and if one had a CFG representation that puts such
composite conditions into one node of the CFG, then covering only that node, or covering
both true and false branch of that node will not test all the individual contributions of
the parts of the formular to that true-or-false condition. If want wants more ambitious
coverage criteria, one may that those into account as well, which would be better than
simple edge coverage.

Agreeing on some coverage criterion then measuring how much coverage a test gives is
one thing. Another important and more complex thing is to figure out what test cases are
needed to achieve good coverage, and then arrange for that automatically. In the given
example, that may be simple. The example is tiny, one can see a few boolean conditions
and easily figure out inputs that cover each decision as being both true (for one test case)
and false (for another). Practically, one may choose the exact corner-cases and then one
off, since one should not forget that the real goal is not “coverage”, the real goes is to
make sure that a piece of code has no errors, or rather more realistically: testing should
have a better than random chance to detect errors, should there be some. As a matter of
fact, one common source of errors is getting the corner cases wrong (like writing < in a
conditional instead of ≤ or the other way around, especially in loops), which is sometimes
called off-by-one error. So, if the code contains a simple, non-compound condition x > 0,
choosing as input x = 700 and x = −700 may cover both cases (= 100% edge coverage for
that conditional), but practically, choosing x = 1 and x = 0 may be better.

But anyway, to achieve good “coverage” and/or good testing of corner cases, the real
question is:

How to do that systematically and automatically? How to generate necessary
input for the test-cases to achieve or approximate the chosen coverage criteria?

That in a way a the starting point of symbolic execution, which has its origin in testing.
As coverage, it’s based typically on something more ambitious than edge coverage or some
of the refinements of that. It’s based on path coverage. Path coverage requires that each
path from the beginning of the procedure till the end is covered. If there are loops, there
are infinitely many paths, which explains the mentioned fact, that loops are problematic.
The method is called “symbolic” as it’s not about concrete values to cover all paths (if
possible). So, if one has a condition x > 0 as before, it’s not about choosing x = 700
and x = −700 (or maybe better x = 1 and x = 0). Symbolically, one has two situations:
simply x > 0 and it’s negation ¬(x > 0) (which corresponds to x ≤ 0), i.e., the two
possible outcomes of a condition with that conditions corresponds to two constraints.

Programs typically contain more control structure than just one single condition. So,
symbolic execution just takes all paths, each path involves taking a number of decisions
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along its way, every one either positively or negatively, and collects all constraints in a big
conjuction.

There is much more to say about symbolic execution as a field, but that’s the core idea in
a nutshell.

6.1.1 Testing and path coverage

Testing

• maybe the most used method for ensuring software (and system) “quality”
• broad field

– many different testing goals, techniques
– also used in combination, in different phases of software engineering cycle

• here: focus on

“white-box” testing

• AKA structural testing
• program code available (resp. CFG)

• also focus: unit testing

Goals

• detect errors
• check corner cases
• provide high (“code”) coverage

(Code) coverage

• note: typically a non-concurrent setting (unit testing)
• different coverage criteria

– nodes
– edges, conditions
– combinations thereof
– path coverage

• defined to answer the question

When have I tested “enough”?
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path coverage

• ambitious to impossible (loops)
• note: still not all reachable states, i.e., not verified yet

As mentioned earlier, path coverage is often considered as too ambitious as coverage crite-
rion. Of course, sometimes tests cannot cover 100% of the simpler critera as well. Nodes
that “belong” to dead code cannot be covered, in a unit with dead code, one cannot
achieve 100% coverage. But perhaps one should, since indirectly, dead code may be a
sign of a problem as well (only one cannot test dead code in a conventional way, and in a
way, there may be no point to test it either). In the presence of loops, there are typically
infinitely many paths. That means, no matter how many test cases one comes up with,
the coverage is always 0%, so in this plain form, one cannot use path coverage to measure
if one has tested “enough”. Note also: the fact that there are infinitely many paths is
not the same as saying that the program itself is non-terminating (for some input). The
notion of paths (in the context of path coverage) refer to paths through the control flow
graph (CFG), which is an abstraction. The paths may or may not correspond to paths
through the graph done when executing the actual program. That also means, there may
be paths in the CFG that are unrealizable, and in particular, all loops in the progam may
actually terminate, but that’s something one cannot see in the CFG, where one can see
just a cycle in the graph.

Path coverage

The picture shows the control-flow graph of the program from the beginning.

In the presentation slides, there is a number of overlays (not reproduced here) that show
different paths from the start node till one of the terminal nodes, in connection with the
program code. The path are marked red in the picture, and there are 3 path marked that
way. There are actually 4 different paths in the CFG, but one of them reaching the failure
end state via the route on the right does not correspond to a possible execution. That’s
easy to see, insofar that would imply a value for x satisfying the constraint

(x3 ≤ 0) ∧ (x > 0 ∧ y = 20) . (6.1)
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The corresponding path is thus not colored in red in the picture. The constraint from
equation (6.1) is an example of a path condition or, synonymously, path constraint, namely
the one for a path, which happens to be unrealizable as the constraint is unsatisfiable.

Random testing

• perhaps most naive way of testing
• generating random inputs
• concrete input values
• dynamic executions of programs
• observe actual behavior and
• compare it against expected behavior

The slide called the approach a “naive” way of testing, but it does mean it has not been
used and is being used (and evaluated and compared to other forms, it has been refined
etc.) So it has its place.

Random testing

If one applied the randing testing approach to the program from before, one needs to
generate random input for the two inputs x and y. Two generated values for that pair
could be (700, 500) and (−700,−500), for instance. The red path in the figure shows the
path the program takes for the first choice. For the second choice, a diffent path would
be chosen, also leading to successful completion.
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One path so far missed

As mentioned, there is an unrealizable 4th path, which we should not count that one among
the ones we missed. But the realizable path shown should be covered. In particular, it’s
one that would point to an error in the program, the other two so far found no bug.

The problem with this is: to randomly hit that path has an astronomically low proba-
bility (hitting y = 10 by chance is very unlikely, indeed). Actually, this way of testing,
at least the way of selecting input, may even not even be called white box, as it ignores
information inside the body of the function, for instance that y = 10 seem a profitable
corner case.

In defense of random testing one may say: it may be easy in this particular case, to pick
more reasonable or promising input like y = 10. That’s not just because the program
is small. Note in particular, that x and y are also not updated in fancy ways (maybe
conditionally updated, maybe even using pointers and other complications). One may
have to invest heavily in complex theories that may be time-consuming to run before
one can get a decent grip on improving on the randomness of the input. And, in a way,
symbolic execution is an investment in theory (SMT solving) to find an alternative way
of testing, thereby also going from a black-box approach for selecting the inputs to a
white-box view.

To avoid a mis-conception: random testing is not synonymous with white-box testing. If
one does random input testing the way described, and then used path coverage to measure
how good the test suites have been, that’s white-box testing: to rate the path coverage, one
needs access to the code. It’s only that the available white-box information is not taken
into account for shaping the test cases in a meaningful way (except for perhaps stop test-
ing, when one feels the random input has achieved sufficient node/edge/path/whatever-
coverage).

6.2 Symbolic execution

Symbolic execution

• symbols instead of concrete values
• use of path conditions, aka path constraints
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• cf. connection to SAT and SMT
• constraint solver computes real values

Basically we have introduced the core idea of symbolic execution already earlier. Perhaps
it’s worth interating that, like in BMC, it’s about SMT-solving (not just SAT solving).
We are dealing with boolean combinations of constraints over specific domains with spe-
cific theories (like integers, or arrays, etc.), that corresponds to data types used in the
programming language used for the programs we are analyzing. From the presentations
about BMC and constraint solving, we also are aware, that theories may easily lead to
undecidability of constraint solving. Integers with only addition have a decidable theory
(known as Presburger arithmetic). Add multiplication, and decidability of the theory goes
out the window. Undecidability is a real issue: how many programs use only integers and
addition? One could claim that the programs mostly never use real mathematic integers,
but just a finite portion of them (up-to MAX-INT) so one is dealing with a finite memory,
so that makes properties decidable. That’s correct, and when dealing with integers and
actual programs, one can make the argument, one should deal with the machine integers
anyway to make it more realististic. Indeed, one can work with a theory capturing those
“realistic” integer, also "IEEE floating points", etc. But all those theories are non-trivial.
So even if technically decidable (by being finite), it may be computationally too expensive
to wait for an answer when doing SMT solving. And there are more data types than just
numbers: there are dynamic data structures (linked lists, trees, etc.), and they are concep-
tually unbounded, as well. Again, one may posit that, in the real world, there is always
some upper bound (out-of-heap-space, stack-overflow), but it’s unrealistic to
capture those limitations in a decidable theory and hope the constraint solver will handle
it thereby. It would even make no sense conceptually, if one is doing “unit testing”: the
procedure under test may or may not have out-of-memory problems depending on factors
outside the unit. For instance on how much heap space is already taken away by other
data structure in the program.

Anyway, one has to face the sad fact that one will encounter constraints that are either
formally undecidable or untractable; in some way, there’s not much practical difference
either way. In some not too far-fetched situations, constraint solving may simply not
work.

We come back to that later: concolic execution is an extension of symbolic execution
that addresses exactly that problem: what can I do if my constraint problem exceeds the
capabilities of the used SMT solver. First we finish up with symbolic execution by looking
at a super-simple example (but without adding new technical content to the material, it’s
more like rubbing it in a bit more).

http://www.lsv.fr/~haase/documents/h18.pdf
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Simple example

• in the code: assignments not equations (y := read())
• introduce variable s for read()
• assignments

– y := read() ⇒ y = s
– y := 2*y ⇒ y = 2s

• branching point in line 4
– right: 2s = 12
– left: 2s 6= 12

The code is even simpler than the previous one. The code uses C-like notation where
assignment are written using the =-symbol. To differentiate imperative assignment in the
programming language from declarative equations used in constraints, the slide writes :=
for the former. The difference should be clear by looking at line 2 of the code snippet:
y := 2 y is definitely not the same as the equation y = 2y. The latter is unsatisfiable
using standard numerical theories.

Which input leads to the error?

Constraint solver

Solve the path constraint 2s = 12

• child’s play: the solution is s = 6
• but: requires solver that can do “arithmetic”, including multiplication

The point about “multiplication” has been mentioned before: the theory of natural num-
bers with addition and multiplication is undecidable. In this particular example, the con-
straint is trivially solved by humans, and would pose not problem for constraint solvers.
Indeed, the constraint 2s = 12 is covered by a decidable theory, namely a restriction of the
general case of addition and multiplication, where multiplication is restricted to involve
only one variable multiplied with constants (so constraints like xy > 0 and also x×x = 23
would violate that restriction). A constraint like 2x+17y < z would still be ok: there are 2
variables but they are not multiplied with each other. Such restricted forms can be covered
by linear arithmetic, which has a decidable theory. It’s an important class of constraints.
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For strange historical reason, the field dealing with such inequations (and generalizing the
question of satisfiability to the question of finding an optimal solution) is called linear
programming. It’s also know under the less strange name of linear optimization.

In summary

Symbolic execution for dummies

• take the code (resp. the CFG of the code)
• collect all paths into path conditions

– big conjunctions of all conditions along each the path
– each condition b will have

∗ one positive mention b in one continuation of the path
∗ one negated mention ¬b in the other continuation

• solve the constraints for paths leading to errors with an approriate SMT solver

• works best for loop-free program
• cf. also SSA
• but there is another problem as well (see next)

The remark about SSA may be ignored. SSA stands for static single assignment, a
widely used intermediate representation in compilers. It’s not the same as path condi-
tions, but shares some commonalities in the treatment of variables. Variables are in most
languages not single-assignment, they may be overwritten). However, the SSA format
(among other things) introduces “versions” of the source level variables which makes them
single-assignment (actually, not really dynamically single assignment, but statically single-
assignment). The differentiation betwenn static SA and “real” SA is relevant only when
deadling without loops. In loop-free programs, the SSA format transforms the code into
some version which is really single assignment. In that way variables become declarative,
like variables in a constraint system and the representation of variables for instance in
BMC. This has different advantages when it comes to optimization and analysis of the
code, which explains the wide usage of that concept. It’s outside the scope of this lecture,
though.

Complex condition x3

• non-linear constraint
• in general undecidable
• most constraint solvers throw the towel
• for instance: execution stops, no path covered

Coming back to the code example from the beginning of the chapter, we see that this time,
the numerical constraints involved are not linear anymore. So, we are definitely leaving
the safe ground of decidable theories.
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What can one do?

What can one do (beyond throwing the towel and accept that SE won’t cover all paths)?

• “static analysis”: abstracting
– cover both path approximately

• theorem proving? one cannot sell that to testers

The presentation here presented SE as a way to systematically represent possible paths
via path conditions. The representation of the paths is assumed precise but collecting
exactly the boolean conditions along the way. It’s only we may run into trouble when
solving them. By “static analysis” I mean techniques like data flow analysis (or more
generally abstract interpretation). Characteristic is there, that one approximates. One
(typically) does not attempt to capture precisely which choices of values lead to which
paths. Instead, one works with approximations (of the values) but does not attempt to
tailor-make the abstractions such that they fit exactly the paths. In a way, the treatment
in symbolic execution works on abstractions, as well. The values of the input space are
carved up. As far as the values for y are concerned, they are grouped into two classes:
all the values where y = 10 and all the values y 6= 10. One can see that as having two
abstract values for y, one consisting of {10} and one of the set N \ {10}. That they are
represented “symbolically” with “formulas” or constraints is more a matter of perspective.
But SE is based on the idea that the abstraction is sculpted by the need to “steer” the
abstract execution along all possible paths (at least those which are realizable), and that
works fine as long as there are only finitely many such path.

What the analysis then does is to assume that it can go either way, but without remem-
bering which way it goes, just running the analysis approximately (the technical terms is
that the analysis is “path insensitive”). There is more that distinguishes data flow analysis
from SE. One is that often the purpose is different. In data flow analysis, the purpose is
often not to split up the input of a procedure to get good coverage for testing (though it’s
a legitimite goal as well). Instead, one analyses (often in the context of a compiler) other
aspects of the code. Therefore, even if one is as radical as representing variables like x and
y just by the knowledge that they are integers, one typically adds additional information
related to what one is interested in (for live variable analysis, some information about
when the variables is assigned to, for analysis of nil-pointer problems, when pointer vari-
ables get a proper value etc). And typically that is done also not just for input variables
of a procedure, but for all variables or other entities one is interested to analyze. In any
case, static analysis like data flow analyses are typically not path sensitive (as explained),
though it’s not fundamentally forbidden, it’s just too expensive to do in many application.
As a consequence, they are less precise, i.e., more approximative. Though problems with
undecidablity may disappear thanks to working with abstractions, and loops no longer
pose a problem, at least not as serious as for SE.

One way to see analyses like data flow analysis is not to work with abstractions that exactly
cover all combinations of “true” and “false” for all encountered conditions. The abstraction
is done independent from that. In the simplest case (with the most radical abstraction),
one could completely ignore the concrete value (perhaps just abstracting it into its type,
like int). Obviously, when encountering a condition mentioning the comparison y = 10,
the analyser would not know if the run goes left or right in that case. One might also split
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into 3 different abstract values, maybe {negative, 0, positive}, hoping that this is a good
choice, but the choice is independent from the conditions in the program.

The borderline between SE and static analysis is, however, not clear cut. For instance, one
could do the following: one can replace constraints beyond the capabilities of the chosen
SMT solver (like the one involving x3) but a constraints in linear arithmic. Sometimes
one can approximate non-linear constraints by linear one. That way, one can no longer
have the exact correspondance between the paths and solutions of the path constraints,
therfore it becomes a but like (other) static analyses.

So, isn’t SE not a static analysis, as well? It sure is, in that it analyses statically the code.
Why it’s presented here as being slightly different is its motivation: it’s part of a more
advanced testing approach, which is not a static analysis. Testing is run-time or dynamic
analsys. But it’s fair to see SE in the presentation here as a static analysis technique used
to improve the run-time technique of testing.

Concolic testing Concrete & Symbolic = “concolic”

6.3 Concolic testing

Concolic testing

• here following DART
• combination of two techniques

Random testing

• concrete values
• dynamic execution

Symbolic execution

• symbols, variables
• static analysis

• other name: Dynamic symbolic execution (DSE)

The slogan is

Execute dynamically & explore symbolically
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Figure 6.1: Dart (1)

Dart overview

The following slides show how DART combines random testing and symbolic execution
into a concolic execution framework. In the slides, different runs are shown in a series of
overlays. The script version does not show all the overlays step by step. It just shows,
for each iteration, one complete path only. The example is taken from Section 2.5 from
Godefroid et al. [16]. It shows how DART could handle the program from before, which
involves non-linear constraints. Because of that, standard SMT solvers may not not be
able to tackle it, since often one restricts to decidable theories (like linear constraints).
Also standard overapproximation techniques (“predicate abstraction”) may not be able
to precisely analyze a program like that. They would be unable to figure out that fail
state is unreachable taking the path “via the right-hand side”. The best they would
do is that it “may be reachable”, thus reporting an error that is actually not possible.
The overapprixmation thus leads to false alarms. False alarms are problematic if the user
drowns in them. The “tester” will have no patience to inspect thousands of warnings, most
of which are just false alarms. So, the tool may become unhelpful if the approximation
is too imprecise. Complex programming structures, especially wild pointer manipulations
and spaghetti code, by also dynamic aspects such as higher-order functions, dynamic or
late binding etc. confuses not just the programmer but also lead to radically approximative
(= unusable) results. Things get worse when adding concurrency to the mix . . .

For the example. Figure 6.1 shows a possible first run of the DART tool. It starts like
random testing, picking an random input, say

(x, y) = (700, 500) . (6.2)

This input leads to the path marked in red in Figure 6.1. Of course, picking exactly
those two numbers is highly improbable, but picking an x larger than 0 and y 6= 10 has a
probability of almost 50%. Of course since it’s random, DART may alternatively start off
by choosing the input that leads to the path to completions on the right-hand side, which
has a probability of likewise 50%. Only the third possible path, stumbling directly across
the error by pickig x > 0 and y = 10 is highly unlikely in the first run. Anyway, we start
as shown in Figure 6.1.
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Figure 6.2: Dart (2)

While doing the concrete execution with that input, 2 boolean conditions have been eval-
uated to true: x3 > 0 and y 6= 10. Those are the path conditions corresponding the path
randomly picked. Now, with the goal of path coverage in mind: one should continue with
exploring alternatives, i.e., explore paths that are behind the negation of those conditions.
The negation of the first one is x3 ≤ 0. That’s a non-linear constraint, i.e., one where a
typical SMT solver chickens out. So assume DART does not attempt to do any constraint
solving here. Remember the goal: we want to find more or less systematically all paths,
but we don’t want to overapproximate; we don’t want to include unrealizable paths as the
might result in false alarms. As we cannot find the alternative route at this point in the
chosen path by solving x3 ≤ 0. the only thing we can do at this point is to use the path we
know that exists as fall-back. That’s the path we are currently pursuing, which “solves”
the constraint x3 > 0. So we use the concrete execution as witness to find one witness
solving a constraint we cannot otherwise solve via SMT (more precisely, when we cannot
solve its negation, but that amounts generally to the same). In that particular example,
we add x1 = 700 as constraint (let’s write x1 when referring to the x in the first run). Now
we continue the run with the next conditional. With y picked as 50, the condition y¬ = 10
is true. In this case, the the negation is y = 10 which is perfectly solvable (actually: a
constraint of that form, equating a variable with a concrete, constant value is a constraint
in solved form). That’s good, so constraint “solving” gave us that y = 10 would lead to a
different path.

So sum up the first run: the randomly generated input from equation (6.2) led to the
concrete execution from Figure 6.1, and a constraint system of the form

(x1, y1) = (700, 10)

The x1 is the concrete value in this run, the constraint for y1 comes from symbolically
representing the corresponding alternative in that run (it so happens in the example that
the constraint is already in a form (y1 = 10) that has only one solution.

This is the starting point for the second run of the method, which is shown in Figure
6.2.
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Applying the same method as in the first run, x has the same problem as before, which
means we need to use the concrete value 700 as fall-back. That leads to the constraint

(x1 = 700) ∧ (y2 6= 10) .

However, that corresponds to a path already explored. Consequently, after the second run
(in this example), no new inputs are generated.

If we don’t have clear direction (in the form of constraints) what input to take next, we
can of course generate a new one randomly. That obviously may result in path already
explored. However, in the example, the portion of the graph not yet explored so far is
the right-hand side. Sooner or later, the random input generation will pick an input with
x ≤ 0, which explores that part. And actually, it will happen rather sooner than later,
let’s assume, at iteration n. For concreteness, let’s assume the concrete input is

(x, y) = (−700, 500) .
That leads to an execution covering the path from Figure 6.3. The symbolic part chickens
out on the first constraint which involves x3 (besides that the left-hand alternative x3

n > 0
is already explored), so we have the concrete value xn = −700.

Figure 6.3: Dart (n)

The conditional leads to the additional constraint xn > 0 ∧ y = 20, but that means we
have

xn = −700 ∧ xn > 0 ∧ y = 20 (6.3)

which is unsatisfiable. By general reasoning involving the non-linear term x3, we were
aware that this path is unrealizable for any choice of x. The SMT solver is too weak to
draw that conclusion, but at least it will never explore that path, since when the symbolic
execution does not work, it relies on concrete executions, and those never take that path.
So: no false alarms!
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At that point, the DART method cannot generate new paths any more, it has covered
all 3 possible path and the one unrealizable was “covered” insofar that it has been half-
symbolically and half-concretely evaluated (see equation (6.3)). So, when figuring out
that, the method stops generating new tests, having achieved (in this example) the best
possible path coverage without generating false alarms.

One can convince oneself, that even with alternative random picks, for instance starting
to explore the right-hand side instead of the left hand side as in this illustation, the result
would be the same. So with very high probablity (and in short time), the method will
achive that coverage.

Afterthoughts to the example The example, taken from [16], serves to illustrate in
which way the combination of symbolic and concrete execution improved on both plain
random testing, symbolic execution, and on approximative methods: it is highly improba-
bly that random testing find the bug, symbolic execution cannot handle the example, and
overapproximation give false alarms. Hurrah for concolic execution!

But, on second thought, the example is hand-crafted with the intention to “prove” the
superiority of that methods over some competitors. But is it wholly convincing? Well, it
worked convincingly enough in the example, in particular stressing the high probablity of
covering all realizable paths in a short amount of time.

But that may depend on the (perhaps too cleverly) constructed example. There are two
integer input domains: the one for x and the one for y. The one for x is divided 50-50,
namely for x ≤ 0 and x > 0. The other domain is split in an extremely uneven way:
y = 10 vs. y 6= 10. In both cases the split of the domains correspond to different paths
that need to be covered. The SMT solver cannot tackle the even split domain for x, as
it is written in the form x3 ≤ 0 and x3 > 0. The uneven split for y, luckily, can be
represented by linear constraint and the symbolic treatment can therefore cover the two
choices very fast. The even coverage can, with high probability, be covered quite fast by
random generation.

If we would have written y2 6= 100 ∧ x > 0 instead of y = 10, the DART method would
struggle as well.

So, the example should be read as illustration, in aspects one can hope to improve of
the other approaches. Whether it in practice is a step forward can be judged only by
applying a corresponding tool to real example programs. Besides that, it also depends on
practical issued (which kind of theories should be reasonably covered by the SMT, what
data structures does the programming language support, what about external variables
and external procedure call etc). The paper [16] reports on experimental evaluation of
their approach, providing evidence that the method gives quite added value compared to
pure random testing, but they also point out problems of the method in practice

It should also be said, that DART is not the only attempt to improve “stupid random
testing” by similar ideas (also before that particular paper).
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